
A server-side approach to privacy policy matching

Åsmund Ahlmann Nyre, Karin Bernsmed
SINTEF ICT

Trondheim, Norway
{asmund.a.nyre, karin.bernsmed}@sintef.no

Solvår Bø, Stian Pedersen
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway
{solvarb,stianren}@stud.ntnu.no

Abstract—With the increasing use of online services that
require sharing of information there is a need for Privacy
Enhancing Technology tailored for personal information con-
trol. Commonly, web privacy is handled through matching of
privacy policies and user preferences using software agents
on the client side. In this paper, we propose a new approach
to privacy policy matching we denote server-side matching.
By moving the matching logic from the client to the server,
the client is alleviated from the resource consuming process
of obtaining and matching policies and the service provider
is able to adapt services to users’ privacy preferences.
We describe the architecture of a general solution and a
prototype implementation of selected parts. The solution has
only been subject to rudimentary testing, but our initial
evaluation is promising.

I. INTRODUCTION

The future Internet is expected to become more service-
oriented, have tighter social networks and an increased
usage of context-aware applications, where the utility
value is dependent on sharing of personal information.
Privacy will therefore continue to be one of the main
concerns for users on the Internet [1], [2]. Privacy Enhanc-
ing Technologies (PETs) for the web have thus far been
focused on protecting regular computer mostly focused
on hiding user identities by providing anonymity whereas
little has been done to assist the users to understand the
risks of releasing information about themselves. To protect
their privacy it is of major importance that the users
understand the implications of data sharing.

Research shows that although users are in general
concerned about their privacy, they currently do not act
according to their privacy principles. This is often referred
to as the privacy paradox and is often attributed to their
lack of knowledge and understanding of privacy issues [3].
We argue that privacy in the context aware, mobile world
is a task far too difficult for users to handle by themselves.
Instead we propose a shift from the client- and device-
centred approach of agent-based privacy protection, to a
server-side privacy solution where privacy protection is
offered by the service provider. Hence, users do not have
to decide whether to accept the privacy policy of a service,
the service has to figure out how to fulfil the preferences
of the user. This shift in setup will not only alleviate
users from the burden of conducting continuously privacy
decisions, but also provide a much needed incentive for
service providers to implement privacy protection. By
adapting and differentiating their services to the privacy
preferences of their users, services providers are able to

Figure 1: The basic architecture for matching privacy
policies and preferences through the use of a user agent.

reach a broader audience than before. We provide an initial
design of such an architecture and also an implementation
of selected parts of our design, as a proof-of-concept.

This paper is organised as follows. Section 2 reviews
related work and explains how our approach differ. Section
3 explains the concept of ”server-side privacy” and our
proposed design. In Section 4 we describe our prototype
implementation of selected parts of the design, and then
the evaluation is given in Section 5. Next, we discuss the
advantages and disadvantages of our solution in Section 6
and outline the main directions for future work in Section
7, before we provide our concluding remarks in Section
8.

II. RELATED WORK

The Platform for Privacy Preference Project (P3P)[4]
was launched to assist users in evaluating privacy policies
on the web. At a later stage A P3P Preference Exchange
Language (APPEL)[5] was developed to automate the
process of privacy policy evaluation by allowing users to
specify their privacy preferences. Hence, whether a web
site was to be accepted or not, was merely a question of
whether the user preferences matched the web site’s policy.
The P3P/APPEL specifications suggest an architecture
where the matching is done by an autonomous user agent
(see Figure 1), but such an agent is not part of the
specifications themselves.

The Privacy Bird [6]1 developed by AT&T was one
of the first user agent implementations based on P3P. It
was realised as a web browser plugin (Internet Explorer)

1Available from http://www.privacybird.org

!000111111 SSSiiixxxttthhh IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn AAAvvvaaaiiilllaaabbbiiillliiitttyyy,,, RRReeellliiiaaabbbiiillliiitttyyy aaannnddd SSSeeecccuuurrriiitttyyy

!777888-­-­-000-­-­-777666!555-­-­-444444888555-­-­-444///111111 $$$222666...000000 ©©© 222000111111 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///AAARRREEESSS...222000111111...!555

666000!

and allowed users to specify preferences on a subset of
the APPEL specification and perform automated matching
with web sites’ policies. Evaluation results was presented
to users through a a bird icon that changed shape and
colour depending on the presence of a P3P policy and
the degree to which it matched the preferences. A similar
approach was taken by Kolter et al. [7] but extended with
more fine-grained preference specification and community
support to further assist users in policy evaluations.

