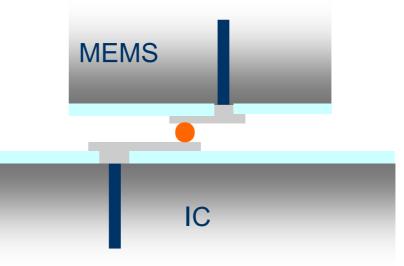
3D stacked MEMS and ICs in a miniaturized sensor node

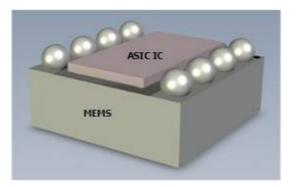
- supported by the European Commission under support-no. IST-026461 e-CUBES

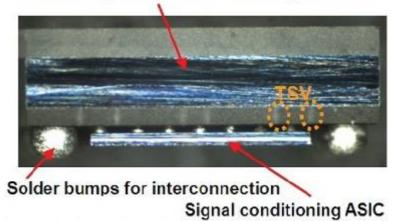
Maaike M. V. Taklo, Nicolas Lietaer, Hannah Tofteberg: SINTEF, Norway Timo Seppänen: Infineon Technologies SensoNor, Horten, Norway* Peter Ramm: Fraunhofer-IZM, Munich, Germany Werner Weber: Infineon Technologies, Munich, Germany


DTIP 2009, Rome, April 1-3

*Presently with Nor-Tek Teknologisenter

Outline

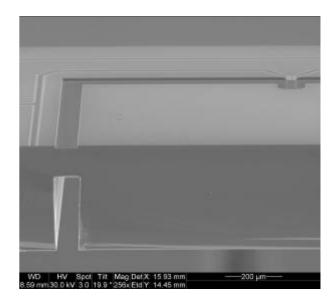

- Solutions for through silicon vias
- Solutions for interconnects
- Demonstrator for e-CUBES
 - Background for selections
 - Challenges
 - Final results
- Summary


Wafer level packaging (WLP)

- More than wafer level encapsulation
- No wire bonds
 - Through Silicon Vias (TSVs) required
 - Interconnects defined on wafer level
- Ready for surface mounting after final dicing

Source: VTI

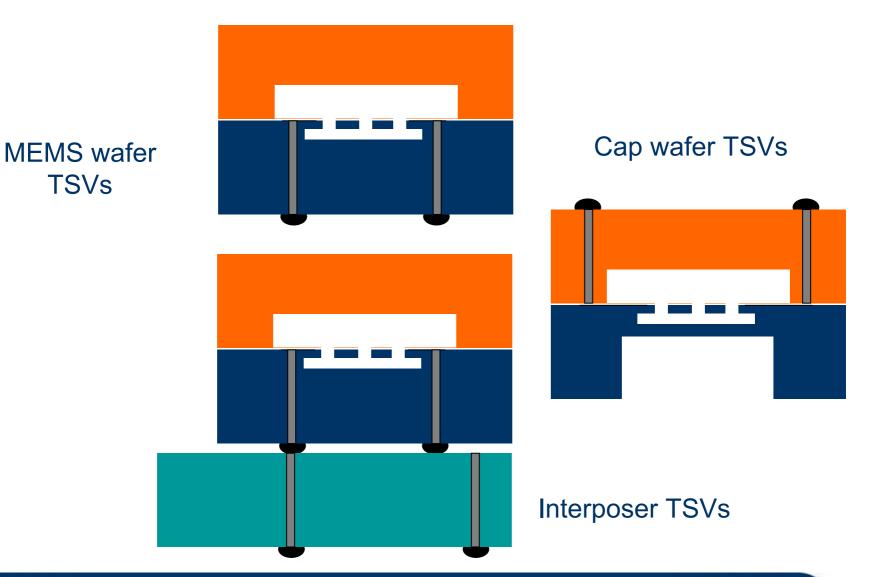
Hermetically sealed MEMS Sensing element


