
Norsk informatikkonferanse NIK 2011

Universitetet i Tromsø 21. – 23. November 2011

NIK-styret og redaksjonskomité

John Markus Bjørndalen  Universitetet i Tromsø
Lars Ailo Bongo Universitetet i Tromsø (redaktør og arrangør)
Dag Haugland  Universitetet i Bergen
Erik Hjelmås  Høgskolen i Gjøvik (styreleder)
Arne Løkketangen Høgskolen i Molde
Birger Møller-Pedersen Universitetet i Oslo
Andreas Prinz Universitetet i Agder
Ragnhild Kobro Runde Universitetet i Oslo
Frode Eika Sandnes Høgskolen i Oslo og Akershus
Trond Aalberg NTNU

NIK 2011            Norsk informatikkonferanse

ISBN 978-82-519-2702-4

NIK_omslag_trykk CS4.indd   1 08.11.2011   13:01:27



 
 

Norsk informatikkonferanse 
 

NIK 2011 
 
 

Universitetet i Tromsø 
21. – 23. November 2011 

 
 

NIK-styret og redaksjonskomité 
 

John Markus Bjørndalen   Universitetet i Tromsø 
Lars Ailo Bongo Universitetet i Tromsø (redaktør og 

arrangør) 
Dag Haugland Universitetet i Bergen 
Erik Hjelmås Høgskolen i Gjøvik (styreleder) 
Arne Løkketangen Høgskolen i Molde 
Birger Møller-Pedersen Universitetet i Oslo 
Andreas Prinz Universitetet i Agder 
Ragnhild Kobro Runde Universitetet i Oslo 
Frode Eika Sandnes Høgskolen i Oslo og Akershus 
Trond Aalberg NTNU 

 
 



© NIK-stiftelsen og Tapir Akademisk Forlag, 2011 
 
ISSN 1892-0713  
ISBN 978-82-519-2843-4  
 
Det må ikke kopieres fra denne boka ut over det som er 
tillatt etter bestemmelser i «Lov om opphavsrett til åndsverk», 
og avtaler om kopiering inngått med Kopinor. 
 
 
 
 
 
 
Redaktør: Lars Ailo Bongo, Universitetet i Tromsø 
Digital trykk og innbinding: AIT Oslo AS 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tapir Akademisk Forlag har som målsetting å bidra til å utvikle gode læremidler  
og alle typer faglitteratur. Vi representerer et bredt fagspekter, og vi gir ut rundt  
100 nye titler i året. Vi samarbeider med forfattere og fagmiljøer i hele landet,  
og våre viktigste produktområder er: 

 
Læremidler for høyere utdanning 
Fagbøker for profesjonsmarkedet 
Vitenskapelig publisering 
 
 
 
Forlagsredaktør for denne utgivelsen: 
Lasse.Postmyr@tapirforlag.no 
 
Tapir Akademisk Forlag 
7005  TRONDHEIM 
Tlf.: 73 59 32 10 
Faks: 73 59 32 04 
E-post:  post@tapirforlag.no 
www.tapirforlag.no 



Forord 
 
Norsk informatikkonferanse har vært arrangert hvert år siden 1988 ved de forskjellige 
universitetene og høyskolene i Norge. I år er turen igjen kommet til Tromsø. Formålet 
har hele tiden vært det samme: 

� å være et møtested for datafaglig ansatte og studenter i høyere undervisnings-
institusjoner, forskningsinstitutter og næringsliv, 

� å gi et representativt bilde av hva som foregår av forsknings- og avansert 
utviklingsarbeid i hele det norske fagmiljøet, dvs forsøke å vise bredden i 
forskningsmiljøet, både faglig, organisatorisk og geografisk, samt 

� å holde et høyt faglig nivå og åpne for debatt om emner som opptar det data-
faglige miljøet. 

Årets innsendte bidrag holder et normalt nivå. 20 av 40 innsendte bidrag ble akseptert 
som ordinære bidrag, mens ytterligere 8 bidrag ble akseptert til en egen «short paper 
session». Det er flere studentarbeider blant de aksepterte bidragene og disse får 
økonomisk støtte fra NIK for å komme til konferansen og presentere sine bidrag. 
 
