A Capacitated Clustering-based Method for Newspaper Delivery Routing

Geir Hasle, Oddvar Kloster, Morten Smedsrud Department of Applied Mathematics, SINTEF ICT, Oslo, Norway

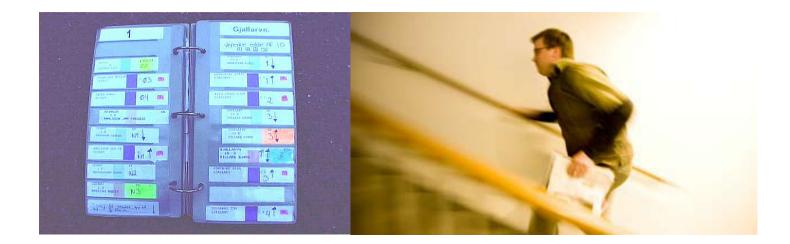
IFORS 2011

Melbourne, Australia, July 14, 2011

Outline

- Context
- The Newspaper Delivery Routing Problem
- A Clustering-based solution method
- Results
- Conclusions and further work

.


Technology for a better society

Applied Mathematics

Newspaper distribution

- Subscription newspapers, home delivery
- Decreasing revenues
- Distribution costs > 40% of total costs
- Route revision very costly and time-consuming
- Reduce costs Increase revenues

🔳 A: P	- Session	h1	
File Edit	Transfer	Onlines	Section

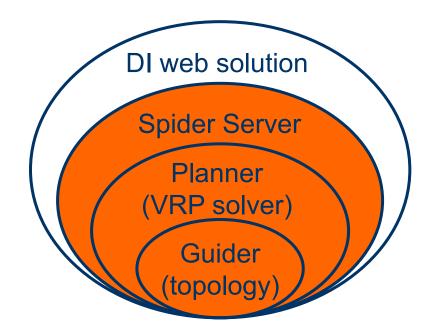
=>PF2=TILBAKE, PF5=ENDRE, P	E6=SLET	T.PE10	BLANKER	PE11=RUTEK	ONS PE	12=TTL	EGGSOPP
AFTENPOSTEN							
Rute: 21509 Utg.: M Ukeda							s med: G
Ant.l0nn: 265 -Ant. abo						: 3 0/	/U: U
265 * 0 = 265 a kr.	23,7	6 🔹 💧	O Spes.at	o a kr.	0.00	= Kr	6296,4
Avstandsl0nn: 3,3 km a	kr.	52,80				= kr	174,2
Vintertillegg: 5 mnd. a	kr. 2	91,00	: 12			= kr	121,2
Sum l0nn					*MIN*	= kr	6892,1
26,00 % tillegg for fer	iepenge	r og a	rb.avgift			= kr	1791,9
Sykkelgodtgj.						= Kr	0.0
Transp.godtgj. 3,3 km	x 25,0	0 dage	r x kr.:	0,00		= kr	0,0
Transp.strekn. 0,0 km	x 25,0	0 dage	r x kr.:	0,00		= kr	0,0
Sum l0nn, sos.kostn. og	transp.	godtgj			*MIN*	= kr	8684,1
Kostnad pr. abonnement p	r, mÅne	d				= kr	32,7
 Klargjøring før start 			15 mir	Dekn.%:	44,6	9	
2. Avstand 3,3 km			39,60 min		t tid	128,13	3 min.
O oppg. uten n0kkel	a .0,3		0,00 mir	Reell	tid	128,13	s min.
53 oppg. med n0kkel	a 0,5	0 =	26,50 min				
5. 206 etasjer	a 0,3	5 =	72,10 min	Reell	dagl0	nn 260	0,42 Kr
			0,00 mir		timel	0nn 11	16,54 kr
			12,60 min				21,95 Kr
			0,60 min				kr
		0 =			hussta	nder	593
Totalt			66,40 min				
TB		A2Se	ssion1	R4 C1		3:22	22/11/0

Reduce costs – Increase revenues

- More efficient carrier routes
- More efficient route revision
- Better utilization of distribution system
- Additional products
- Necessitates better communication, flexibility, dynamics

