
As strong as the weakest link: Handling
compromised components in OpenStack

Aryan TaheriMonfared
Department of Telematics

Norwegian University of Science and Technology
taherimo@stud.ntnu.no

Martin Gilje Jaatun
SINTEF ICT

Trondheim, Norway
Martin.G.Jaatun@sintef.no

Abstract—This paper presents an approach to handle com-
promised components in an Infrastructure-as-a-Service Cloud
Computing platform. Our experiments show that traditional
incident handling procedures are applicable for cloud computing,
but need some modification to function optimally.

I. INTRODUCTION

One of the main obstacles in the movement toward Cloud
Computing is its security challenges. Although it has been
argued [1] that most of the security issues in Cloud Com-
puting are not fundamentally novel, a new computing model
invariably brings its own security doubts and issues to the
market.

In a distributed environment with several stakeholders, there
will always be numerous ways of attacking and compromising
a component, and it is not possible to stop all attacks or to
ensure that the system is secure against all threats. Thus, the
best approach is to understand impacts and assess the risk of a
compromised component. So, we don’t study attack methods,
instead impacts of a compromised component on the provided
service and other components will be analyzed. In order to
study impacts of a successful attack, exact functionalities of
each component are extracted.

After identifying impacts of a successful attack, we should
find efficient approaches to tolerate such an attack and its
damages. In this process, the incident should be detected and
analyzed first. Detecting and analyzing an incident have a
standard procedure that requires knowledge about the normal
behavior and operation of the system. The next step is con-
taining the incident.

There are currently several public cloud providers, however
none of them disclose their security mechanisms. Thus, we
should study applicable mechanisms and introduce new ones
to fulfill security requirements of our experimental cloud
environment. Publishing these approaches, other researchers
can also analyze them and make them more robust.

When we talk about a compromised component in this
document, we mean those components in a cloud environment
that are disclosed (i.e., private contents revealed), modified,
destroyed or even lost. Finding compromised components and
identifying their impacts on a cloud environment is crucial.

We have found the OpenStack cloud platform as the best
choice for a real case study in our research. In our laboratory
configuration, we used the simple flat structure. This will avoid

Fig. 1. Lab setup

further complexity which is caused by the hierarchical or peer
to peer architecture. We have four physical machines, one of
them will be the cloud controller, and other three are compute
worker nodes. The abstract diagram of our lab setup is depicted
in Figure 1.

It should be noted that although we focus on the OpenStack
as a specific cloud software in our study, more or less same
components and processes may be identified in other cloud
platform implementations.

II. INCIDENT HANDLING

We will in the following focus on cloud platform compo-
nents, functionalities, connected components, access methods
and their impacts in case of being compromised. The symp-
toms of a compromised component are useful in detecting
security breaches and must be considered when performing
further analysis.

A. Actors’ Requirements

Studying the detection and analysis phase of the NIST inci-
dent handling guideline [2], and applying new characteristics
of Cloud Computing model, we identified several requirements
for a cloud provider and a cloud consumer.

1) Cloud providers’ requirements:
• Security APIs: The cloud provider should develop set

of APIs that deliver event monitoring functionalities
and also provide forensic services for authorities. Event
monitoring APIs ease systematic incident detection for
cloud consumers and even third parties. Forensic services



at virtualization level can be implemented by means
of virtual machine introspection libraries. An example
of an introspection library is XenAccess that allows a
privileged domain to access live states of other virtual
machines. A cross-layer security approach seems to be
the best approach in a distributed environment [3].

• Precursor or Indication Sources: The cloud provider
deploys, maintains and administrates the cloud infras-
tructure. The provider also develops required security
sensors, logging and monitoring mechanisms to gather
enough data for incident detection and analysis at the
infrastructure level. As an example, security agents, in-
trusion monitoring sensors, application log files, report
repository, firewall statistics and logs are all part of
security relevant indication sources. In case of a security
incident, the cloud provider should provide raw data from
these sources to affected customers and stakeholders.
Thus they will be capable of analyzing raw data and
characterizing incident properties.