The approach taken by the PRIME project2 is to create
a privacy middleware for service providers to run their
services on and a corresponding user client for users to
interact with such services. The Integrated Privacy View
(IPV) [8] takes a somewhat different viewpoint, where the
service provider is required to map every input field on
the website to the corresponding privacy statements in the
policy. This is done by adding privacy anchors (reference
to a policy statement) within the HTML encoding. Hence,
users can, per input field, determine whether the infor-
mation requested is in accordance with their preferences.
Although these approaches implies that greater responsi-
bility is placed on the service provider, the matching and
privacy decisions are still performed by the client.

Common for all these solutions is the bureden placed
on the users necessary to state, maintain and verify that
their privacy preferences are being met.

III. A SERVER-SIDE PRIVACY ARCHITECTURE FOR
ADAPTIVE SERVICES

In this section we describe our proposed architecture
for privacy policy matching. The main idea is to transfer
the responsibility of obtaining and matching privacy poli-
cies with user preferences to the services providers. The
purpose is to release the user from privacy preferences
management and to minimize the client-side software that
has to be installed, while at the same time giving service
providers the ability to adapt their services to users.

The purpose of this section is to outline a generic de-
sign. Specific implementation details are therefore left out
from this part. An example of a prototype implementation
of the proposed architecture will be provided in the next
section.

A. Overview
Figure 2 shows an outline of our solution and how the

different roles interact. The core concept involves three
different roles; users, privacy preference providers, and
service providers.

1) User: The user selects a set of privacy preferences
that matches his/her intention to share personal data. The
privacy preferences is used to put restrictions of what type
of data the user find acceptable to share, how the data
can be used, how long it should be kept by the service
providers and with whom the service provider is allowed
to share the data. The user will then refer to a particular set
of these privacy preferences when interacting with service
providers.

2Privacy and Identity Management for Europe – http://www.
prime-project.eu

Figure 2: Design overview of server-side privacy

2) Privacy preference provider: To aid the user in
the process of specifying privacy preferences, our model
utilises a privacy preference provider. This entity holds a
database of pre-defined privacy preference sets that the
user can choose from. The database contains sets that
are designed to match the privacy preferences of most
stereotype users. For example, to comply with users with
strong reluctance to reveal information about themselves
the preference provider offers a set of preferences that put
very strong restrictions on the collection and usage of per-
sonal data. Other data sets contain less strict requirements.
The privacy preferences sets are stored and made available
online, without being associated with any particular user.

3) Service provider : In our model, privacy-aware
service providers will be notified, at session initiation,
when users have privacy preferences stored at a preference
provider. The main task of the service providers is then
to collect the privacy preferences set from the privacy
preferences provider, compare the preferences with their
privacy policy and to adapt their services accordingly.

The general process flow is given below. Step 1 is
considered an initialisation step and is only performed
once, whereas steps 2–6 are repeated whenever the users
issues a request for a service.

1) The user specifies his privacy preferences through a
preference provider by selecting a predefined pref-
erence file. The corresponding preference identifier
is stored at the client.

2) When requesting a service, the client transfers the
stored preference identifier to the service provider.

3) The service provider makes a request to the privacy
preference provider to obtain the preference file
corresponding to the identifier received from the
client.

4) The preference file is then matched against the
privacy policy of the service.

5) Whenever the privacy policy does not match the
preferences of the user, the service provider attempts
to adapt the service such that a match is obtained.

666111000

6) The outcome of the process is either the original
service, a limited service or no service at all. In any
case, the service offered to the user will adhere to
his privacy preferences.