I vurderingsarbeidet har programkomiteen også fått uvurderlig hjelp av frivillige faglige 
konsulenter, nemlig Anders Andersen, Joanna Bauer, Marc Bezem, Valentin David, 
Bård Fjukstad, Martin Giese, Tor-Magne Stien Hagen, Helwig Hauser, Randi Karlsen, 
Anders Kofod-Petersen, Åge Kvalnes, Ove Daae Lampe, Fredrik Manne, Arne Maus, 
Aida Omerovic, Julius Parulek, Mohammad Ravanbakhsh, Romain Rouvoy, Daniel 
Stødle, Giacomo Tartari, Hallvard Trætteberg, Weiqing Zhang, og Antti Ylä-Jääski. På 
vegne av redaksjonskomiteen vil jeg gjerne få takke disse. 
 
 
I likhet med tidligere år har ikke NIK opphavsrett til artiklene i denne samlingen. Den 
enkelte forfatter må kontaktes om rettighetene til eventuell videre gjengivelse av 
artiklene. 
 
I år inviterer vi Deborah Estrin fra University of California, Los Angeles (UCLA), som 
keynote til å fortelle oss om arbeidet og utfordringene knyttet til «participatory 
sensing». 
 
Artiklene finnes også på nettet på NIKs adresse http://www.nik.no der man også finner 
annen informasjon om NIK. 
 
Programkomiteen for NIK 2011. 
 
Erik Hjelmås 
 
Gjøvik, oktober 2011. 
 





Innhold 
 
Automatically Generated Interactive Weather Reports based on Webcam Images 
  Frode Eika Sandnes, Kim Andre Pettersen, Espen Skaufel, Erling Haugstad          1 
 
 From Spreadsheets to 5-star Linked Data in the Cultural Heritage Domain: A Case Study of the 
Yellow List 
  Audun Stolpe, Martin G. Skjæveland             13 
 
Controlled Sharing of Personal Information in Android 
  Solvår Bø, Stian Pedersen, Åsmund Nyre, Karin Bernsmed          25 
 
A full parallel radix sorting algorithm for multicore processors 
  Arne Maus                37 
 
A Guided Cooperative Parallel Tabu Search for the Capacitated Vehicle Routing Problem 
  Jianyong Jin, Teodor Gabriel Crainic, Arne Løkketangen           49 
 
A Logic-based Approach to Decision Making 
  Magdalena Ivanovska, Martin Giese             61 
 
Modelling vertical fish migration using mixed Ornstein-Uhlenbeck processes 
  Erik Natvig, Sam Subbey              73 
 
Vurdering av features for steganalyse i JPEG 
  Hans Georg Schaathun               85 
 
An Experimental Facility for Cross-layer Adaptation of Service Oriented Distributed Systems 
  Shanshan Jiang, Svein Hallsteinsen, Arne Lie            97 
 
A Web Application Widget Library for Scalable Interactive Biological Data Visualization 
  Terje André Johansen, Daniel Stødle, Lars Ailo Bongo         109 
 
WallMon: interactive distributed monitoring of per-process resource usage on display and 
compute clusters 
  Arild Nilsen, Daniel Stødle, Tor-Magne Stien Hagen, Otto J. Anshus       121 
 
Auto-tuning a Matrix Routine for High Performance 
  Rune E. Jensen, Ian Karlin, Anne C. Elster          133 
 
A Monitor Plane Component for Adaptive Video Streaming 
  Bjørn J. Villa, Poul E. Heegaard            145 
 
Combating Packet Loss in OPS networks: A Case for Network Coding 
  Gergely Biczók,  Harald Øverby            155 
 
XPed-prosjektorientert undervisning 
  Terje Samuelsen, Børre Stenseth, Håkon Tolsby         161 
 
A Double-Cross Policy Against Social Engineers 
  Guttorm Sindre              171 
 
In-house programming: an option for small and medium sized niche companies 
  Kai A. Olsen              183 
 
 



Integrating Aspects of Software Deployment in High-Level Executable Models 
  Einar Broch Johnsen, Rudolf Schlatte, S. Lizeth Tapia Tarifa        195 
 
Application of advanced programming concepts in metamodelling 
  Henning Berg, Birger Møller-Pedersen, Stein Krogdahl         207 
 
A Common Framework for Scripting Tutorials 
  Erik Hjelmås, Ivar Farup            219 
 
Personal information and the personal cloud 
  Anders Andersen, Randi Karlsen           231 
 
