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Introduction

Representation of Curves and Surfaces

Parametric representation: Rational surface given by

p(s, t) = (p1(s, t), p2(s, t), p3(s, t), h(s, t)) for (s, t) ∈ Ω

and bivariate polynomials p1, p2, p3, h (homogeneous form).
Implicit (algebraic) representation: Surface given by

{(x , y , z ,w) : q(x , y , z ,w) = 0}.

where q is a polynomial in homogeneous form.
For intersection algorithms it is useful to have both
representations available...
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Introduction

Motivation - Intersection Algorithms

(a) Surface-surface
intersection

(b) Surface
self-intersection

(c) Surface
raytracing
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Implicitization

Exact methods

Traditional methods give exact results:
Gröbner bases,
Resultants and moving curves/syzygies [Sederberg, 1995],
Linear algebra.

Often performed using symbolic computation.
Surface implicitization can result in very high degrees.
Algorithms are often slow (especially Gröbner bases).
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Implicitization

Implicit degree of parametric surfaces

Tensor-product bicubic
patch
16 control points
Total implicit degree 18
Defined implicitly by 1330
coefficients!
Approximation is desirable
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Implicitization

Approximate methods

Approximate methods where the degree m can be chosen are
desirable:

keep the degree low,
better stability for floating pt. implementation,
faster algorithms.

Approximation should be good within a region of the
parametric curve/surface.
Algorithms give exact results if the degree is high enough.
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Approximate Implicitization

Preliminaries

First, describe implicit polynomial q in a basis (qk)M
k=1, of

degree m :

q(x) =
M∑

k=1

bkqk(x)

with unknown coefficients b.
A good error measure is given by algebraic distance q(p(s)).
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Approximate Implicitization

Original method (singular value decomposition)

Original method [Dokken, 1997], gives general framework:

Form matrix D = (djk)L,M
jk=1 such that

q(p(s)) =
M∑

k=1

bkqk(p(s))

=
M∑

k=1

bk

L∑
j=1

αj(s)djk .

where (αj)
L
j=1 is a polynomial basis in s.

An approximation is given by right singular vector vmin
corresponding to smallest singular value of D.
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Approximate Implicitization

Original method

Choosing different polynomial bases solves different
approximation problems:
Orthogonal bases solve continuous least squares problems

min
‖b‖2=1

∫
Ω

q(p(s))2w(s) ds.

Bernstein/Lagrange bases solve problems which approximate
the least squares problem.
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Approximate Implicitization

Least squares / weak approximation

Introduced in [Dokken, 2001], [Corless et al., 2001]:

min
‖b‖2=1

∫
Ω

q(p(s))2w(s) ds.

Method: Form matrix M = (mkl )
M
k,l=1,

mkl =

∫
Ω

qk(p(s))ql (p(s))w(s) ds

The eigenvector corresponding to the smallest eigenvalue as
the solution.
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Approximate Implicitization
Orthogonal basis method

The original method using orthogonal polynomials can be used
instead:

Choose a basis (Tj)
L
j=1 that is orthonormal w.r.t. w :

(M)kl =

∫
Ω

qk(p(s))ql (p(s))w(s) ds

=

∫
Ω

 L∑
j=1

Tj (s)djk

( L∑
i=1

Ti (s)dik

)
w(s) ds

=
L∑

i=1

L∑
j=1

djkdik

∫
Ω

Tj (s)Ti (s)w(s) ds

=
L∑

j=1

djkdjl

= (DTD)kl
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Approximate Implicitization

Comparison of methods

The two methods are mathematically equivalent.
Singular values of D are square roots of eigenvalues of
DTD = M, thus smallesr condition numbers for D.
Original method is more numerically stable.
Original method avoids costly integration of high degree
polynomials.
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Approximate Implicitization

Why Chebyshev polynomials?

Near equioscillating behaviour in algebraic error function.
Number of roots appears to correspond to convergence rates.
Fast algorithm - based on point sampling, fast Fourier
transform (FFT).
Solves a least squares problem.
Directly generalizable to tensor-product surfaces.
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Approximate Implicitization

Convergence rates of approximate implicitization

Implicit degree 1 2 3 4 5 6
Convergence rate 2 5 9 14 20 27

Curves in R2

Implicit degree 1 2 3 4 5 6
Convergence rate 2 3 5 7 10 12

Surfaces in R3

Convergence as we approximate smaller regions of the curve or
surface.
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Approximate Implicitization

Algorithm - Chebyshev method

Generate parametric samples pj = p(tj) at Chebyshev nodes
tj = (cos((j − 1)π/(L− 1)) + 1)/2, for j = 1, . . . , L.

Compute a matrix D0 = (qk(pj))L,M
j=1,k=1.

Compute D by applying Discrete Cosine Transform to columns
of D0 (using fast Fourier transform methods).
Perform SVD of D (= UΣVT ).
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Examples

Numerical stability of weak method

Exact implicitization of degree 5 curve using double precision:

sing(D) =



...
2.45× 10−6

6.05× 10−7

3.59× 10−7

4.58× 10−8

1.24× 10−8

6.15× 10−18


, eig(M) =



...
6.02× 10−12

3.65× 10−13

1.29× 10−13

2.09× 10−15

1.50× 10−16

6.84× 10−19


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Examples

Newell’s 32 teapot patches:

32 parametric patches.
All patches are bicubic.
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Examples

Implicitization of teapot spout patches:

Exact implicit degree 18.
Approximated by degree 6
surfaces.
Extra branches present.
Can combine with other
approximations to remove
branches.
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Examples
Implicitization degrees of Newells’ teapot

Exact m Approximate m
32 patches

rim 9 4
upper body 9 3
lower body 9 3
upper handle 18 4
lower handle 18 4
upper spout 18 5
lower spout 18 6
upper lid 13 3
lower lid 9 4
bottom 15 3
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Examples

Implicitization of 32 teapot patches:

32 approximately implicitized
bicubic patches.
All patches of degree ≤ 6.
Extra branches present.
No continuity conditions
used.

Applied Mathematics



Examples

Implicit teapot with fewer patches:

26 parametric patches.
5 approximately implicitized
patches.
All patches of degree ≤ 6.
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Approximate Implicitization using Linear Algebra

Thank you!
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