The architecture proposed in Figure 2 is generic and not
tied to any specific implementation. The roles describe
logical roles and there may be situations in which one
entity operates in two different roles. For example, a
service provider may also operate as a privacy preference
provider. Or a user may chose to create and store his own
privacy preferences. The seperation of roles in the figure
does therefore not imply different entities.

B. Preference specification
Preference generation could be handled in many dif-

ferent ways that would still adhere to our proposed ar-
chitecture. However, there are some fundamental features
that must, or must not, be in place for it to be an accept-
able privacy solution. An obvious approach is to simply
transfer whatever preference solution currently available
(e.g., [7], [6]) and simply transfer the preference file to
provider’s fileserver. However, this would either mean that
the user would have to specify such a preference file on
his own, or that preference generation software would
need to be installed. Neither solutions is ideal in our
opinion. Additionally, the content of a highly personalised
preference file would of course be considered personal
information and should therefore not be distributed to
anyone without any protection. Hence, the preference
solution itself could become a threat to the privacy of its
users. Through an evaluation meeting with the Norwegian
Data Inspectorate it was pointed out that to avoid being
a potential privacy liability, a number of people should
have identical preferences. That is why we propose to
have preference providers offering a fixed set of privacy
preferences for users to choose from. This will not only
solve the problem of personal preferences, but at the same
time help users to specify preferences without requiring
additional client-side software.

Still, one of the main problems of privacy preference
specification is that the decisions humans make are based
on the context in which it is done. Thus, users may have
entirely different attitudes towards privacy for example in
their professional and private life. To cater for this, users
are allowed to select multiple preference files to be used
in different contexts.

C. Privacy policy language
Both privacy policies and preferences must be provided

in a format that is machine understandable, in order
to facilitate matching. The only assumption we make
regarding such languages is that the service provider is
able to perform matching. That being said, the preference
language need not be particularly expressive since prefer-
ences must be kept general in order to limit the number
of different preference files available to the users. As a
consequence, any expressiveness beyond what is offered
as preferences, is impossible to take advantage of when
specifying privacy policies.

D. Client software
While we strive to prevent users from having to down-

load and install client software for our solution to work, it
apparently is unavoidable. The reason is that the service
provider must be notified of which preferences the user
has selected. Hence, the basic responsibility of the client
is to record the preference identifier selected by the user
and then forward this to the service provider whenever
the user issues a request for a service. Additionally, if the
user can select multiple preference identifiers for different
contexts, the client must also do this.

In order to maintain a light-weight client, context
switches are handled by direct input from the user. For
example, the user can set the client to be in private-
mode or work-mode to turn on the privacy preferences
selected for the private and professional life, respectively.
This greatly reduces the number of preferences a user can
select and handle efficiently, but at the same time ensures
that the complexity of the client is kept at a minimum.

To prevent any unnecessary processing delay, all re-
quests made by a user should contain the preference
identifier, regardless of whether the service provider in
question supports the technology or not.

E. Policy matching and service adaptation
Service tailoring and context-aware services are becom-

ing increasingly popular due to their improved usefulness.
But at the same time, such services are often considered
problematic with respect to users privacy. In our solution,
we utilise users’ privacy preferences as the basis for
service adaptation and thereby neutralising the conflict
between usefulness and privacy protection.

We assume a tight mapping between service features
and privacy policy statements. Hence, whenever a policy
statement is in conflict with a preference rule, the service
provider is capable of removing the features corresponding
to the statement. For example if the privacy policy states
that click-stream information is used for tailoring the ser-
vice and the user’s preference states that it will not allow
click-stream information to be collected, then the service
can remove the tailoring feature and thereby deliver a
service in accordance with the preferences. Obviously, if
the statement in question corresponds to all features of
service, then the service should not be offered to the user.

Whenever features are removed from a service due to
conflicting privacy preferences, the user is made aware
of this through the user interface of the service. Unlike
many agent-based technologies (e.g. [6]) our solution does
not rely on any specific icons to convey matching results
to users. This is because the service offered to the user
by definition is in accordance with his preferences, and
that the user is more likely to demand an explanation
for missing features than is the case for traditional policy
matching.