• External reports: The cloud provider should provide
a framework to capture external incident reports. These
incidents can be reported by cloud consumers, end users
or even third parties. This is not a new approach in
handling an incident, however finding the responsible
stakeholders for that specific incident and ensuring cor-
rectness of the incident1 require extensive research. An
illustration, Amazon has developed ”Vulnerability Re-
porting Process”[4] which delivers same functionalities
as described before.

• Stakeholder interaction: A timely response to an inci-
dent requires heavy interaction of stakeholders. In order
to ease this interaction at the time of crisis, responsibili-
ties of each stakeholder should be described in detail.

• Security services: Cloud consumers may not be in-
terested in developing security mechanisms. The cloud
provider can deliver a security service to overcome
this issue. Security services which are delivered by the
provider can be more reliable in case of an incident
and less challenging in the deployment and the incident
detection/analysis.

• Infrastructure information: When the cloud consumer
or another third party wants to develop an incident
detection and analysis mechanisms, they may need to
understand the underlying infrastructure and its architec-
ture. However, without cloud provider cooperation that
won’t be feasible. So, the cloud provider should disclose
enough information to responsible players to detect the
incident in a timely fashion and study it to propose the
containment strategy.

2) Cloud consumers’ requirements: A cloud consumer
must fulfill requirements to ensure effectiveness of the incident
detection and analysis process.

• Consumer’s security mechanisms: The cloud consumer
might prefer to develop its own security mechanisms

1Avoiding false positive alarms

(e.g. incident detection and analysis mechanisms). The
customer’s security mechanisms can be based on either
the cloud provider’s APIs or reports from a variety of
sources, including: provider’s incident reports, end-users’
vulnerability reports, third parties’ reports.

• Provider’s agents in customer’s resources: By im-
plementing provider’s agents, the cloud consumer will
facilitate approaching a cross-layer security solution. In
this method, the cloud consumer will know the exact
amount and type of information that has been disclosed.
Moreover, neither the cloud consumer nor the provider
needs to know about each others’ architecture or infras-
tructure design.

• Standard communication protocol: In order to have a
systematic incident detection and analysis mechanisms, it
is required to agree on a standard communication protocol
that will be used by all stakeholders. This protocol should
be independent of a specific provider/customer.

• Report to other stakeholders: If the customer cannot
implement the provider’s agent in its own instances,
another approach to informing stakeholders about an
incident is by means of traditional reporting mechanisms.
These reports should not be limited to an incident only,
customers may also use this mechanism to announce a
suspicious behavior for more analysis.

• Cloud consumer’s responsibilities: Roles and responsi-
bilities of a cloud consumer in case of an incident should
be defined previously, facilitating immediate reaction in
a crisis.

B. Containment of the compromised component

Cloud consumers’ allocated resources are not under their
direct/physical control. Consumers control their resources us-
ing several access methods which may get compromised as
well. Specifically in the IaaS service model, the issue is
more challenging for responsible organizations (i.e. providers).
One of the main reasons is the increased control of a cloud
consumer over its allocated resources and virtual instances
[5]. The cloud consumer may develop some procedures for
containing its service in case of an incident, but applying these
procedures is challenging as well. The cloud provider has to
ensure that recent changes in the normal operation of a specific
service is due to an incident and not a false positive.

We have identified several aspects that should be considered
in this phase:

1) We should address the greatest risks and strive for suf-
ficient risk mitigation at the lowest cost, with minimal
impact on other mission capabilities [6].

2) The containment, eradication, and recovery should be
done in a cost effective fashion. Thus, a cost-benefit
analysis of each approach should be performed before
application.

3) In a highly distributed system such as a cloud envi-
ronment, we cannot apply stateful measures, they won’t
scale.



4) It is not feasible to stop all attacks or secure all compo-
nents to avoid exploiting any existing vulnerabilities.

