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Abstract—Location-based recommender systems in the tourist domain are increasingly becoming more and more
popular. However, these systems typically suffer from two problems: Not having sufficient information about
the user results in the cold start problem; and acquiring suitable user models can be problematic, the knowledge
bottleneck problem. The work presented here demonstrates how stereotype modelling can be used as a suitable
tool for acquiring knowledge and building user models for a Bayesian network based recommender system.

1. Introduction

The use of computer supported travelling in the
tourist industry has been steadily increasing and has
recently attracted considerable interest1. Tourism is in
many ways the domain most closely connected with
personal preferences and by definition connected to
(physical) mobility. Hence, not surprisingly personalised
location-based information systems are very suitable for
this domain. The modern tourists do not only require
general guidance and information but also information
specifically tailored to their personal preferences. Local
guides and guided tours cover many tourists’ needs by
customising tours. Yet, a location-based personalised rec-
ommender systems offers a supplement to the available
customised services.
Recommender systems are designed to help users

cope with vast amounts of information, and they do
so by presenting only a certain subset of items that is
believed to be relevant for the user. Traditionally, these
systems recommend items like books (amazon.com) or
films (movielens.com), but may just as well recommend
points of interest (POIs) to tourists.
The typical tourist will not linger long in any location.

Hence, a location-based information system will not be
able to effectively learn the idiosyncrasies of any single
tourist. This is a challenge when dealing with recom-
mender systems, as they (most often) rely on a classifi-
cation of the user and the information it is attempting to
recommend. Not having sufficient information is known
as the cold start problem.

1See e.g. Google’s City Tours http://citytours.googlelabs.com/

The cold start problem can to some degree be allevi-
ated by employing user models. However, building user
models requires (sufficient) knowledge about the specific
user. Acquiring this knowledge is subject to the knowl-
edge bottleneck problem. That is, it is time consuming (for
the user) and not necessarily easily accessible.
The work presented here suggests to combine

Bayesian networks [10], [6] with stereotype modelling
[12] as a means of mitigating both the cold start and
knowledge bottleneck problem.
The rest of the paper is organised as follows: In Section

2 user modelling in the tourist domain by using stereo-
types is introduced; Section 3 describes the background
on recommender systems and Bayesian networks, and
the implemented system; Section 4 describes how an
experiment is carried out on an existing mobile learning
system. Finally, Section 5 draws up the conclusion and
points to future work.

2. User modelling

2.1. Stereotypes

Choosing a specific user model type for adaptive sys-
tems requires some considerations as to the nature of the
users and system in question. The three most important
aspects to consider are: i) if users are homogenous or
heterogeneous; ii) whether users are permanent or not;
and iii) if their interests are persistent [9].
In domains where the user group is highly homoge-

neous, canonical user models are likely to be the best
option. Whereas in domains where the user group is
highly heterogeneous, special user models are likely to
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Fig. 1. Example of a stereotype hierarchy.

be the preferred option. In systems where the user is
permanent, that is uses the system for a long time, the
system has the option to start from scratch and learn
a specific user model over time. However, for systems
where the user only spends a limited time the user model
is likely to be canonical.
Typically, a system with homogeneous and non-

permanent users will employ very limited and standard-
ised user models, whereas systems with heterogeneous
and permanent users will employ very personalised user
models. Recommender systems in location-aware sys-
tems for the tourist domain will typically contain a non-
permanent and heterogeneous user group. However, we
can assume that the interests of the user are persistent
throughout the time that the user deals with the system.
To conclude, our recommender system will attempt to
approximate the user’s preferences by employing a suit-
able user model that will alleviate the cold start problem,
but at the same time the user modelling must be of such
a quality that it does not cause a knowledge bottleneck
problem.
Using stereotypes is a quick and efficient way of

building user models [12]. A stereotype contains char-
acteristics ascribed to the user that fits this particular
stereotype. The main advantages of using stereotypes
are the fact that they are easy to build and quick to use
(mitigating the bottleneck problem). Stereotypes contain
information on the stereotypes and their characteristics,
which are know as facets. Traditionally, a facet represents
a certain quality, such as interest in art, and is coded with