RTD Collaboration since 1999

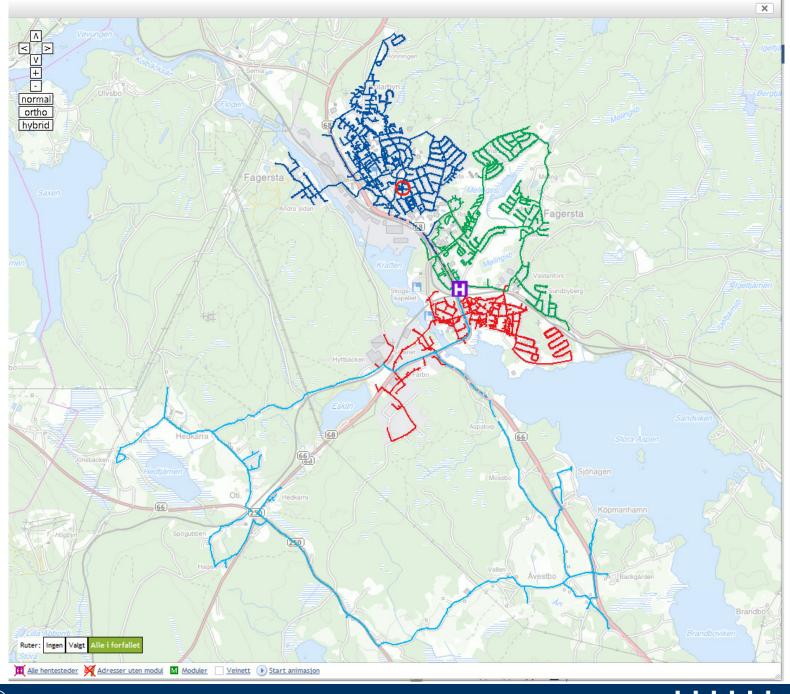
- Newspapers and their distribution companies
- PDA/Smartphone based delivery book
- Cloud computing based distribution management system
- Establishment of Distribution Innovation AS (DI) 2001 <u>http://www.di.no</u>
- The DI solution, web based "cloud computing"



Distribution Innovation solution

- > 80% of newspaper etc. home deliveries in Norway
- Magazines, books …
- > 6.200 carriers download their route every night
- > 1 million deliveries per day
- > 30 companies Norway, Finland, Sweden, Denmark, Poland
- Integrated route construction and revision
- Spider VRP solver

System architecture



. . . .

Distributio							
	Rutenet	t Adresse	Rapporter				
Søk rute Modul I	Forfall Rutemålta	all Optimali	isering				
Ruteutvalg							
Distribusjon	M1-6 💌						
Velg geografi							
Rutesøk							
Region	-Velg-		•				
Område	-Velg-						
Forfall		tribusion Sørv	/est - RNO#232€ ▼				
		,					
Velg måltall / tidsm	odus						
Måltall	LE LT	OM F	AL TB D%	LEV 🛛 OM 🛆 RL			
Tidsmodus	Snitt Ma	n Tirs O	ns Tors Fre	Lør Søn			
	Shite Ma			201 301		Søk	
						SØK	
Oversikt Produksj	on Forfall						
	Lev.eff. (lev/min)	Lev.tett. (lev/km)	Omb.tid	Rutelengde	Tidsbuff.	Dekn.grad (%)	Lev. (ant)
Produksjon (3)	1,64	8,9	232 Σ:695	42,5 Σ:127,4	68	27,7	379,2
Optimering (4)	1,84	10,8	137 Σ:548	23,4 Σ:93,4		24,8	252,4
Forfall (4)	1,84	10,8	137 Σ:548	23,4 Σ:93,4		24,8	252,4

. . . .

Applied Mathematics

Problem characteristics (1)

- Two-echelon distribution: from printing works to subscriber
- Focus on "last mile" carrier distribution: From drop point to subscriber doorsteps
- Node-based VRP with idiosyncrasies
- Possibly very large number (thousands) of points
- Aggregation -> CARP on a mixed graph (Node Edge and Arc Routing Problem (NEARP))
- Mixture of pedestrian routes and car routes
- Car routes open, pedestrian routes closed (in Sweden: the opposite ...)
- Service time often large part of total time
- Retardation and acceleration
- Alternative pickup points
- Requires detailed road topologies, accurate travel and service time models
- Meandering ("zigzagging") not allowed for cars (in Norway, they do not care ...)
- Topography, keys, ...

Problem characteristics (2)

Main objectives

- cost, closely related to # routes, total duration of routes
- route balancing (duration), within +/- 10%
- "visual beauty"
 - non-overlapping routes
 - compact routes

Constraints

- route duration
- # routes
- meandering, topography, keys, ...

Relevant literature

Multi-objective VRP

■ Jozefowiez et al (2008) Multi-objective VRP. Survey, some 70 references

Route balancing

- Tsouros et al. (2006): Routing-Loading Balance Heuristic Algorithms for a Capacitated Vehicle Routing Problem
- Jozefowiez et al. (2007): An evolutionary algorithm for the vehicle routing problem with route balancing
- Pasia et al. (2007): Solving a Bi-objective Vehicle Routing Problem by Pareto-Ant Colony Optimization
- Borgulya (2008): An algorithm for the capacitated vehicle routing problem with route balancing

Visual beauty

- Lu & Dessouky (2005): A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows
- Hao & Miller-Hooks (2006): Interactive Heuristic for Practical Vehicle Routing Problem with Solution Shape Constraints
- Matis (2008) DSS for the street routing problem
- Route balancing and visual beauty
 - Kim et al. (2005): Waste collection vehicle routing problem with time windows
 - He et al. (2009): Balanced K-means Algorithm for Partitioning Areas in Large-Scale Vehicle Routing Problem

Approach (1)

Main idea: create a solution with the desired structure

- duration balance
- visually appealing (compactness, non-overlapping)
- Simple
- Fast
- New construction heuristic: "Clusterer"
- Continuation with "standard" machinery

.