5) In addition to the previous item, existing security mecha-
nisms are not completely applicable to the new computing
model and they cannot protect the system from all attacks
and cannot provide a fast reactive response to an incident.

6) As we cannot harden a cloud environment against all
possible attacks, containment strategies and tolerating a
successful attack are required approaches.

Our study approach is a case-based one, because:
• Several components, with different functionalities, may

require a variety of containment realization mechanisms.
• Providing a single mechanism to cover all incidents, is

not possible.
• A combination of mechanisms is possible, and also rec-

ommended for covering an attack which exploits several
vulnerabilities.

• In each case, we will study different ways of an incident
occurrence (e.g. malicious code can be injected in to
either a cloud platform service (nova-compute) or OS
modules/services.)

C. Case studies

1) Case One: A Compromised Compute Worker: The first
case which we will discuss, has only one compromised com-
ponent. In this case the nova-compute service in the compute
worker is compromised, Figure 2.

Two incidents have happened simultaneously in this sce-
nario, malicious code and unauthorized access. The malicious
code is injected to the nova-compute service and introduces
some misbehavior in it, such as malfunctions in the hosting
service of virtual instances, nefarious usage of granted privi-
leges to request for more IP addresses and cause IP address
exhaustion in a specific consumer’s project.

The malicious code is injected by means of another incident,
unauthorized access. The attacker gains access to resources
on the OpenStack-4 host, that he/she was not intended to
have. Using those escalated privileges, the attacker changed
the python code of the nova-compute and restarted the service.
Thus, nova-compute started to behave maliciously.

2) Case Two: A bogus component: A bogus service is a
threat for the cloud environment security. As the OpenStack
is an open source software, an attacker can access the source
code or its binaries and deploy a cloud platform service. When
the attacker is managing a service, he/she can manipulate the
service in a way that threaten the integrity and confidentiality
of the environment. This section will discuss such an incident
that a bogus cloud platform component is added to the
environment. We will focus on a nova-compute service as the
bogus cloud platform component.

A bogus nova-compute service or in general any cloud
platform component can run on a physical machine or a virtual
instance. Adding a physical node to the cloud infrastructure by
an attacker, is unlikely; however, for the sake of completeness
we study both the case that the bogus service is running on

Fig. 2. Case One - The nova-compute service in the OpenStack-4 host is
compromised.

Fig. 3. Case Two - A physical bogus compute worker node is added to the
infrastructure.

a new physical machine and the one when it is running on a
virtual instance. Both cases are depicted in Figures 3, and 4.

III. APPROACHES

We have devised a set of approaches which will be explained
in detail in the following.

A. Restricting infected components

A general technique for containing an incident is restricting
the infected component. The restriction can be applied in
different layers, with a variety of approaches, such as: filtering
in the AMQP server, filtering in other components, disabling

Fig. 4. Case Two - A virtual bogus compute worker is added as a consumer’s
instance.



the infected service or the communicator one. Additional
measures can also be employed to support the restriction, like:
removing infected instances from the project VLAN, disabling
live migration, or quarantining infected instances.

We explain each of these approaches in the following
sections.

1) Filtering in the messaging server (cloud controller): We
will propose several filtering mechanisms in the messaging
server in order to contain and eradicate an incident in a
cloud environment. The OpenStack platform has been used
to build our experimental cloud environment. This approach
is a responsibility of the cloud provider and the target layer
in the cloud platform application layer.

a) Advantages:
• The filtering task at the messaging server level can be

done without implementation of new functionalities. We
can use existing management interfaces of the RabbitMQ
(either CLI or web interface) to filter the compromised
component.

• The filtering task can be done in a centralized fashion
by means of the management plug-in, although we may
have multiple instances of the messaging server.

• Implementing this approach is completely transparent for
other stakeholders, such as cloud consumers.

• We can scale out2 the messaging capability by running
multiple instance of the RabbitMQ on different nodes.
Scaling out the messaging server will also scale out the
filtering mechanism3.

• This approach is at the application layer, and it is inde-
pendent of network architecture and employed hardware.