a value ranging from -5 to 5. Each facet has a certainty
assign, ranging from 0 to 1000. This rating tells us how
certain the system is about the value assigned. Thus a
high facet value tells us that the users is very interested
in the particular facets, while a high certainty rating tells
us that we are very certain of the rating.
Stereotypes are traditionally organised as a directed

acyclic graph (DAG), where the root node, any-person,
contains all the facets with average values, and more de-
scriptive values for the facets are given for the more spe-
cialist stereotypes. As an example, consider Figure 1 and
assume the facet we are interested in is “Fondness of
wurst”. For the any-person we would give a fairly non-
descriptive value (say zero), whereas the facet would be
given a rather large positive value for a german, and a
vaguely negative value for a japanese. Knowing a per-
son’s nationality therefore helps indicating this person’s
“Fondness of wurst”.2 Note that a given person can
belong to several stereotypes, e.g., a german male, who is
also a muslim.
Stereotypes typically have their strength as a model

representation tool; they are quite easy to cope with for
those who are to provide the information in a system.
Often stereotypes are defined by simplifying subjective
perceptions on what aspects that describe certain groups
of people. Employing stereotype modelling allows for

2One may argue that it is just as easy to query the user about his
facet values as it is to find his stereotypes, but as we are interested in
many facets (several hundred facets would be required for the tourist
domain), this is not a reasonable path to follow.



more personalised user models also when dealing with
homogeneous and non-permanent users.
The main challenge for stereotypes is that they make

rather rough statements, such as: “you are a typical
German”. However, as also noted by Rich: “. . . [An in-
telligent system] must not regard the user model as fixed, but
rather as something upon which it can continuously improve
by collecting feedback from the user on each interaction.”
[12]. Thus a sound knowledge maintenance technique is
required. The approach described here will initially use
the stereotypes to make an initial user classification, that
must later be refined as the system learns more about the
user.
Using a sound knowledge maintenance technique,

allows us to update our belief in facets being more-
or-less present (value of the facets changing) as new
information is collected. Rich’s description of facets use
<value, rating>-pairs [12], and to the best of our
knowledge, a sound knowledge maintenance technique
of this representation has not yet been found. We there-
fore propose to rather use a random variable to rep-
resent the value of a facet, and believe that this vari-
able’s distribution (e.g., represented as <expectation,
variance> when possible) can be used to cover the
same information. Furthermore, this formulation with
random variables enables the use of a sound inference
scheme (standard manipulation of multivariate statistical
distributions).
To summarise our description of user models so far:

our approach will use the stereotypes to make an initial
user “classification”. This classification will amount to
a set of stereotypes the user is ascribed to. Next, the
stereotypes give values to all user facets. The facets are
represented as random variables, hence the description
of the relevant stereotypes will then be translated into a
simple Bayesian network, as described next.

2.2. The facet model

From the description of the stereotype hierarchy it
should be clear that all users will always be at least a
member of the any-person stereotype, and all the facets
will therefore be defined for that user, as they are all de-
fined using “averaged” values for that stereotype. These
gross average descriptions are typically modelled by
letting the variances of the corresponding distributions
be large. A user, who is also a member of a more specific
stereotype, like german, will get the distribution of some
facets (like “Fondness of wurst”) changed to a larger
value and with a smaller variance. Defining the facet
distributions for each stereotype in the hierarchy is part
of the modelling that can be performed off-line, and
therefore not something the user will be exposed to.
Following this approach, the distribution of each facet

is well-defined as long as the user is only member of
stereotypes in one branch of the stereotype hierarchy
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Fig. 2. A Bayesian network fragment to infer a user’s value of facet
F from the stereotypes Sj , j = 1, 2, 3.