A semantic model for data integration of offshore wind farms 
  Trinh Hoang Nguyen, Andreas Prinz, Trond Friisø, Rolf Nossum        235 
 
Open Source Software for the Smartgrid: Challenges for Software Safety and Evolution 
  Tosin Daniel Oyetoyan, Reidar Conradi, Daniela Soares Cruzes        239 
 
Semantic Search for Entities in StructuredWeb Data: NTNU at the Yahoo Semantic Search 
Challenge 2011 
  Robert Neumayer, Krisztian Balog, Marek Ciglan,Wei Wei, Kjetil Nørvåg       243 
 
Video Distribution Systems for Interactive Collaboration 
  Fei Su, Daniel Stødle, Phuong Hoai Ha, John Markus Bjørndalen, Otto Anshus      247 
 
Metamodel-based Tool Integration 
  Weiqing Zhang, Birger Møller-Pedersen, Kai T. Hansen         251 
 
An Experimental Study of Centralized and Decentralized Service Orchestration Approaches 
  Abul Ahsan Md Mahmudul Haque, Weihai Yu, Anders Andersen        255 
 
Methods for user guided compression algorithms 
  Jostein Bratlie              259 
 



Controlled Sharing of Personal Information in Android

Solvår Bø, Stian Pedersen
Dep. of Telematics, NTNU, Norway

Åsmund Nyre, Karin Bernsmed

SINTEF ICT, Norway

Abstract
Smartphones with third-party applications have become very popular.

Recently, they have received attention for transferring personal information

without the users’ knowledge. The objective of this work is to help users

to protect their privacy by increasing their consciousness on how personal

information is collected and distributed. We propose a design that provides a

higher degree of control by allowing users to set preferences that determine

what personal information to share. We implement selected parts from our

design, in order to evaluate whether this solution serves as a utility or not.

1 Introduction

Mobile phones have become a central part of our lives and we bring them wherever we

go. Today, the smartphone is a fully-edged computer and it carries a lot of personal

information. This makes the smartphone even more vulnerable to privacy invasions

than traditional computers [1]. Lately, third-party applications for smartphones, often

referred to as “apps”, have become very popular. To personalize the service, apps often

make use of the phone’s resources, such as GPS, Internet access, contact list or calendar.

However, this information is often shared without the user’s consent. An extensive survey

done by the Wall Street Journal [2] recently revealed that approximately 50% of the top

100 applications for Iphone and Android collected information about the users and their

habits, without the users’ consent. Even though an app needs permission to access such

information, it only needs to ask at installation or update. Once the door has been opened,

it is very difficult for an ordinary user to control the outgoing flow of personal information.

In an effort to meet the discovered privacy risk in relation to third party applications,

GSMA recently published Mobile Privacy Principles [3]. These principles describe how

the user’s privacy should be respected and protected by applications that have access to

personal information. Amongst others, three of the principles state that:

• Users shall be given opportunities to exercise meaningful choice, and control over

their personal information.

• Users should be provided with information about, and an easy means to exercise,

their rights over the use of their personal information.

• Users should be provided with information about privacy and security issues and

ways to manage and protect their privacy.

This paper was presented at the NIK-2011 conference; see http://www.nik.no/.

25



The main objective of the work described in this paper is to help users protect their privacy

by increasing their consciousness on how their personal information is collected and

distributed, as stated by GSMA. We describe a software tool designed for mobile devices

that allows the user to control and modify access permissions to the phone’s resources

after an application has been installed. In this paper we have chosen the mobile phone

operating system Android to implement and evaluate a prototype of our proposed design.

The paper is organized as follows. Section 2 gives an overview of the Android

platform, along with a brief description of how privacy and security is maintained in

the operating system. The design of our software is described in Section 3. Section

4 and 5 describe the implementation and evaluation of selected parts of the proposed

design. Section 6 discusses the limitations of our approach and compares it with related

work. Our conclusions are provided in Section 7.

2 Android

The mobile operating system Android [4] was established in 2005, based on a vision of

a free and open platform that allows for any coder to contribute. Android has gained a

solid foothold in the market; a recent study reported that Android was the best-selling

smartphone operating system in the fourth quarter of 2010 [5].

Android Architecture

Android is a software stack for mobile devices that consists of an operating system,

middleware and some key applications. It currently offers a variety of connectivity options

such as WiFi, Bluetooth and wireless data over cellular networks (GPRS, EDGE and 3G),

utilization of location-based services (such as GPS), accelerometers and camera. Since

Android is open-source, new technologies can easily be incorporated as they emerge [4].