IV. PROTOTYPE IMPLEMENTATION

In this section we elaborate on our implementation of
the concept described in the previous section. As a proof-

666111111

of-concept application, we have only implemented parts
of the proposed deign.

A. Setup and simplifying assumptions
We chose to use P3P [4] as the privacy policy language

and APPEL [5] for preferences. This choice was made
primarily based on the ease of use, simplicity and tool
support available for P3P/APPEL. The server-side func-
tionality was implemented using the Python3 programming
language on a traditional Apache web server4.

Since a full-scale end-user test was not within reach of
this project, we settled for a rudimentary implementation
of the preference provider service. One of the main parts
of such a service would be the user interface and the actual
preference selection. But, since such an interface could not
be thoroughly tested, the service was implemented as a
standard web server solely for the purpose of retrieving
preference files at the request of the service provider.
Hence, our implementation assumes that the user already
has selected a preference file, and therefore only consider
the event where the user requests a service from a service
provider.

B. Client software
The sole purpose of the client software is to record

the selected preference files and transfer the preference
identifier to the service provider upon making a request.
Hence, the software itself should be as small as possible to
prevent it from becoming an obstacle in user adoption. We
therefore decided to use web cookies [9] and a small web
browser plug-in for transferring the preference identifier
to the service provider. The idea is that the preference
provider sets a cookie containing the preference identifier
(a URL) when a preference file is selected by the user.
Afterwards, whenever the user requests a web page, the
client software creates a new cookie for the requested
domain and inserts the preference URL. The web browser
will ensure that the newly created cookie is transferred
to the host along with the initial request. Hosts that do
not implement server-side matching will simply ignore the
added information.

A perhaps better option for transferring the preference
URL would have been to extend the HTTP [10] request
header to contain a new field. The problem would be
that an extended HTTP request header would have had
to be implemented by the web browser itself and not by a
plug-in software. Thus, for our purposes, the cookie-based
approach best serves our needs.

C. Privacy policy matching
Once the service provider receives a request contain-

ing a privacy preference cookie, it will automatically
download the preference file corresponding to the URL
contained in the cookie. Hence, the service provider need
not be aware, nor have any agreements with the preference
provider other than the ability to download the file. The

3http://www.python.org
4http://www.apache.org

preference file along with the service providers policy file
is then fed to the matching engine.

Privacy policy matching is done by comparing the
preference rules to the statements of the policy. In the
examples depicted in Figure 3, the preference rule states
that any service collecting physical information to dis-
tribute publicly, to unrelated services, delivery services or
others, should be blocked. Similarly, the policy statement
indicates that the service will collect both physical, online,
demographic and purchase data to be given to the service
itself or a delivery service. Thus, there is a match between
the categories physical and the recipient delivery, which
triggers the preference rule to block.

D. Service adaptation

In the event that the matching algorithm detects a
conflict, service adaptation is attempted to resolve the
conflict. Continuing the example from Figure 3, the service
could be adapted by either removing the data category
physical or the recipient delivery and all corresponding
features. Our prototype implementation of a web service
contain a fictitious online shop where we have chosen to
remove the delivery recipient and hence all correspond-
ing features. Thus, the service is obliged not to deliver
physical information to any delivery services, which is
essential in order for the shop to send bought items to
the customers. Therefore, the service cannot offer the
customer to buy anything, but he may still view the items
on sale. Figure 4 and 5 depict the resulting web page from
a matching process without conflicts and the one identical
to the above-mentioned example. The latter shows that the
buying feature has been removed and is accompanied by
a message stating the cause of the removal and how the
buying ability may be reinstated.

V. DISCUSSION

Service providers currently have no incentive to im-
plement privacy enhancing technology which serves as a
partial explanation for the relatively modest adoption of
P3P [11]. At a first glance, placing an additional burden
on the service provider in terms of both implementation
effort and resource consumption at run-time does not seem
to contribute to the service provider buy-in. However, the
ability to adapt services to the preference of users and
also more concretely show, through feature removal, what
features rely on the different parts of the privacy policy.
The current implementation is not sufficient to perform a
proper trade-off analysis of the costs and benefits of our
solution.

