Approximate Implicitization using Chebyshev Polynomials

Oliver Barrowclough¹

SINTEF ICT Department of Applied Mathematics

October 8, 2011

¹joint work with Tor Dokken (SINTEF)

Approximate Implicitization using Chebyshev Polynomials

Contents

- Introduction and Motivation
 - Curve and surface representation
 - High degree implicit surfaces
- Approximate Implicitization
 - Least squares approach
 - Using orthogonal bases for approximation
- Examples
 - Comparing numerical stability of the approaches
 - Approximate implicitization of Newells' teapot patches

Introduction

Representation of Curves and Surfaces

■ Parametric representation: Rational surface given by

$$\mathbf{p}(s,t) = (p_1(s,t), p_2(s,t), p_3(s,t), h(s,t))$$
 for $(s,t) \in \Omega$

and bivariate polynomials p1, p2, p3, h (homogeneous form).

Implicit (algebraic) representation: Surface given by

$$\{(x, y, z, w) : q(x, y, z, w) = 0\}.$$

where q is a polynomial in homogeneous form.

■ For *intersection algorithms* it is useful to have both representations available...

Introduction

Motivation - Intersection Algorithms

(a) Surface-surface intersection

(b) Surface self-intersection

(c) Surface raytracing

Implicitization

Exact methods

- Traditional methods give exact results:
 - Gröbner bases,
 - Resultants and moving curves/syzygies [Sederberg, 1995],
 - Linear algebra.
- Often performed using symbolic computation.
- Surface implicitization can result in very high degrees.
- Algorithms are often slow (especially Gröbner bases).

Implicitization

Implicit degree of parametric surfaces

- Tensor-product bicubic patch
- 16 control points
- Total implicit degree 18
- Defined implicitly by 1330 coefficients!
- Approximation is desirable

Implicitization

Approximate methods

- Approximate methods where the degree m can be chosen are desirable:
 - keep the degree low,
 - better stability for floating pt. implementation,
 - faster algorithms.
- Approximation should be good within a region of the parametric curve/surface.
- Algorithms give exact results if the degree is high enough.

Preliminaries

■ First, describe implicit polynomial q in a basis $(q_k)_{k=1}^M$, of degree m:

$$q(\mathsf{x}) = \sum_{k=1}^M b_k q_k(\mathsf{x})$$

with unknown coefficients b.

■ A good error measure is given by algebraic distance $q(\mathbf{p}(s))$.

③ SINTEF :::::::

Original method (singular value decomposition)

- Original method [Dokken, 1997], gives general framework:
- Form matrix $\mathbf{D} = (d_{jk})_{jk=1}^{L,M}$ such that

$$q(\mathbf{p}(s)) = \sum_{k=1}^{M} b_k q_k(\mathbf{p}(s))$$
$$= \sum_{k=1}^{M} b_k \sum_{j=1}^{L} \alpha_j(s) d_{jk}.$$

where $(\alpha_j)_{j=1}^L$ is a polynomial basis in s.

■ An approximation is given by right singular vector **v**_{min} corresponding to smallest singular value of **D**.

Original method

- Choosing different polynomial bases solves different approximation problems:
- Orthogonal bases solve continuous least squares problems

$$\min_{\|\mathbf{b}\|_2=1} \int_{\Omega} q(\mathbf{p}(s))^2 w(s) \, ds.$$

 Bernstein/Lagrange bases solve problems which approximate the least squares problem.

Least squares / weak approximation

■ Introduced in [Dokken, 2001], [Corless et al., 2001]:

$$\min_{\|\mathbf{b}\|_2=1} \int_{\Omega} q(\mathbf{p}(s))^2 w(s) \, ds.$$

■ Method: Form matrix $\mathbf{M} = (m_{kl})_{k,l=1}^{M}$,

$$m_{kl} = \int_{\Omega} q_k(\mathbf{p}(s))q_l(\mathbf{p}(s))w(s) ds$$

■ The eigenvector corresponding to the smallest eigenvalue as the solution.

Orthogonal basis method

The original method using orthogonal polynomials can be used instead:

■ Choose a basis $(T_j)_{j=1}^L$ that is orthonormal w.r.t. w:

$$(\mathbf{M})_{kl} = \int_{\Omega} q_k(\mathbf{p}(s))q_l(\mathbf{p}(s))w(s) ds$$

$$= \int_{\Omega} \left(\sum_{j=1}^{L} T_j(s)d_{jk}\right) \left(\sum_{i=1}^{L} T_i(s)d_{ik}\right)w(s) ds$$

$$= \sum_{i=1}^{L} \sum_{j=1}^{L} d_{jk}d_{ik} \int_{\Omega} T_j(s)T_i(s)w(s) ds$$

$$= \sum_{j=1}^{L} d_{jk}d_{jl}$$

$$= (\mathbf{D}^T\mathbf{D})_{kl}$$

Comparison of methods

- The two methods are mathematically equivalent.
- Singular values of D are square roots of eigenvalues of D^TD = M, thus smallesr condition numbers for D.
- Original method is more numerically stable.
- Original method avoids costly integration of high degree polynomials.