In Android, applications that extend the functionality of the mobile device, commonly

known as ”apps”, are created using the Java programming language. Apps are distributed

through Android Market1, or can be downloaded directly from third-party sites. The

Android operating system is based on a customized Linux kernel, which does not

differentiate between third party applications created by third-party developers, and the

devices’ core applications. This allows application developers to fully utilize the hardware

and allows for users to tailor the phone to suit their interests and needs.

In Android, applications are built up from multiple components, where each

component provides different functionality. Components interact by sending messages,

called intents, to each other. Components are classified as being either activities, services,

content providers or broadcast receivers. In this paper we use activities, which are

graphical user interface (GUI) windows that contain one or more views with information

that is presented to the user. We also use a service, which is an Android component

that can run long-time processes silently in the background without any user interaction.

Finally we utilize a content provider, which is a lightweight database commonly used by

developers to share data between applications. To query data from the content provider

we use content resolver objects.

All Android application must have a manifest file in its root directory. The manifest

file is used to register the components the application is composed of, to declare what

1https://market.android.com/

26



access permissions the application needs and to declare what access permissions other

applications must have in order to interact with the application’s components [6]. The

manifest file is frequently used by third party application developers to request permission

to the user’s personal information, such as his current position [7].

Privacy and Security

To ensure privacy and security, Android uses a combination of application separation and

access control; applications are run i sandboxes and are given individual permissions to

the mobile device’s resources. More specifically, Android uses mandatory access control,
which means that the application’s manifest file must include a list of requested access

permissions to the resources the application intend to use. The requested permissions

will then be presented to the user upon installation, which must either accept or reject the

entire set of permissions. If the list is rejected, the application will not be installed [8].

From the user’s point of view, there are several problems related to the access control

model used in Android. First, the user has to grant permissions already upon installation

of the application, often without any information on when and why the application needs

this access and how the application intends to use the collected data. Once installed, the

application can access the requested resources at any time, without the users knowledge.

Second, as indicated above, the user have no means to reject some of the requested

permissions and accept others [8]. In addition, in our opinion, the requested permissions

are often difficult to understand. Even though many applications have a privacy policy,

which explains the intended use of collected data, this is not mandatory. The users often

have to search the web on their own initiative in order to find it.

3 Design

In this section we propose a design that aims to solve the identified problems associated

with the mandatory access control in Android. The main objectives of our design are to:

• Allow users to continuous control the sharing of personal information

• Extend the granularity of the access permissions to include a limited amount of the

requested permissions rather than “all or nothing”.

• Give the user an explanation of the possible consequences of granting a third party

application access permission to personal information.

Our proposal is a middleware that consists of a Privacy Service and a Privacy Application.

Using Privacy Application users can set their preferences for sharing personal information

(i.e. access to resources) for each individual application installed on the device. Privacy

Service will then enforce the preferences by overriding the requested permissions in

the applications’ individual manifest files. The main reason for choosing a middleware

solution (that has the obvious drawback that it requires modifying the applications to use

the middleware) was to make it as simple as possible to test the proposed concepts in a

few prototype applications.

To demonstrate the intended use of our design we use a simple scenario.

Bob uses an Android smartphone in both business-related as well as private
matters. Lately, Bob has become increasingly concerned about privacy and

27



feels he has lost control over the third-party applications on his phone. Bob
therefore downloads and installs the Android middleware “Privacy Service”,
which includes the application “Privacy Application”. When Bob opens the
Privacy Application it displays a list of all third party applications installed
on his phone and their corresponding access permissions.

The purpose of Privacy Application it to help the user control what application can access

what personal data, to control the granuality of the sharing of personal information and to

understand the risk of sharing too much information with untrusted third parties.

Bob has previously installed an app called MyDailyNews, which feeds him
with fresh news every day. Using Privacy Application, Bob sets the location
granularity for MyDailyNews to “No location”. However, when he opens
MyDailyNews the next time, the expected list of news is empty and a message
tells him to check if his GPS is turned on. Bob realizes that he has to
share his location to be able to use MyDailyNews, but he does not want
to share his exact location. A compromise has to be made. Using Privacy
Application, he clicks on MyDailyNews and then on “fine (GPS) location”
to get further options. A new window reveals itself, and present Bob with
detailed information about the “fine (GPS) location” permission. By reading
the text Bob understands the possible risks involved in sharing his exact
position. Since he rarely read the local news he concludes that MyDailyNews
only needs to know his current state and country. He clicks on the “settings”
button and marks the checkbox “state”. When he opens the MyDailyNews
application the next time, he receives regional and national news.