• The implementation at the messaging server level helps
in having a fine-grained filtering, based on the message
content.
b) Disadvantages:

• A centralized approach has its own disadvantages as well,
such as being a single point of failure or becoming the
system bottleneck.

• Implementing the filtering mechanism at the messaging
server and/or the cloud controller adds an extra complex-
ity to these components.

• When messages are filtered at the application layer in
the RabbitMQ server, the network bandwidth is already
wasted for the message that has an infected source,
destination, or even context. Thus, this approach is less
efficient comparing to the one that may filter the message
sooner (e.g. at its source host, or in the source cluster)

• Most of the time application layer approaches are not as
fast as hardware layer one. In a large scale and distributed
environment the operation speed plays a vital role in the
system availability and QoS.
It is possible to use the zFilter technique as a more effi-
cient implementation of the message delivery technique.

2Scaling out or horizontal scaling is referred to the application deployment
on multiple servers [7].

3But it may require a correlation entity to handle the filtering tasks among
all messaging servers.

It can be implemented on either software or hardware.
The zFilter is based on the bloom-filter data structure.
Each message contains its state; thus this technique
is stateless [8]. It also utilizes source routing. zFilter
implementations are available for the BSD family oper-
ating systems and the NetFPGA boards in the following
address, http://www.psirp.org.

• Filtering a message without notifying upper layers, may
lead to timeout trigger and resend requests from waiting
entities. It can also cause more wasted bandwidth.
c) Realization: A variety of filtering mechanisms can be

utilized in the messaging server; each of these mechanisms
focuses on a specific component/concept in the RabbitMQ
messaging server. We can enforce the filtering in messaging
server connection, exchange, and queue that will be discussed
next.

• Connection: A connection is created to connect a client
to an AMQP broker [9]. A connection is a long-
lasting communication capability and may contain mul-
tiple channels [10]. By closing the connection all of its
channels will be closed as well.

• Exchange: An exchange is a message routing agent
which can be durable, temporary, or auto-deleted. Mes-
sages are routed to qualified queues by the exchange. A
Binding is a link between an exchange and a queue. An
exchange type can be one of direct, topic, headers, or
fanout. [11]
An exchange can be manipulated in different ways in
order to provide a filter mechanisms for our cloud envi-
ronment:

– Unbinding a queue from the exchange: The com-
promised component queue won’t receive messages
from the unbinded exchange.

– Publishing a warning message: Publishing an alert
message to that exchange, so all clients using that
exchange will be informed about the compromised
component. Thus, by specifying the compromised
component, other clients can avoid communicating
with it. The main obstacle in this technique is the
requirement for implementing new functionalities in
clients.

– Deleting the exchange: Deleting an exchange will
stop routing of messages related to it. It may have
multiple side effects, such as memory overflow and
queue exhaustion.

• Queue: Queue is called as a ”weak FIFO” buffer, that
each message in it can be delivered only to a single client
unless re-queuing the message [11].

– Unbinding a queue from an exchange avoids fur-
ther routing of messages from that exchange to the
unbind-ed queue. We can unbind the queue which is
connected to the compromised component and stop
receiving messages by the infected client.

– Deleting a queue not only removes the queue itself,
but also remove all messages in the queue and cancel



Fig. 5. Overview of RabbitMQ messaging server and applicable containment
approaches.

all consumers on that queue.
– Purging a queue removes all messages in the queue

that do not need acknowledgment. Although it may
be useful in some cases, it may not be as effective
as required in occurrence of an incident.

Figure 5 depicts a simplified overview of messaging
server internal entities and the application points of our
approaches.

2) Filtering in each component: Applicable filtering mech-
anisms in the messaging server have been studied in the
previous section. This section discusses mechanisms that are
appropriate for other components. These components are not
essentially aware of messaging technique details and specifi-
cations.

a) Advantages:
• The implementation of the filtering mechanism in each

component avoids added complexity to the messaging
server and cloud controller.