Why Chebyshev polynomials?

- Near equioscillating behaviour in algebraic error function.
- Number of roots appears to correspond to convergence rates.
- Fast algorithm based on point sampling, fast Fourier transform (FFT).
- Solves a least squares problem.
- Directly generalizable to tensor-product surfaces.

SINTEF

Convergence rates of approximate implicitization

Implicit degree	1	2	3	4	5	6
Convergence rate	2	5	9	14	20	27

Curves in \mathbb{R}^2

Implicit degree	1	2	3	4	5	6
Convergence rate	2	3	5	7	10	12

Surfaces in \mathbb{R}^3

 Convergence as we approximate smaller regions of the curve or surface.

Algorithm - Chebyshev method

- Generate parametric samples $\mathbf{p}_j = \mathbf{p}(t_j)$ at Chebyshev nodes $t_j = (\cos((j-1)\pi/(L-1)) + 1)/2$, for j = 1, ..., L.
- Compute a matrix $\mathbf{D}_0 = (q_k(\mathbf{p}_j))_{j=1,k=1}^{L,M}$.
- Compute **D** by applying Discrete Cosine Transform to columns of D_0 (using fast Fourier transform methods).
- Perform SVD of **D** (= $\mathbf{U}\Sigma\mathbf{V}^T$).

③ SINTEF

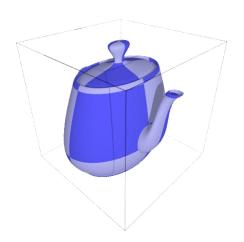
Numerical stability of weak method

Exact implicitization of degree 5 curve using double precision:

$$\textit{sing}(\textbf{D}) = \begin{pmatrix} \vdots \\ 2.45 \times 10^{-6} \\ 6.05 \times 10^{-7} \\ 3.59 \times 10^{-7} \\ 4.58 \times 10^{-8} \\ 1.24 \times 10^{-8} \\ 6.15 \times 10^{-18} \end{pmatrix}, \quad \textit{eig}(\textbf{M}) = \begin{pmatrix} \vdots \\ 6.02 \times 10^{-12} \\ 3.65 \times 10^{-13} \\ 1.29 \times 10^{-13} \\ 2.09 \times 10^{-15} \\ 1.50 \times 10^{-16} \\ 6.84 \times 10^{-19} \end{pmatrix}$$

⑤ SINTEF :::::::

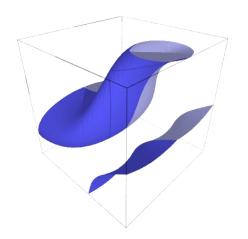
Newell's 32 teapot patches:



- 32 parametric patches.
- All patches are bicubic.

SINTEF

Implicitization of teapot spout patches:



- Exact implicit degree 18.
- Approximated by degree 6 surfaces.
- Extra branches present.
- Can combine with other approximations to remove branches.

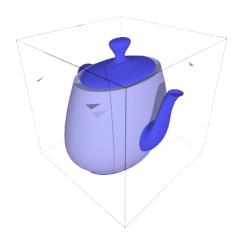
Implicitization degrees of Newells' teapot

	Exact m	Approximate m
		32 patches
rim	9	4
upper body	9	3
lower body	9	3
upper handle	18	4
lower handle	18	4
upper spout	18	5
lower spout	18	6
upper lid	13	3
lower lid	9	4
bottom	15	3

Implicitization of 32 teapot patches:

- 32 approximately implicitized bicubic patches.
- All patches of degree \leq 6.
- Extra branches present.
- No continuity conditions used.

Implicit teapot with fewer patches:



- 26 parametric patches.
- 5 approximately implicitized patches.
- All patches of degree \leq 6.

Approximate Implicitization using Linear Algebra

Thank you!

References:

- T. Dokken, Aspects of intersection algorithms and approximations, Ph.D. thesis, Univ. of Oslo, (1997).
- R.M. Corless et al., Numerical implicitization of parametric hypersurfaces with linear algebra, Artificial Intelligence and Symbolic Computation, Springer, (2001).