TSVs for MEMS

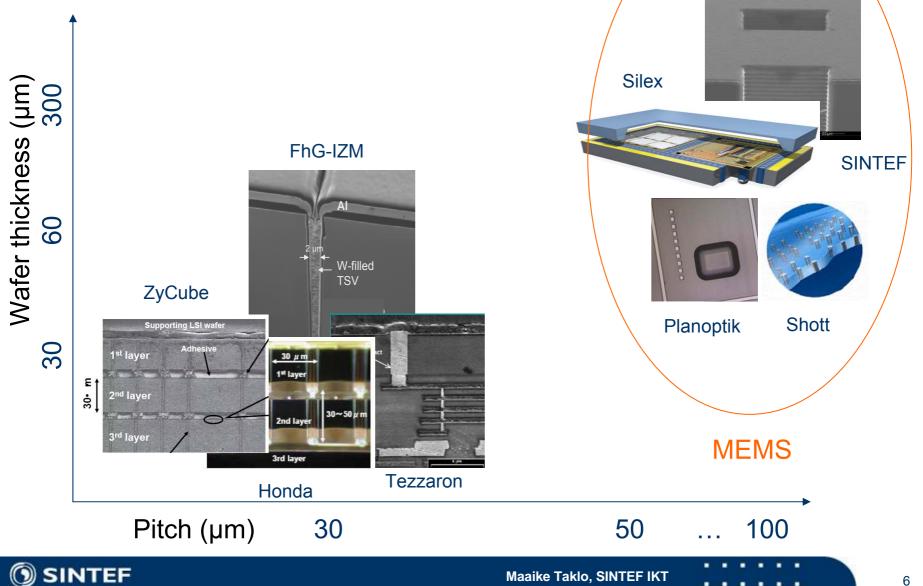
Restrictions for typical MEMS wafers

- Application specific mass/volume/dimensions
- Inlets/released structures
- Fragile structures
- Functional materials with temperature limitations

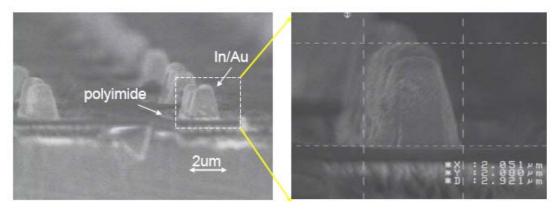
Process steps for TSVs in IC wafers

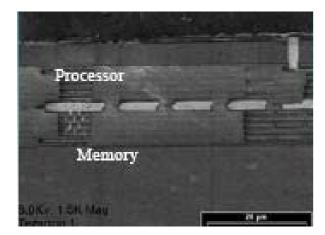

- Wafer thinning
 - Grinding
 - CMP
- Formation of bumps
 - Resist patterning
 - Plating

Source: SINTEF

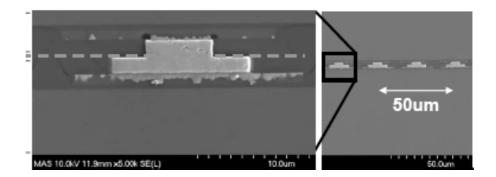


TSVs through which wafer?




TSVs for various applications

Interconnects in the IC world Pitch <50 µm, stand-off height ~5 µm WAFER-WAFER

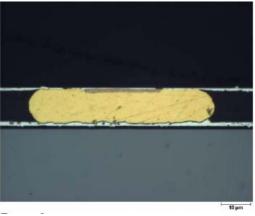


In/Au, Cu, Ni

Source: Tezzaron

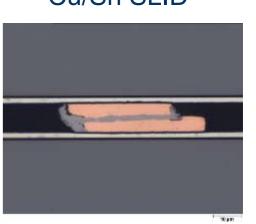
Source: ZyCube

Source: Ziptronix



Maaike Taklo, SINTEF IKT

Interconnects tested for MEMS Pitch >50 µm, stand-off height ~10-20 µm CHIP-WAFER


Au stud bump bonding (SBB)