From the user’s perspective, there are two main advantages of using Privacy Application.

First, the information window gives the user a better understanding of the requested access

permissions. Secondly, by navigating to the settings menu, the user can choose to share

“some” information, avoiding the “all or nothing” pitfall.

Figure 1: Android software stack including the Privacy Service middleware.

Our design is illustrated in Figure 1. The Privacy Application is used to interact with

the user, while the Privacy Service runs silently in the background. The middleware is

placed between the applications and the API in the software stack. By introducing this

scheme, calls either from or to the API will be handled by the middleware. When Privacy

Application is started it displays a list of all applications installed on the phone. The

user will then have the possibility of overriding the access permissions granted to the

applications upon installation.

The key idea in our design is the use of data separation. For some applications, as

an alternative to the “all or nothing” approach, it might be useful to only provide access

28



to a subset of data, or to limit the accuracy of the provided data. The ability to provide

“some” data means that the user does not have to trade functionality for a good privacy

(an example is the location-based service MyDailyNews described in the scenario above).

To start, we have proposed data separation for six different resources, listed in Table 1.

The table briefy describes the access permissions and data separation options related to

each resource.

Resource Access permission description Data separation options
Location Allows an application to access

the device’s location using e.g., its

WiFi or GPS.

Give the user the opportunity to

choose the accuracy of the location.

Internet Allows an application to open net-

work sockets.

Open a limited Internet access

through a filter, or prevent the appli-

cation from connecting to the Inter-

net when the application is not used.

Calendar Allows an application to read the

user’s calendar data.

The user can choose what events to

share (e.g. only public events).

Contacts Allows an application to read the

user’s contact data.

The user can mark what contacts to

share and what to hide.

Accounts Allows access to the list of accounts

in the Accounts Service

The ability to choose what accounts

that are visible to the application.

Storage Allows an application to write to

external storage.

Defines a new folder inside the

external storage with specific read,

write and delete options

Table 1: The proposed data separation options in our design.

Fig. 2 shows the information flow between three of the different Privacy Application

user interfaces2 and a database, after the user has clicked on the access permission “fine

(GPS) location” (GUI 1). The hyper-link opens a new window with a short explanation

of the chosen access permission (GUI 2). The reason for having this interface is to give

the user a better understanding of the risk associated with granting the requested access

permission. The “settings” button leads the user to a menu (GUI 3), which presents a list

of possible location granularities. The settings will be saved in a database.

By querying the database, the Privacy Service can keep track of what data to return

upon a request from an application. Fig. 3 illustrates the information flow between

the Privacy Service and an application that requests access to the GPS. When the

application sends a request to the middleware, the Privacy Service checks with its

corresponding record in the database, and return the coordinates in accordance to the

specified granularity.

4 Implementation

To demonstrate the functionality of our proposed design we implemented a prototype

version of Privacy Service and Privacy Application on a LG-P500 touch-screen

2We have designed user interfaces for all six resources in Table 1. Due to space limitations we do not

provide the the complete set of figures in this paper; the reader is referred to [9] for more details.

29



Figure 2: Communication between the Android activities and the database.

Figure 3: Communication between Privacy Service and a third party application.

smartphone, running an original Android 2.2 Froyo software stack. The implementation

is described below.

Privacy Application

The prototype version of the Privacy Application consists of four activities, which are

used to display GUIs. Three of these are illustrated in Figure 4. The first activity displays

30



a list of all installed apps on the phone (Fig. 4a). When the user clicks on an item in the

list, a listener is activated, an intent is created and another activity is pushed to the top of

the activity-stack.

(a) List of all installed applications (b) List of permissions requested in

the application’s manifest file

(c) Interface showing coarseness of

GPS location

Figure 4: Three activities (GUIs) in the Privacy Application

The second activity (Fig. 4b) shows the requested permissions for the chosen

application. Each row in the GUI consists of the textual meta data description of the

requested permissions for the application, obtained from the manifest file. In addition,

we implemented a checkbox associated with each permission. To check the current state

of the checkbox, we make a call to a content provider (described further down in this

section) to check whether the modified access-tag have been set previously or not.

