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Performance and hardware evolution of 
standard hardware

1980 - Mini-computers - 1980
Digitals VAX 780, (1977), 0.5 MIPS
Floating point operations taking multiple clock-cycles

1990 - Moving to UNIX-workstations
HP 734, (1989) 14 MIPS 

2000 - moving to PCs running Windows or Linux
Pentium III (1999), 1354 MIPS at 500 MHz 
Pentium 4 Extreme Edition (2003), 9 726 MIPS at 3.2 GHz 
Multiple floating point operations in a clock-cycle

Due to the hardware evolution of standard hardware the 
performance of sequential programs has increased by at 
least four orders of magnitude in 3 decades

213 = 8192 and 16384, 214 = 16384
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Moore’s law (1965)

“The number of transistors on an integrated circuit for minimum 
component cost doubles every 24 months”

Seems to hold true
Transistor density roughly proportional to processor performance

Growth it core clock frequency stagnated
Until recently (2004) increases in processor performance relied heavily on 
the increase of core clock frequency 

Stagnation of growth in performance of sequential code
Until now industry has experienced increasing value from their existing 
code base, with relatively little effort. 
The Beach law* now obsolete – your sequential code will probably not 
run faster next year

*Until recently one way of doubling the performance of your code was to wait 
1 ½ years (go to the beach) and then buy a new computer.
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Growth in core frequency has stagnated

Memory speeds
Memory speeds have not increased as fast as core frequencies. 
This decreases the value of increasing the core frequency. 

Longer instruction pipelines
Longer instruction pipelines allow for higher core frequencies.
However, long pipelines increase the cache-miss penalty and 
lower the number of completed instructions per cycle. 

Power consumption
When the core frequency increases, the power consumption 
increases disproportionately. 
The dependence between core frequency and the power 
consumption is often said to be quadratic but can for some cases
be almost cubic.
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Integrate more cores in the processor. 

Can take advantage of the continuous increase in 
transistor density.  (Moore’s law)
Increase performance with no increase in power 
consumption

Doubling the number of cores and halving the frequency delivers 
roughly the same performance, while the power consumption can 
be reduced by a factor of four (cubic case). 
Hence, by introducing additional cores it is possible to get higher 
performance without increasing the power consumption.

Demand for parallelization of software 
Unless your software is able to utilize multiple cores, you may 
actually observe that your new multi-core PC runs slower than 
your high GHz computer. 
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From multi-core to heterogeneous 
systems – to further increase performance

How to use the transistors
A majority of the transistors on a traditional CPU core is not used 
for arithmetic, but for things like flow control and cache. 
To achieve maximal floating point performance on a given 
transistor and power consumption budget, it is not necessary for 
every core to be general-purpose. 
Instead one can design smaller and simpler computational units, 
which can very effectively perform floating-point operations on a 
large set of data. 

These units need to be controlled and fed data by a CPU.
These computational units are complementing and not replacing 
traditional CPUs.

We denote these simpler units data stream accelerators
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The two most important present-day 
variants of data stream accelerators

GPU (Graphics Processing Unit)
The major GPU vendors are now selling the same architecture for 
gaming and for high-performance computing. 
NVIDIA Tesla computing processor, 2 GiByte memory and offers 
more than 500 Gflops (singel precision).
AMD FireStream 9170, 2 GiByte memory, double precision and 
offers more than 500 Gflops (single precision)(320 cores, clock 
rate 775-800 MHz). (Announced November 2007)

Cell BE (Cell Broadband Engine Architecture): The Cell is 
an architecture jointly developed by IBM, Sony and 
Toshiba. 

It is used in Sony’s Playstation 3, as stand-alone blade servers, 
and as add-in cards for use in desktop computers. 
Current systems provide roughly 200 Gflops (single precision)
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Parallelization will be a must
Most computer programs existing today are programmed 
according to a sequential paradigm.

Education dominantly addresses sequential programming
Traditional use of parallelization has been within              
HPC - High Performance Computing.

Until a few years ago, commodity computers were almost 
solely based on single-core CPUs, and the steady growth 
in CPU frequency automatically increased the 
performance of sequential programs. 
In the last years, this growth has slowed down, and the 
trend is for computers to increase the number of cores at 
the expense of clock frequency. 