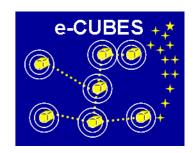
SnAg/AuSn microbumps

Source: SINTEF/Datacon

Cu/Sn SLID

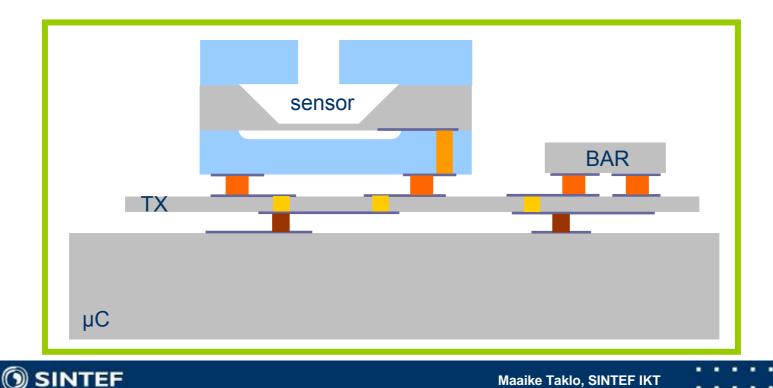
Source: SINTEF/Fraunhofer IZM-Berlin Au, Cu/Sn, SnAg, AuSn

> Source: SINTEF/ Fraunhofer IZM-Munich

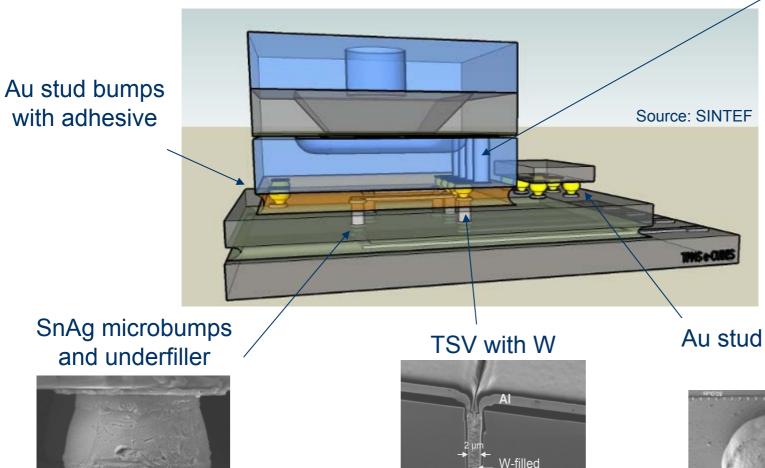


e-CUBES TPMS demonstrator

- Develop wireless sensor networks with miniaturized sensor nodes
- 3 demonstrators
 - Health and fitness
 - Aeronautics and space
 - Automotive
 - Tire Pressure Monitoring System (TPMS)

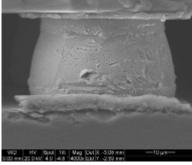


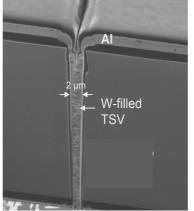
TPMS building blocks


- μ -controller ASIC (μ C) : 4.3 x 3.8 mm² (WAFER)
- Transceiver ASIC (TX): 3.8 x 3.3 mm²
- MEMS pressure sensor: 1.8 x 2.1 mm²
- MEMS bulk acoustic resonator (BAR): 0.8 x 1.3 mm²
 - Antenna, battery, outer package