There are two listeners associated with each row in the activity shown in Fig. 4b; one

for the requested permission and another one for the checkbox. The listener connected

to the textual description is starting a third activity that simply gives the user a more

thorough description of that permission. In addition to an explanation, the activity also

have a “settings” button who starts the fourth activity (Fig. 4c), which lets the user change

these permissions. The state of each checkbox in this activity is also fetched from our

content provider.

To communicate the user preferences between the Privacy Application and the Privacy

Service it is necessary to save activity state. To mitigate the possible risks related to

sharing of private data we utilized a content provider for this purpose. A content provider

exposes read and/or write access to any private data of an application, dependent on

whatever restrictions one want to impose for it. None of the content providers already

shipped with Android were suitable for our middleware so we decided to design and

implement our own (an SQLite database), whose structure is illustrated in Table 2. In our

implementation this content provider is created and broadcasted by the Privacy Service

middleware.

As can be seen in Table 2, the database in our content provider currently contains

access permissions for the phone’s GPS location, contact data and Internet access. A

“1” in the FAKE column indicates that the Modified Access checkbox have been marked

(see Figure 4b). The number in the FAKE-SETTING column indicates the coarseness of

31



ID Access Permission FAKE FAKE-SETTING
1 F-GPS (fine GPS location) 1 4

2 RCA (read contact data) 0 0

3 FIS (full Internet access) 0 0

. . .

Table 2: The structure of our content provider.

the returned value given from our middleware. For example, for the GPS location “0”

indicates that none of the options is chosen, “1” indicates the exact location, “2” indicates

city, and so on (see Figure 4c).

Privacy Service

We implemented Privacy Service as an Android service component in order to handle

the interaction between the Privacy Application and other applications. Using a service

(rather than an activity) lets our middleware constantly listen for requests. The Privacy

Service is triggered by an intent message. An intent filter in the manifest file defines

what intents the Privacy Service should listen for. The service listens for both intents sent

internally in the middleware and catch intents sent from other applications. In our current

implementation Privacy Service can be triggered by two actions; one that starts the service

and another that triggers the service to fetch and return the current GPS location to the

requesting application.

To obtain the user preferences defined using Privacy Application, Privacy Service use

a content resolver, which fetches the data from the content provider database (Table 2).

For example; to obtain the user’s current location in accordance to his stated preferences

Privacy Service does the following. First, it queries the database to obtain the ID of the

access permission “fine (GPS) location”. This ID is then used to get the corresponding

FAKE SETTING. If the FAKE SETTING is 0 or 1, the coordinates will be set to the

exact location. If the setting is 5, the coordinates will be set to [0.00,0.00]. If the setting

is 2, 3 or 4, the Privacy Service will make a call to Google Maps3 to find the address,

city, state and country that correspond to the provided coordinates. Dependent on the

accuracy defined in the Privacy Application, the Privacy Service would run a new method

named getFromLocationName(String name, int maxResults). The results are broadcasted

system-wide by an intent that will be caught by the application that requested it.

Test Application

To be able to test the prototype we implemented a simple Android app that we named

“Location Finder” that could interact with the Privacy Service middleware. Location

Finder uses the mobile device’s current location to provide the user with a list of URLs

to online newspapers ordered according to their geographical vicinity. When Location

Finder is started, an intent with the action “LOCFINDER GPS REQ” is sent to the Privacy

Service. Privacy Service can then fetch and return the coordinates as explained in the

example above.

In order for the Location Finder to obtain the returned coordinates from the Privacy

3http://maps.google.com

32



Service, a broadcast receiver4 is needed. In addition, a reciever tag have to be included

in its manifest file. When the Privacy Service broadcasts the intent including the action

“LOCFINDER GPS LOC”, the broadcast receiver in Location Finder is able to obtain the

coordinates. The manifest file and the GUI for Location Finder can be found in [9].

5 Evaluation

To verify our proposed design we tested the prototype in two steps. First, we performed

a descriptive test that verified that the implementation behaved as expected. The details

of this test are described in [9]. Second, we performed an experimental test where we

studied the proposed solution in a controlled environment in order to evaluate its usability

and usefulness.