Hence, the performance of sequential programs does not increase 
as fast as before and parallelization is necessary to effectively 
utilize new CPUs. 
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Consequences for algorithm use

The performance of algorithms programmed according to 
a sequential paradigm will not benefit from the current 
growth in parallel computational resources. 
To exploit the computational power of multi-core CPUs 
and data stream accelerators we have to:

Understand the specificities of data stream accelerators
They are not optimal for all types of algorithms.

Rethink our algorithms to fit heterogeneous resources
Replace complex logics in programs by simplistic computational 
demanding algorithms
Replace single pass algorithms by multi-pass algorithms

Look for challenges that until now have been regarded as too 
resource consuming 
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Programming a challenge

The variation of performance and balance between different 
computational resources will be extensive on PCs

CPUs with different number of cores
Wide variation of graphics cards

Programming tools in its infancy. To develop efficient programs the 
developers have to take explicit control over:

algorithmic partitioning
memory hierarchies
processor inter-communication. 

This contradicts the dominant trend in the last decade: 
where object-oriented programming techniques have been used to 
abstract away detailed knowledge of the underlying hardware

EU has addressed this challenge for embedded systems in the ICT-
program of fp7 Call 1 April 2007.
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How have this been addressed in SINTEF
GPGPU - Graphics hardware as a high-end computational resource. 
Project funded by the Research Council of Norway (RCN) (2004-
2007) 

Geometric modeling, Partial Differential, Image Processing, Linear 
algebra Visualization, 2 PhDs, 1 Post Doc, master students >15

Parallel3D - Massive multi-type 3D datasets in parallel Environments. 
Project funded by RCN (80%) and Kongsberg SIM (20%) (2007-2010)

Scene graphs, Viewers, Multi-resolution representation, 2 PhDs
“Heterogeneous Computing” project application to RCN (2008-2010)

Generic heterogeneous computing, Partial Differential Equations,
Geometry Processing, 1 PhD

The “Heterogeneous Computing” group in SINTEF ICT 
5 research scientists
5 PhD – fellows
Many master students

Patenting
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GPGPU Activities in SINTEF Applied Mathematics

View-dependent tessellation: Approximately the 
same size triangles when projected on the screen

Preparation of finite element models 
(cooperation with INPG, France)

Solving partial differential equations Marine acoustics (cooperation with the Norwegian 
University of Science and Technology 
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GPU Activities at SINTEF Applied Mathematics

Intersection acceleration Silhouette refinement                   
(Cooperation with CMA, University of Oslo)

Registration of medical data                
(Cooperation with SINTEF Health Research)

Visualization of algebraic surfaces 
(Cooperation with CMA, University of Oslo)
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GPU Activities at SINTEF Applied Mathematics

Navier-Stokes: Fluid dynamics

Inpainting
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GPU Activities at SINTEF Applied Mathematics

Cluster of GPU’sMatlab Interface to the GPU

Linear algebra / load balancing CPU - GPU
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3 examples from geometry processing

Preparation of finite element models
Intersection acceleration
Visualization of algebraic surfaces 
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GPU-Accelerated Shape Simplification for 
Mechanical-Based Applications

Work partly supported by the EU through NoE 
AIM@SHAPE.

Jon Hjelmervik, SINTEF, Norway
Jean-Claude Leon, INPG, France
Presented at SMI’07

CAD  models contain shape details that are “too small to 
contribute to mechanical simulations”
Overly complex models cause high running times in FEA
Simplification process is often time consuming
FE model preparation requires more objective criteria
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FEA preparation

Generate initial shape
(triangulation)

Shape simplification

Generate FEA mesh
(based on triangulation)
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Vertex removal operator

Assign a cost to each vertex
Remove the vertex with lowest cost
Remesh the hole
Keep the remeshed version if it satisfies given 
criteria
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The ordering of vertex removals is not strict
Allows parallelization

Decimation uses information in the 1-ring neighborhood
Information outside this area may be modified by another vertex 
removal

Parallelization  requirements
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Algorithm overview
Algorithm overview The vertices 
are sorted based on their cost, 
in order to create an 
independent set
Information concerning the 
potential vertices are 
transferred to graphics memory
Vertex removal is operated by 
GPU
Result is read back to system 
memory
CPU updates triangulation
(cont)

Final 
simplification 

pass?