• This approach is a distributed solution without a single
point of failure in contrast to the previous one with a
centralized filtering mechanism.

• Assuming locality principle in the cloud, wasted band-
width is limited into a cluster/rack which host the infected
components. Network connections have much higher
speed in a rack or cluster.

• This approach does not require a correlation/coordination
entity for filtering messages. Each component behaves
independently and autonomously upon receiving an alarm
message, that announces a compromised node.
As there is no boundary in the cloud, performing secu-
rity enforcement at each component is a more reliable
approach. Traditionally, most security mechanisms have
been employed at the organization/system boundaries.
However, as the realization of boundaries is becoming
weaker in a cloud environment, this approach is a rea-
sonable one to fulfill the new requirements.
b) Disadvantages:

• When the filtering must be performed in each component,
all interacting components must be modified to support
the filtering mechanism. However, this issue can be
relaxed by using a unified version of messaging client
(e.g. pika python client) and modifying the client in case
of new requirements.

• The message which should be discarded traverses all
the way down to the destination, and wastes the link
bandwidth on its route.

• Dropping a message without notifying upper layers, may
lead to timeout trigger and resend requests from waiting
entities. It can also cause more wasted bandwidth.
c) Realization: This approach can be implemented at

two different levels: blocking at either the messaging client
level (e.g. AMQP messaging client) or the OpenStack compo-
nent/service level.

First, the responsible client can be modified to
drop messages with specific properties (e.g. infected
source/destination). As an example, the responsible client
for AMQP messaging in the OpenStack is amqplib/pika;
we must implement the mechanism in this AMQP client
(or its wrapper in the OpenStack) to filter malicious AMQP
messages. Using this method, more interaction between the
OpenStack and clients may be required to avoid resend
requests. Because of using the same AMQP client in all
components, the implementation is easier and its modification
process needs less effort.

The second method is to develop the filtering in each of the
OpenStack components, such as nova-compute, nova-network,
nova-scheduler, etc. This method adds more complexity to
those components and it may not be part of their responsi-
bilities.

We propose a combination of these methods. Implementing
the filtering mechanism in the carrot/amqplib wrapper of the
OpenStack has advantages of both methods and avoids un-
necessary complexity. The OpenStack wrapper for managing
AMQP messaging is implemented in src/nova/rpc.py. In order
to identify the malicious message, we use the message address
which is part of its context. Then, the actual dropping happens
in the AdapterConsumer method. Assuming that the source
address is set in the context variable, filtering is straight
forward. By checking the message address and avoiding the
method call, most of the task is done. The only remaining
part is to inform the sender about the problem, that can
be implemented by means of the existing message reply
functionality.

3) Disabling services: Disabling services is a strategy for
containing the incident. The disabled service can be either the
infected or the communicator one. The communicator service
handles tasks distribution and delegation. This method can be
used only by the cloud provider, and is at the application layer.

a) Disabling an infected service: An incident can be
contained by disabling the infected service. It has several
advantages, including:

• After stopping the nova-compute service, running in-
stances will continue to work. Thus, as a result con-



sumers’ instances will not be terminated nor disrupted.
• All communications to and from the compromised node

will be stopped. So, the wasted bandwidth will reduce
massively.

• Shutting down a service gracefully, avoids an extra set of
failures. When the service is stopped by Nova interfaces,
all other components will be notified and the compro-
mised node will be removed from the list of available
compute workers.

Like any other solution, it has multiple drawback as well,
including:

• Keeping instances in the running status can threaten cloud
consumers. The attacker may gain an access to running
instances on the compromised node.

• The live migration feature will not work anymore. Thus,
the threatened consumers cannot migrate running in-
stances to a safe or quarantine compute worker node.

• Neither the cloud provider nor consumers can manage
running instances through the OpenStack platform.

This approach requires no further implementation, although
we may like to add a mechanisms to turn services on and off
remotely.

b) Disabling a communicator service: An incident can
be contained by disabling or modifying its corresponding
communicator service. An example of a communicator service
in an OpenStack deployment nova-scheduler service. The
nova-scheduler decides that which worker should handle the
newly arrived request, such as running an instance.