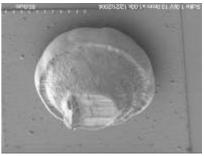
Technology choices

Source: Fraunhofer **IZM-Munich**


Silicon-glass compound wafer with TSVs **TSVs**

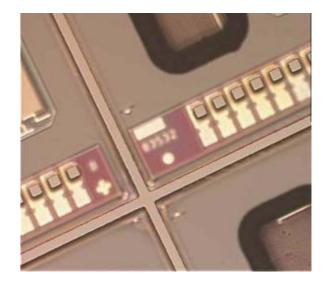


Source: SINTEF/ SensoNor/ PlanOptik


SnAg microbumps and underfiller

Source: SINTEF/ FhG IZM- Berlin

Au stud bumps only

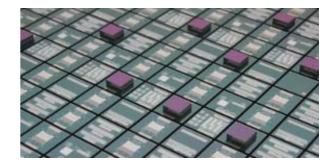


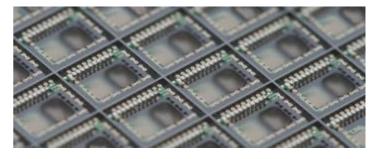
Source: Kulicke & Soffa

Arguments for the chosen TSVs

- Post BEOL W-filled vias for the middle IC (60 µm)
 - ASIC wafer already mainly designed
 - Metal regions could be cleared
 - Less stress than Cu

 Silicon glass compound wafers for MEMS (300 µm)


- Source: SensoNor
- Hermetic vias and hermetic seal to sensor wafer
- Limited requirements for conductivity
- Symmetric glass/Si/glass stack
- Visual inspection possible
- Competitors: Hollow vias, Silex (W in glass)
 - Silicon wafers ÷
 - More complicated bonding for hermetic seals ÷


Arguments for the chosen interconnects

SnAg microbumps for the two ICs

- Well controlled stand-off height
- Cost-effective for high I/O count
- Reliable after post processing
 - R. Johannessen, MMV Taklo, MF Sunding (2009). SnAg Microbumps for MEMS-based 3D Stacks.
 IEEE Transactions on Advanced Packaging
- Competitors: SLID, AuSn microbumps
- Au SBB for the MEMS
 - No need for UBM/passivation
 - No wet processing
 - Serial process, cost-effective for low I/O counts, flexible
 - Competitors: SnAg/AuSn microbumps, SLID

Source: SINTEF

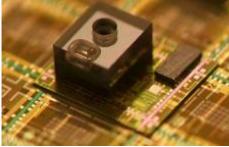
Challenges during stacking

Combination of designs from various sources

- Flipping, mirroring...
- Surface topographies
 - Crossing of critical lines
 - Coils for communication

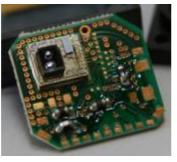
- Placement of dummy bumps for mechanical stability and heat removal
- Gradually reduced process temperatures throughout stacking sequence
 - Avoid degradation of previous bonds ($260^{\circ}C \rightarrow 200^{\circ}C$)
- Mechanical pressure onto stack, planarity requirements

Dicing and wire bonding of "Manhatten"

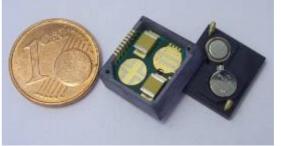


TPMS demonstrator results

Successful measurements after mounting on PCB


- Communication with TX
- Communication with µC
- BAR is running at correct frequency
- Sensor performance to be measured soon

MEMS / TX / µC 3D stack


Source : SINTEF

Micro-PCB

Source : Infineon Technologies

Miniaturized TPMS ~ 1 cm³

Summary

- A TPMS demonstrator was realized using 3D stacking technologies
- Chip-to-wafer bonding
- Three layers
- Two MEMS devices were included
 - Pressure sensor
 - Silicon TSVs in glass
 - Au SBB with adhesive
 - Bulk acoustic resonnator (BAR)
 - No TSVs
 - Au SBB without adhesive

Acknowledgements

Colleagues of the e-CUBES project, especially

- Thomas Herndl and Josef Prainsack, Infineon Technologies
- Josef Weber and Lars Nebrich, Fraunhofer IZM-Munich
- Jürgen Wolf and Matthias Klein, Fraunhofer IZM-Berlin
- Thor Bakke, Kari Schjølberg-Henriksen, SINTEF
- Vincent McTaggart, Kulicke and Soffa Industrial (KNS)
 For providing the bumping service

Gerhard Hillmann, Datacon Technology GmbH

For providing the chip to wafer bonding service and process development