(e.g., if the user is only member of any-person, foreigner,
and german). Problems arise when, for instance, our
german friend is also amuslim. Germans are fond of wurst,
whereas muslims do not eat them. How should this
be incorporated in our system? We propose to use a
small Bayesian network as depicted in Figure 2 to handle
the different sources of information about facets. In this
model, F represent the facet value, and Sj , j = 1, 2, 3, are
the stereotypes in question (in our example, F represents
“Fondness of wurst”, S1 the stereotype german, S2

represents male, and S3 muslim. Note that the stereotypes
the person is not a part of are not included in the model.
Also, only the most specific stereotypes are included
(meaning that, e.g., foreigner is overridden by german
in this example). During model building, the domain
expert will have to parameterise the distributions of the
different Bayesian networks of the type shown in Fig. 2.
In principle, this amounts to defining: i) the marginal
(unconditional) probability of the user being member of
any stereotype, and ii) the conditional distribution for
the facet F given all configurations of the conditioning
variables Sj . This would lead to a daunting knowledge
acquisition process, as we may potentially have many
stereotype memberships, and the complexity of the con-
ditional distribution of F grows exponentially in the
number of stereotypes.
To simplify, we first make the observation that we will

include the stereotypes that are relevant for the user,
meaning that we know Sj is true if Sj is in the model. We
will therefore not have to define the distribution over Sj ,
and also not have to define the probability distribution
for F given Sj when Sj is false. To simplify further,
we will first assume that F is continuous, and more
specifically, a Gaussian variable. Then, we assume a
simple instantiation of the independence of causal influence-
model [4]. In practice, we assume that each stereotype
is annotated with a mean-shift and a variance-scale, where
the former relates to the facet value, and the latter is
connected to the confidence rating. The mean of F given
a set of parents is then found by using the unconditional
mean (i.e., taken from the any-person definition) and add
the different mean-shifts. The conditional variance is
found by taking the unconditional variance, and mul-
tiply with all relevant variance scales.
Finally, the facet model is extended to a “full-fletched”

recommender system, as described in the next section.



3. Recommender systems

3.1. Background

The main idea of our system is to alleviate the knowl-
edge acquisition bottleneck by also adapting the user
models based on implicit measurements of the users’
preferences. These measurements are gathered by mon-
itoring whether or not the user follows the recommen-
dations given by the system.
In the current version of the model we focus on the

user’s geo-position, in the future we will also include
explicit user feedback in terms of ratings or free-text
tagging of a POI. One way to fusion the explicit in-
formation from user interviews with implicit behaviour
information is to build a recommender system, and this
will be the topic of the rest of the paper.
Recommender systems are usually grouped into two

categories: Content-based systems and collaborative fil-
tering. Content-based systems make recommendations
based on a user preference model that combines the
user’s ratings with, e.g., content information and struc-
tured descriptions of POIs. Contrary, collaborative fil-
tering uses the “ratings” of like-minded users to make
recommendations for the user in question. Ratings can
be explicit (e.g., a number of stars given to a POI),
or implicit (e.g., the amount of time spend at the POI
that was recommended). In the current set-up we use
implicit ratings: users who spend more time at a POI are
assumed to rate the POI higher than a user who spends
less time at that particular location.
Over the last decade recommender systems based

on collaborative filtering have enjoyed a great deal of
interest. Collaborative filtering systems are often char-
acterised as either being model-based or memory-based
[2], although hybrid systems have also been developed
[11]. Roughly speaking, memory-based algorithms use
the whole database of user ratings and rely on a distance
function to measure user similarity. On the other hand,
model-based algorithms learn a model for user prefer-
ences, which is subsequently used to predict a user’s
rating for a particular item that he or she has not seen
before.