By adding new features to the scheduler service, the plat-
form can avoid forwarding request to the compromised node.

Advantages of this approach are:
• No more requests will be forwarded to the compromised

node.
• Consumers’ instances remain in the running status on the

compromised node. So, consumers will have enough time
to migrate their instances to a quarantine worker node or
dispose their critical data. Even estimate impacts of the
incident.

• This approach can be used to identify the attackers,
hidden system vulnerabilities, and the set of employed
exploits. In other words, it can be used for forensic
purposes.

And its disadvantages are:
• New features should be implemented. These new features

are more focused on the decision algorithm of the sched-
uler service.

• This approach will not secure the rest of our cloud
environment, but it avoids forwarding new requests to
the compromised node. However, this drawback can be
seen as an opportunity. We can apply this approach and
also move the compromised node to a HoneyCloud. In
the HoneyCloud we don’t restrict the compromised node,
instead analyze the attack and attacker’s behavior. But
even by moving the compromised node to a HoneyCloud,
hosted instances on that node are still in danger.

It is possible that consumers’ instances are all inter-
connected. Thus, those running instances, on the com-
promised node in the HoneyCloud, threaten the rest of
consumers’ instances. The rest of instances may even
be hosted on a secure worker node. The next proposed
approach is a solution for this issue.

4) Removing instances from the project VLAN: This ap-
proach does not contain the compromised node, instead fo-
cuses on containing instances hosted by the compromised
worker node. This is important because those instances may
have been compromised as well. The first step toward securing
the consumer’s service is to disconnect potentially infected
instances.

The main usecase of this approach is when the attacker dis-
rupts other solutions (i.e. disabling nova-compute management
functionalities, escalated privileges at the OS layer), or when
instances and the consumer’s service security is very important
(e.g. eGovernment services).

It has several advantages specifically for cloud consumers,
including:

• Disconnect potentially infected instances from the rest of
consumer’s instance.

• It does not require new features implementation.
• The attacker cannot disrupt this method.

And its disadvantages are as follows:

• This method only works in a specific OpenStack network-
ing mode (i.e. VLANManager networking mode).

• The consumer completely loses control over isolated
instances, that may lead to data loss or disclosure, service
unavailability, etc.

5) Disabling live migration: Live migration can cause
wide-spread infection, or can be a mechanism for further in-
trusion to a cloud environment. It may take place intentionally
or unintentionally (e.g. an affected consumer may migrate
instances to resolve the attack side effects, or the attacker
that has the consumer privileges migrates instances to use a
hypervisor vulnerability and gain control over more nodes).
Disabling this feature helps the cloud provider to contain the
incident more easily, and keep the rest of the environment
safer.

6) Quarantining instances: When we migrate instances
from a compromised node, we cannot accept the risk of
spreading infection along instance migration. Thus, we should
move them to a quarantine worker node first. The quarantine
worker node has specific functionalities and tasks, including:

• This worker node limits instances connectivity with the
rest of cloud environment. As an example, only cloud
management requests/responses are delivered by the quar-
antine host.

• It has a set of mechanisms to check instances’ integrity
and healthiness. These mechanisms can be provided by
the underlying hypervisor, cloud platform, or third par-
ties’ services.



B. Replicating services

An approach to overcome the implications of an incident
is replicating services. A service in this section is a service
which is delivered and maintained by the cloud provider. It
can be a cloud platform service (e.g nova-compute) or any
other services that concerns other stakeholders. The replication
can be done passively or actively, and that is due to new
characteristics of the cloud model. The replication of a cloud
service can be done either at the physical or virtual machine
layer.

1) Replicate services on physical machines: Replicating
service on physical machines is already done in a platform
such as the OpenStack. The provider can replicate cloud
services either passively or actively when facing an issue in
the environment.