HTTP Cookies have often been linked to privacy issues
on the web. However, commonly they constitute a part
of the problem, not part of the solution. But, as long as
the information contained in the cookie is not personal
or does not identify any persons, the use of cookies does
not threat privacy. Another problem might be that our use
of cookies is not entirely according to the specification
[9]. Particularly, the server is supposed to set a cookie
using a set-cookie field in the response header, whereas

666111222

<appel:RULE b e h a v i o r =” b l o c k ”>
<p3p:POLICY>

<p3p:STATEMENT>
<p3p:DATA GROUP>

<p3p:DATA>
<p3p:CATEGORIES

a p p e l : c o n n e c t i v e =” o r ”>
<p 3 p : p h y s i c a l />

</ p3p:CATEGORIES>
</ p3p:DATA>

</ p3p:DATA GROUP>
<p3p:RECIPIENT

a p p e l : c o n n e c t i v e =” o r ”>
<p 3 p : o t h e r−r e c i p i e n t />
<p 3 p : p u b l i c />
<p 3 p : u n r e l a t e d />
<p 3 p : d e l i v e r y />

</ p3p:RECIPIENT>
</ p3p:STATEMENT>

</ p3p:POLICY>
</ appel:RULE>

(a)

<STATEMENT>
<PURPOSE>

<c u r r e n t />
<d e v e l o p />

</ PURPOSE>
<RECIPIENT>

<o u r s />
<d e l i v e r y />

</ RECIPIENT>
<DATA−GROUP>

<DATA r e f =” # dynamic . m i s c d a t a ”>
<CATEGORIES>

<p h y s i c a l />
<o n l i n e />
<demograph ic />
<p u r c h a s e />

</ CATEGORIES>
</DATA>

</DATA−GROUP>
</STATEMENT>

(b)

Figure 3: Simple examples of (a) an APPEL-based preference file and (b) a P3P-based policy file .

Figure 4: Service adaptation based on matching result: privacy preferences and policy match

in our solution the cookie is set by the client software
upon requesting a service from the provider. Additionally,
cookies was invented to provide state management to the
stateless HTTP [9] and not as a general parameter passing
between client and host. Although we seemingly breach
both privacy and the intended use of cookies, we argue
that when used properly, cookies do not pose a significant
threat to privacy, and that our use of cookies is a way to
handle the state in which a user has selected preferences.

In the U.S., a central idea in privacy protection is the
right to opt-out of information collection that does not
directly correspond to the service. Previous evaluations of
agent based privacy enhancing technologies have stressed
the difficulties users have with opt-ing out [12]. Our ap-
proach removes the need for opt-outs since this is done by
default if preferences state that such information collection
is not allowed. Hence, our solution does provide automatic
opt-out, a feature that was deemed impossible by the
Privacy Bird development team due to the limitations of
P3P [6].

It is essential for our system to prevent the preferences
sharing from becoming a privacy liability. In general, the
requirement must be that the selected preferences must
be considered open to any recipient such that sharing

them with a service provider in itself does not constitute
a privacy breach. In case anonymity is required this
requirement would imply that a minimum of users share
the same preference ID. By attempting to cater for more
individual preferences there is a risk that the number of
preference identifiers increase so much that the likelihood
of sharing preferences with other users becomes to low.

By transferring the logics from the user to the service
provider, one may argue that the user looses control as the
provider may simply adapt the policy to match the user
preferences. However, in the traditional case of privacy
policy matching, the provider may not be truthful about
its privacy policy. Hence, the user may think he is in
control of the matching, but he may be matching based
on a false policy. We therefore argue that our solution
does not in effect constitute a major transfer of control
from the user to the provider. All policy based approaches
to privacy effectively rely on the service providers to be
truthful about their policies for the system to work. We
further believe that the ability to adapt a service to users’
preferences provides an incentive for the service provider
to behave more honestly, since a wider range of users may
use a limited service as opposed to no service at all.