3.2. The full model

We propose to use a model-based collaborative filter-
ing system in the present case. The system described
here employs a Bayesian networks based collaborative
filtering model called “the user centric model” in [8], see
also [5], [7].
This specific model is specifically geared towards

avoiding the cold start problem by taking advantage
of implicit user models in terms of the list of facets
described in Section 2. In this model, a user is repre-
sented by a random variable in q-dimensions, where

F1 F2
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Fig. 3. The CF model. A user giving ratings R1 and R2, say, will give
an updated posterior distribution over (F1, F2), and hence improve
predictions (i.e., calculate the posterior over R3).

each dimension corresponds to one of the facets in the
user model; let F ∈ Rq be the representation of a user.
For mathematical convenience, we assume that the facets
follow the Gaussian distribution, with expectation and
variance according to the stereotype(s) the user was
allocated to. Now, it is assumed that Rt, the “rating” the
user will give to POI t, is Gaussian distributed according
to the relationship

Rt|{F = f} ∼ N (µt + wT
tf , σ2

t )

The model is also shown in Fig. 3. The model repre-
sents POI t using three parameters: µt, wt, and σt. µt

is the expected time spent at POI t for a “standard”
user, and is hence estimated as the gross average of
time all users visiting POI t uses there. The vector wt

describes the POI in terms of the facets in the user model,
where a positive number at position i in the parameter
vector means that POI t offers an experience that will
be well received by users with a high value in facet i.
Finally, σt is a notion of the unexplained variation in the
measurements.
Assume that the user has rated items POI1, POI2, . . . ,

POIk giving us observations R = {r1, . . . , rk}. Since the
user model F is Gaussian a priori, the posterior distri-
bution F |R remains Gaussian with an updated mean
value and a reduced variance. Thus, the prediction for
a new POI t∗ E[Rt∗ |R] is easily calculable, and typically
different from the unconditional prediction E[Rt∗ ].
The last piece of the puzzle is glueing together the

two model fragments we have discussed so far to obtain
the overall model description that we use. This is simply
obtain by letting all facet nodes get their relevant parents,
as described in Section 2.2. The full model, assuming
q = 2 facets and T = 3 POIs, is depicted in Fig. 4.
Employing this full model gives us the opportunity to:

i) represent all we know about the user by explicitly code
it in the prior distributions for the facets; ii) calculate
the expected time the user will spend in each POI; iii)
rank the different POIs based on the expected time the
present user would spend divided by the gross average
expected time of all users; and iv) update our belief about
the facets (and therefore the predictions – and thereby
ranking of POIs) as new information comes in.
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Fig. 4. The full Bayesian network model

3.3. Defining the model parameters

As already described, the model contains the follow-
ing parameters:

• Facet model: The mean-shift and variance-scale for
each facet and each stereotype that redefines that
facet.

• Rating model: µt, the mean time spent at a POI
t; wt,i, the strength of influence facet i has on the
rating of POI t, and σ2

t , the conditional variance.
Initially, we define all these parameters off-line (before
the system is employed). However, as the system has
gathered experience, we can evolve the parameters using
standard maximum likelihood learning. As some of the
variables are hidden (we will never observe the “true”
value of the facet variables), we must use the EM algo-
rithm [3], but as the model is fully Gaussian, the EM
algorithm can be easily implemented, and is available
in the state-of-the-art Bayesian network systems that are
available.3

4. Experiment

The initial testing of our proposed approach is based
on data generated for tourist application in Trondheim,
Norway. For the example described we start of from the
model of the stereotypes depicted in Figure 1.
A new user starts using our system, and is recognised

as being a member of the prototypes male (see Table
I for a description of the male stereotype using Rich’s
terminology of values and ratings) and senior (Table II).

3One example is the excellent Hugin system, http://bayesian.net/.

TABLE I
MALE STEREOTYPE

Facet Value Rating
Interests

Sports 4 800
Nature 2 700

Motivation
Excite 4 600

Personality
Tolerance-sex 5 1000
Tolerance-violence 4 700
Sympathy -2 500
Kindness -2 400

TABLE II
SENIOR STEREOTYPE

Facet Value Rating
Interests

Sports 4 700
Nature 4 400
History 4 600

Motivation
Relaxing 4 700

Personality
Tolerance-sex -4 600
Tolerance-violence -3 500

For completeness, the any-person is described in Table III.
Translating the two stereotypes into random variables,
and combining them will give us the following values
for the most important facets in the user profile (see
Section 2.2):

• Sports: 4 (Variance: 1)
• Nature: 3 (Variance: 2)
• History: 3 (Variance: 2)
Initially, the user in question appears to be into sports.