Preparing the Experimental Test

The purpose of usability testing is, according to Bevan and Macleod, “to ensure that the

delivered product reaches a minimum required level of usability, to provide feedback

during the design on the extent to which the objectives are being met, and to identify

potential usability defects in the product” [10]. The goal of our test was to improve our

design and to discover, at an early stage, if there were some parts of the design the users

did not understand. We also aimed to find out whether the users found our design useful.

The test group consisted of five university students with a good general knowledge

of Android, privacy and security, and computer science. The reason for choosing “expert

users” was that we intended to test not only usability but also the usefulness of the design.

If the participants in our group, who we knew had an over-average interest in privacy and

security, did not find the design useful, this would be a strong indication that no one else

would. We are fully aware that we have to perform a test with a larger group of regular

users, before we can make any general conclusion about the usability and usefulness of

our design.

The Test Procedure

The full details from test procedure is described in [9] but we summarize it briefly here.

We used the 10-step procedure for usability testing described by Tognazzini [11] as a

guide for carrying out the test. All participants were provided with an Android phone with

Privacy Application, Privacy Service and the test application (Location Finder) already

installed. The test consisted of six practical tasks where the participants experimented

with different access permissions for the GPS location used by the test application. The

participants then answered questions related to usability and usefulness.

Test Results

To evaluate the usability of the design we analyzed the participants’ behaviour when

solving the tasks. The test group had no problem understanding how the Location

Finder application worked. However, two of the participants found it difficult to navigate

from Location Finder application to the “settings menu” in the Privacy Application. In

4A broadcast receiver is an Android abstract class created to receive broadcast messages.

33



addition all the test participants had problems understanding the activity where the access

permissions were listed (Figure 4b). Also, some of the participants did not understand the

meaning of “fake location”. This was a clear indication of that the GUI of our prototype

needs some improvements, to become more intuitive and user friendly.

To evaluate the usefulness of the design we analysed the participants’ answers to the

questions. All the participants stated that they preferred a design like ours rather than

the existing “all or nothing” approach to personal information sharing. They especially

valued the possibility of faking their location. They all considered the middleware useful,

however, not useful enough for them to download and install on their own initiative.

In fact, several of them stated that they did not really care about what kind of data the

applications on their phones collect. The general opinion amongst the participants was

that a major breach in privacy had to occur before they would care to take actions.

6 Discussion

Limitations

The work described in this paper has some limitations. First, our current implementation

only supports a location-based service. The reason is that we wanted to evaluate the value

of the design before implementing all of it. This would make it easier to abandon the

project at an earlier stage, if necessary, and focus on alternative solutions.

Second, our initial plan was to modify the Android operating system, in order to

control the applications’ access to resources. However, we experienced several practical

difficulties (described in [9]), which forced us to abandon this idea and go for the more

lightweight implementation described in this paper. An advantage is that it is less likely

that a user would have second thoughts on installing a third-party application compared

to installing patches that modifies the core components of the OS. Since users in general

often seem to prefer a seamless “plug-and-play” experience, the use of a middleware

application seems to be a more valid approach. On the other hand, from a technical point

of view, forcing changes to applications by modifying the environment where they reside

may be a better solution. Both approaches have their pros and cons.

Finally, if the middleware solution turns out to be the preferred solution, the question

of how to enforce applications to interact with a middleware arises. Our prototype is based

on the assumption that the applications send their access requests to the middleware, and

not to the resource directly. We have not attempted to solve this issue in this paper.

The Test Results

The results from the tasks performed in the test revealed that parts of the user interface

were not intuitively adequate. We have identified several concrete measures that should

be taken in order to improve this and these are further described in [9]. Another aspect

we aimed to investigate was whether the solution was useful or not. We were surprised

by the results from the test, since we had expected the participants to be more concerned

about the privacy risks related to third-party applications than they turned out to be. Their

opinion that a major breach in privacy had to occur before they would care to take actions

is likely to be shared by other users as well. However, as pointed out in the previous

section, since the test group was so small (only five persons) we cannot generalize our

findings.