2) Replicate services on virtual machines: Replication of
service on virtual machines has multiple benefits, including:

• Virtual machines can be migrated while running (i.e.
live migration), this is a practical mechanism for stateful
services that use memory.

• Replication at the instance layer is helpful for forensics
purposes. It is also possible to move the compromised
service in conjunction with the underlying instance to a
HoneyCloud. This is done instead of moving the physical
node, ceasing all services on it, and changing the network
configuration in order to restrict the compromised node
communication.

• Using virtual machines in a cloud environment we can
also benefit from the cloud model elasticity and on
demand access to computing resources.

This approach is also the main idea behind the CC-VIT [12].
By applying the CC-VIT to our environment, the preferred hy-
brid fault model will be REMH, and the group communication
is handle using the AMQP messaging.

We can use physical-to-virtual converters to have the ad-
vantages of both approaches. These tools convert a physical
machine to a virtual machine image/instance that can be run
on top of a hypervisor.

Moreover, each of these replicas can be either active or pas-
sive. This will have a great impact on the system availability.

C. Disinfecting infected components

Disinfecting an infected component is a crucial task in
handling an incident and securing the system. It can be
accomplished with multiple methods having a variety of
specifications.

None of the following approaches will be used for cleaning
the infected binary files, instead less complex techniques
are employed that can be applied in a highly distributed
environment. Cleaning a binary file can be offered by a third
party security service provider, that has focused on large scale
antivirus software.

1) Updating the code
The service code can be updated to the latest, patched
version. This process should be done in a smooth way so

all components will be either updated or remain compat-
ible with each other after partial components update.
Several tools has been developed with this purpose. One
of the best examples is the Puppet project [13].

2) Purging the infected service
Assuming that the attacker has stopped at the cloud
platform layer, by removing the service completely we
can assure containment of the incident.

3) Replacing the service
Another method which is not as strong as others, is
achieved by replacing the infected service with another
one that uses a different set of application layer resources,
such as configuration files, binaries, etc. Thus, we can be
sure that the infected resources have no effect on the new
service.

D. Migrating instances
The affected consumer can migrate an specific instance or

a set of instances to another compute worker or even another
cloud environment. The migration among different provider is
an open challenge nowadays, because of the weak interoper-
ability of cloud systems and lack of standard interfaces for
cloud services.

In our deployment, both Amazon EC2 APIs and RackSpace
APIs are supported. Thus, in theory a consumer can move
between any cloud environment provided by the Amazon EC2,
RackSpace, and any open deployment of OpenStack without
any problem.

E. Node authentication
In this method each worker must have a certificate signed by

a trusted authority. This authority can be either an external one
or the cloud controller/authentication manager itself. Having
a signed certificate, the worker can communicate with other
components securely. The secure communication can bring us
any of the following: confidentiality, integrity, authentication,
and non-reputation.

In this case, worker’s communication and authenticity is
important for us. For this purpose we can use two different
schemes: message encryption or a signature scheme. Each of
these schemes can be used for the whole communication or
the handshake phase only.

When any of those schemes are applied only to the hand-
shake phase, any disconnection or timeout in the communica-
tion is a threat to the trust relation. As an authenticated worker
is disconnected and reconnected, we cannot only rely on the
worker’s ID or host-name to presume it as the trusted one.
Thus, the handshake phase should be repeated to ensure the
authenticity of the worker.

Although applying each scheme to all messages among
cloud components is tolerant against disruption and discon-
nection, its overhead for the system and the demand for it
should be studied case by case.

By applying each of those schemes to all messages, we can
tolerate disconnection and disruption. However, using crypto-
graphic techniques for all messages introduce an overhead for
the system which may not be efficient or acceptable.



Fig. 6. A sample markov model for trust states of a component.

Fig. 7. A sample markov model for transitions between different trust levels
of a component.

F. Policies

1) No new worker policy: In addition to all those technical
approaches, a set of management policies can also relax the
issue. As an example, no new worker should be added unless
there is a demand for it. The demand for a new worker can
be determined when the resource utilization for each zone is
above a given threshold.