666111333

Figure 5: Service adaptation based on matching result: privacy preferences and policy do not match

VI. FUTURE WORK

There are several aspects of our solution that need more
work. The prototype implementation is rudimentary in
some aspects, particularly the preference specification and
client software constitute an important area of future work
in order to conduct full end-user testing and verification of
the approach. The preference provider could be worth an
investigation of its own, especially the user interface for
selecting and specifying privacy preferences. The client
should not only be implemented as a prototype, but
also tested with different solutions for transferring the
preference identifiers.

VII. CONCLUSION

We have described a new approach to privacy protection
on the web. Our solution places more responsibility on
the service provider for ensuring that user’s privacy is
adequately protected, but at the same time also enables
service providers to benefit from this protection by adapt-
ing their services to the users’ preferences. The prototype
implementation of parts of this approach serves as a proof-
of-concept, but requires additional development in order
to provide sufficient evidence of suitability. However, we
still believe the server-side approach to privacy policy
matching is a viable solution and none of our findings
have directly contradicted this.

REFERENCES

[1] J. Bryce and M. Klang, “Young people, disclosure of
personal information and online privacy: Control, choice
and consequences,” Information Security Technical Report,
vol. 14, no. 3, pp. 160 – 166, 2009, the Changing Shape
of Privacy and Consent. [Online]. Available: http://www.
sciencedirect.com/science/article/B6VJC-4XMK24J-1/2/
b3d8b9a37b4a4154822fafdf6ff29d47

[2] S. Chai, S. Bagchi-Sen, C. Morrell, H. Rao, and
S. Upadhyaya, “Internet and online information privacy:
An exploratory study of preteens and early teens,”
Professional Communication, IEEE Transactions on,
vol. 52, no. 2, pp. 167–182, June 2009. [Online].
Available: http://dx.doi.org/10.1109/TPC.2009.2017985

[3] B. Berendt, O. Günther, and S. Spiekermann, “Privacy
in e-commerce: stated preferences vs. actual behavior,”
Commun. ACM, vol. 48, no. 4, pp. 101–106, 2005.

[4] “W3C. Platform for Privacy Preferences.
http://www.w3.org/P3P/.”

[5] L. Cranor, M. Langheinrich, and M. Marchiori, A
P3P Preference Exchange Language 1.0 (APPEL1.0).
World Wide Web Consortium, 2002. [Online]. Available:
http://www.w3.org/TR/P3P-preferences/

[6] L. F. Cranor, M. Arjula, and P. Guduru, “Use of a p3p user
agent by early adopters,” in WPES ’02: Proceedings of the
2002 ACM workshop on Privacy in the Electronic Society.
New York, NY, USA: ACM, 2002, pp. 1–10.

[7] J. Kolter, T. Kernchen, and G. Pernul, “Collaborative pri-
vacy management,” Computers & Security, vol. 29, no. 5,
pp. 580–591, 2010.

[8] S. E. Levy and C. Gutwin, “Improving understanding of
website privacy policies with fine-grained policy anchors,”
in Proceedings of the 14th international conference on
World Wide Web (WWW ’05), 2005.

[9] D. Kristol and L. Montulli, RFC2965: HTTP State
Management Mechanism. IETF Standards track, 2000.
[Online]. Available: http://tools.ietf.org/html/rfc2965

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, RFC2616: Hypertext
Transfer Protocol – HTTP/1.1. IETF Standards track,
1999. [Online]. Available: http://tools.ietf.org/html/rfc2965

[11] S. Egelman, L. F. Cranor, and A. Chowdhury, “An Analysis
of P3P-Enabled Web Sites among Top-20 Search Results,”
in In ICEC ’06: Proceedings of the 8th international
conference on Electronic commerce (New. ACM Press,
2006, pp. 197–207.

[12] L. F. Cranor, P. Guduru, and M. Arjula, “User interfaces
for privacy agents,” ACM Trans. Comput.-Hum. Interact.,
vol. 13, no. 2, pp. 135–178, 2006.

666111444