34



Security

When developing middleware it is very important to maintain security. The middleware

is responsible for major amounts of sensitive data. The users should be confident that the

personal information accessible to the middleware is secured. Since our prototype only

may be regarded as a proof of concept, intended to demonstrate the proposed concepts,

we have not taken specific measures to ensure the security of the implementation. While

our proposed design does not introduce any obvious vulnerabilities in itself, we see

some potential security problems with our implementation. In Section 3 we described

the concept of broadcasting intents to exchange messages between the middleware and

third-party applications. Since the intents may include personal data, it is important

that the broadcasted message is only received by the intended recipient. An possible

way to make broadcasting intents more secure, is to require recipients to have a receiver
permission in their manifest file [4]. If the Privacy Service broadcasts an intent meant for

e.g., the Location Finder application, it can make sure that only the Location Finder has

the required permission to receive it. Even though using receiver permissions makes

broadcasting more secure, it may still be insufficient. As far as we are concerned,

there might be other, and better, solutions in order to make communication more secure.

Security issues are utterly important to address in future development.

Related Work

Our work has been inspired by MockDroid [8], which is a modified version of the Android

operating system that allows a user to “mock” (i.e. fake) an application’s access to

resources. With MockDroid, the user is still able to use third party apps, though with the

lack of some functionality that is dependent on mocked data. One of the most important

modifications is that the set of access permissions is duplicated so that each permission has

both one real and one mocked version.MockDroid shares the same benefits as our design;

it allows the user to control the collection and distribution of personal data, which is a

great contribution to privacy on mobile devices. However, as the title implies, providing

mocked data means that the applications may loose important functionality. For most

users, it might be a problematic decision whether to sacrifice functionality for privacy.

Compared to MockDroid, our solution gives the users a higher degree of freedom in cases

where it may be hard to choose between real and faked data. Other relevant work in the

same field is the TaintDroid project [12] and the TightLip project [7].

7 Conclusion

This paper presents a tool that allows users of mobile devices to control what kind of

personal information third party applications (“apps”) are able to access. The design

presented in this paper is based on a middleware solution. The main idea is a shared and

centralized application that monitors and controls requests to internal resources, sent on

behalf of an application. To demonstrate its functionality and evaluate its usability and

usefulness we implement a prototype that lets the user control the sharing of location-

based data (GPS).

Our main objective was to help users protect their privacy by increasing their

consciousness on how personal information is collected and distributed. By controlling

the amount of information to share, users should get an increased consciousness on

35



how personal information is collected and distributed. The test results indicate that our

approach is promising but that user motivation may unfortunately be lacking.

Even though our solution is not complete, we believe that the results obtained from

our study serve as a contribution to the field of privacy protection for mobile devices.

References

[1] M. Bonetti, “Mobile privacy: Tor on the iPhone and other unusual devices,”

DEFCON 18, May, 2010.

[2] The Wall Street Journal, “Your Apps Are Watching You,”

Dec 17 2010. [Online]. Available: http://online.wsj.com/article/

SB10001424052748704694004576020083703574602.html

[3] GSMA Mobile Privacy, “Mobile Privacy Principles ,” 2011. [Online]. Available:

http://www.gsmworld.com/our-work/public-policy/mobile privacy.htm

[4] The Android Open Source Project, “Android,” 2011. [Online]. Available:

http://source.android.com/

[5] Canalyse, “Googles Android becomes the worlds leading smart phone platform,”

Jan 31 2011. [Online]. Available: http://www.canalys.com/pr/2011/r2011013.html

[6] Android Developers, “Application Fundamentals,” 2011. [Online]. Available:

http://developer.android.com/

[7] A. Yumerefendi, B. Mickle, and L. P. Cox, “Tightlip: Keeping applications from

spilling the beans,” NSDI 2007, 4th USENIX Symposium on Networked System
Design and Implementation, Cambridge, MA, April, 2007.

[8] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading privacy

for application functionality on smartphones,” HotMobile ’11, Phoenix, AZ, USA,

March, 2011.

[9] S. Pedersen and S. Bø, “Privacy Services for Mobile Devices. Master Thesis,

Norwegian University of Science and Technology (NTNU),” 2011.

[10] N. Bevan and M. macleod, “Usability measurement in context,” Behaviour and
Information Technology, Chapter 13, Page 132-145, 1994.

[11] B. Tognazzini, Tog on interface. Addison-Wesley Professional, 1991.

[12] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth,

“What you see is what they get: Protecting users from unwanted use of microphones,

cameras, and other sensors,” The USENIX Symposium on Operating Systems Design
and Implementation (OSDI),Vancouver, October, 2010.

36