TABLE III
ANY-PERSON STEREOTYPE

Facet Value Rating
Interests

Sports 2 300
Nature 1 200
History 1 200
Architecture 0 400
Clubbing 1 100
Arts -1 100
Food 2 500

Motivation
Learning -2 200
Relaxing 2 300
Excite 0 100
Amusement 1 300

Personality
Tolerance-sex -2 500
Tolerance-violence -4 400
Intelligence 0 300
Perseverance 0 300
Sympathy 0 300
Kindness 0 200x

To deduce if the user is really a sport fanatic the system
can ask some relevant questions, which can be used to
reduce the variance of the Sports facet. Let us assume
that the user’s answers give further evidence in the
direction of him being a sport fanatic. Thus, the sports
facet is now:

• Sports: 4.1 (Variance: 0.5)
We can use this to calculate the expected time to us

in each location (given user model). The results are that
Lerkendal, the local football arena, is the highest rated
POI, The horse track is second, and Ringve the music
museum is the third.
For the current example, let us assume that we ex-

pected the user to spend 43.5 minutes at Lerkendal, but
observe that only 20 minutes are spent there. This is still
more than average (15 minutes), so it is still regarded as
a positive experience for the user, but not to the extent
we previously anticipated. The result in the model is
that we explain this mismatch by updating the sports
facet (new value: 2.5). Furthermore, since Lerkendal is
related to the history facet, the model also explain
the observation by reducing the belief in the user being
interested in historic sites. Also, Lerkendal is negatively
correlated with intelligence, hence the model esti-
mate of intelligence (previously 0 – inherited from any-
person, see Table III), and now increased to 3.55. Note
that the big shift in this value, which is because we
had no information or belief about intelligence up to
now, and therefore would have a rather large a priori
variance connected to this facet. Nature has no relation
to Lerkendal, hence our belief about that facet remains
the same.
As the intelligence facet takes centre stage, the

next recommendation is based mainly on that partic-
ular facet. The updated recommendation list has In-

TABLE IV
EXAMPLE RUN

Before 1st POI After 1st POI
Loc. Avg. Time User Time Score User Time Score
1 15 41 2.73 20.00 1.33
2 30 22 0.73 39.05 1.30
3 15 13 0.87 12.11 0.81
4 45 57 1.27 52.56 1.17
5 30 33 1.10 37.44 1.25

dustrimuseet (museum of industry) as the top POI, with
Ringve Museum second, and the Horse tracks only
third. This shows how the recommendation system is
able to take new information into account and adapt to
it.
Table IV describes how the model evolves. The loca-

tions are: 1) Lerkendal football arena, 2) The Industry
museum, 3) Nidaros dome, 4) Horse tracks, and 5)
Ringve musical museum. The gross average time spent
at each location is given in the second column (so, people
spend on average 15 minutes when visiting Lerkendal);
the third column gives the expected time calculated from
the user model (that is, before the first POI is visited),
and thereafter each POIs score is given in the next
column. Finally, the two last columns give Expected time
for the user at each POI and the related score, calculated
after the visit to Lerkendal.

5. Conclusion and future work

The work presented here has argued that stereotype
modelling is very useful as a knowledge acquisition tool.
It allows the information supplier to think in terms of
typical traits of users and points of interests, and not
worry about the underlying Bayesian representation. We
have further described a Bayesian net representation that
offers sound inference over the facets in the stereotypes.
This approach move the stereotypes from a somewhat
static user model into a model that is continuously
improved. Finally, we have discussed how this Bayesian
network model can be extended to capture implicit
information. All of this has been demonstrated with a
simple example.
Future work revolves around the integration of this

model into an existing infrastructure in Wireless Trond-
heim [1]. The stereotypes are to be grounded in the
knowledge contained at the tourist office in Trondheim.
We expect to have a working prototype ready during the
fall of 2010.
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