2) Trust levels and timeouts: Introducing a set of trust
levels, a new worker can be labeled as a not trusted worker.
Workers which are not trusted yet, can be used for hosting non-
critical instances, or can offer a cheaper service to consumers.

In order to ensure the system trustworthiness in a long run,
a not-trusted worker will be disabled after a timeout. A simple
Markov model of those transitions are depicted in Figure 6.

Assuming we have only two trust levels, Figure 7 depicts
transitions between them. As an example, T0 can be achieved
by human intervention; and the second level of trust T1
is gained by cryptographic techniques or trusted computing
mechanisms.

3) Manual confirmation: In this method, recently added
workers are not used for serving consumers’ requests until
their authenticity is confirmed by the cloud provider. This
method requires human intervention; thus, it can become a
bottleneck in the cloud infrastructure. Techniques, explained
in the next part, can relax the bottleneck issue.

IV. CONCLUSION

We have presented an approach to handling compromised
components in an OpenStack IaaS configuration. Cloud Com-
puting present some unique challenges to incident handling,
but our experience shows that with proper adaptation, tradi-
tional incident management approaches can also be employed
in a Cloud Computing environment.

ACKNOWLEDGMENT

This paper is based on results from MSc Thesis work
performed at NTNU.

REFERENCES

[1] Y. Chen, V. Paxson, and R. H. Katz, “What’s New About Cloud
Computing Security?” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-5, Jan 2010. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html

[2] T. G. Karen Scarfone and K. Masone, “Computer Security In-
cident Handling Guide,” NIST, Special Publications SP 800-61
Rev. 1, March 2008, http://csrc.nist.gov/publications/nistpubs/800-61-
rev1/SP800-61rev1.pdf.

[3] A. TaheriMonfared and M. G. Jaatun, “Monitoring Intrusions and
Security Breaches in Highly Distributed Cloud Environments,” in Pro-
ceedings of CloudCom 2011, November 2011.

[4] AWS Security Team, “Vulnerability Reporting,”
http://aws.amazon.com/security/vulnerability-reporting/, March 2011.

[5] J. Reed, “Following Incidents into the Cloud,”
SANS Institute, Security Reading Room, 2011,
http://www.sans.org/reading room/whitepapers/incident/incidents-
cloud 33619.

[6] G. Stoneburner, A. Goguen, and A. Feringa, “Risk Management Guide
for Information Technology Systems,” National Institute of Standards
and Technology, Special Publications, July 2002.

[7] M. Michael, J. Moreira, D. Shiloach, and R. Wisniewski, “Scale-up x
scale-out: A case study using nutch/lucene,” in Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, march
2007, pp. 1 –8.

[8] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar,
and P. Nikander, “Lipsin: line speed publish/subscribe inter-
networking,” in Proceedings of the ACM SIGCOMM 2009
conference on Data communication, ser. SIGCOMM ’09. New
York, NY, USA: ACM, 2009, pp. 195–206. [Online]. Available:
http://doi.acm.org/10.1145/1592568.1592592

[9] “Rabbitmq core api guide,” http://www.rabbitmq.com/api-guide.html,
May 2011.

[10] C. Trieloff, C. McHale, G. Sim, H. Piskiel, J. O’Hara, J. Brome,
K. van der Riet, M. Atwell, M. Lucina, P. Hintjens, R. Greig, S. Joyce,
and S. Shrivastava, “Advanced message queuing protocol protocol
specification,” AMQP.org, amq-spec, July 2006, version 0.8.

[11] D. Samovskiy, “Introduction to AMQP Messaging with RabbitMQ,” July
2008.

[12] Y. Tan, D. Luo, and J. Wang, “CC-VIT: Virtualization Intrusion Tol-
erance Based on Cloud Computing,” in Information Engineering and
Computer Science (ICIECS), 2010 2nd International Conference on,
December 2010, pp. 1 –6.

[13] “Puppet labs,” http://www.puppetlabs.com/, May 2011.