Approach (2)

- Estimate # routes needed
- Solve balanced capacitated (duration) clustering problem
 - Modified K-means algorithm
 - Fast TSP solver to find duration of each cluster (2-opt, relocate)
- Restart with better # routes
- After-burner: Intra-route optimization (3-opt)
- Possibly: Further iterative improvement
 - constraints on deterioration of balance and beauty

Road topology challenges

- Central road from depot to clusters
- Orders on central road may be serviced by any route without extra costs
- Makes the optimizer very proficient at creating overlapping routes and destroying existing clusters when running without cluster objective.
- "No meandering": travel cost varies with direction

K-means algorithm

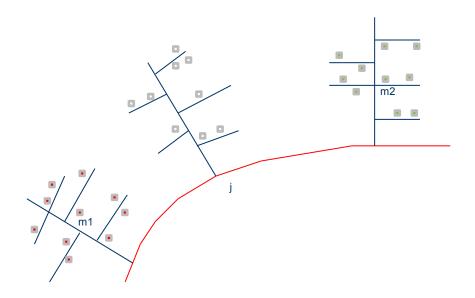
- 1. Select a random location as first centre m_1^0
- 2. For each additional cluster $i = 2 \dots k$ pick the location furthest away from previously selected centres $m_0^0 \dots m_{i-1}^0$ and make it centre for this cluster, m_i^0
- **3.** t = 0
- 4. Assign each location to the cluster who has the closest centre, i.e. cluster can be expressed as:

$$C_{i}^{t} = \left\{ \left\{ x_{j} : \left\| x_{j} - m_{i}^{t} \right\| \leq \left\| x_{j} - m_{i^{*}}^{t} \right\| \forall i^{*} \in \{1 \dots k\} \right\}$$

5. Update each centre to new centroid:

$$m_i^{t+1} = \frac{1}{\|C_i^t\|} \sum_{x_j \in C_i^t} x_j$$

6. t = t + 1 and go back to step 4 until $C_i^{t+1} = C_i^t \forall i \in \{1 \dots k\}$



Adaptations to our problem

- Cluster center: closest location to centroid (Euclidean distance)
- Non modified K-means to generate a (unbalanced) starting solution
- Estimate cluster size (duration) with simple and quick TSP heuristic
- Balance routes by introducing an offset o_i^t when assigning locations to cluster: $C_i^t = \{\{x_j: ||x_j - m_i^t|| - o_i^t \le ||x_j - m_{i^*}^t|| - o_{i^*}^t \ \forall i^* \in \{1 \dots k\}\}\}$
- Modify offset for the most unbalanced cluster
- Normal K-means when balance is stable
- Terminate on timeout or balance ok and estimated durations feasible

Road topology balancing problem

- 2 clusters, splitting of the middle branch
- Travel through junction *j* regardless of whether we come from centre m_1 or m_2
- All orders have same difference in distance to centre m_1 and m_2
- All orders in middle branch assigned to same cluster depending on offsets
- Solution: use a linear sum of travel distance and Euclidian distance

Minimizing number of routes

- 1. e_r lower bound, total service time of all orders versus available time on tours
- 2. Find plan e_r number of tours
- 3. If the plan with e_r tours is not feasible, set e_r to new estimate (increase with minimum 1) for how many tours are needed and go back to step 2
- 4. If the plan can be feasibly clustered with this number of routes, then calculate slack to estimate how many tours can be saved and subtract this number (or minimum 1) from e_r and go back to step 2
- 5. Terminate at step 3 or 4 when $e_r 1$ tours are infeasible but e_r tours are feasible

Experimental results

- 2%-30% improvement of cost
- Better balance
- Good clustering
- No "bad" cases (imbalanced, ugly), reported so far

.

Further work

- Iterative improvement
 - Inter-route operators
 - Limit on deterioration of balance and beauty
 - Beauty hard to quantify
- Parallelization
- Research on (stylized) NEARP
 - LB
 - New heuristics
 - New instances based on industrial data
 - NEARP extensions
 - Distance
 - Balance
- Large DCVRP instances …

.

Conclusions

- Construction / revision of home delivery routes very complex
 - Iarge size
 - multiple criteria
 - idiosyncratic constraints
- Rich Node, Edge, and Arc Routing Problem
- Duration constraints
- Minimize total duration (economy)
- Route balance and "visual beauty" very important
- Clustering-based method works well
- 2-30% reduction of costs relative to manual plans
- Route plans more balanced and prettier
- Drastic reduction of time and manpower for revision

A Capacitated Clustering-based Method for Newspaper Delivery Routing

Geir Hasle, Oddvar Kloster, Morten Smedsrud Department of Applied Mathematics, SINTEF ICT, Oslo, Norway

IFORS 2011

Melbourne, Australia, July 14, 2011