Create independent set of vertices

Update data structure

Sort the vertices

Validate criteria

Remesh the holes
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Remeshing

General remeshing
Provides a broader range of possible shapes
Difficult to implement on GPUs

Half-edge collapse
Easy to implement  (allows GPU implementation)
Provides sufficient freedom in remeshing for the majority of vertex 
removals
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Variable geometric tolerance

One error zone 
(sphere) is attached 
to each original 
vertex
The simplified model 
must intersect all 
error zones
Faster than 
Hausdorff distance
Allows varying 
geometric tolerance

a)

b)

c)

Larger details
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Results Blade

10.887.61.7e-5%1.3%10 8181 765 388
9.771.41.7e-6%1.3%25 8301 765 388

GPU
time(s)

CPU
time(s)

Volume
tolerance

Error
zone

Final
#tris

Initial
#tris

The models were processed using an 
AMD Athlon 4400+ CPU and a NVIDIA 7800GT GPU

original                     without                      with
model                     volume criterion     volume criterion
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Results Fandisk

0.210.571.5e-3%1.3%14812 946
0.210.5831.5e1%1.3%12812 946

GPU
time(s)

CPU
time(s)

Volume
Tolerance

Error
zone

Final
#tris

Initial
#tris

original                     without                      with
model                     volume criterion     volume criterion
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Experiences: Shape Simplification 

The implemented validity test is computationally intensive, 
written for CPU, and ported to GPU
The shaders include for loop, and nested if statements
GPU-acceleration increases the performance with a factor 
of 7 against a single threaded CPU version for large 
models.
More GPU-friendly criteria may increase speed up factor
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Speedup CAD-type intersection algorithms

Work by:
Sverre Briseid
Tor Dokken
Trond Runar Hagen all from SINTEF
Jens-Olav Nygaard
Vibeke Skytt (will address challenges of self-intersection in next talk)

Surface intersection algorithms based on recursive subdivision are 
well adapted for parallelization using threading on multi-core CPUs

Data structures and data storage strategies have to be modified to 
support parallel subproblems.

Massive parallel subdivision can help making more tight: 
bounding boxes for interference checking
normal cones for loop destruction

to analyze the complexity of an intersection problem to determine the 
best algorithm approach to use
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Comparison of CPU and GPU 
implementation of subdivision
Initial process for surface self-intersection

Subdivision into 2n x 2n subpatches of a bicubic Bezier patch and the 
associated (quintic) patch representing the surface normals
Test for degenerate normals for subpatches
Computation of the approximate normal cones for subpatches
Computation of the approximate bounding boxes for subpatches
Computation of bounding box pair intersections for subpatches

CPU/GPU approach
For n<5 use CPU
Refined checks use GPU
For problems not sorted 
out use recursive 
subdivision approach on 
CPU, or refined 
subdivision on GPU

16.92.555e021.515e01256 × 2568

16.81.607e019.573e-01128 × 1287

14.31.043e007.271e-0264 × 646

6.47.330e-021.138e-0232 × 325

0.96.831e-037.456e-0316 × 164

Speedup CPU2GPU1Gridn

1. NVIDIA GeForce 7800GT graphics cards (165 GFlops), (2007: G80 Cards 500 GFlops)
2. On a single core of AMD X2 4400
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Vanishing or 
near vanishing 
surface normal

Simple subdivision to identify regions with 
near vanish surface normals

A 3D surface      .    with red 
texture in region of near 

vanishing normal                        
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Ray-casting of algebraic surface

Idea triggered by the talk of Charles Loop at the SIAM GD conference 
(Phoenix 2005) addressing the GPU used for visualization of algebraic 
curves”

Work initiated by Tor Dokken, main work load carried out by Johan S 
Seland (CMA/SINTEF)
Second version work headed by Johan S. Seland in cooperation with 
Martin Reimers at CMA, University of Oslo.

Solves the ray surface intersection of ray-casting on the GPU using 
subdivision

Challenge: Intersecting singularities and near singularities!
Current version works for degrees up to 20, near real time up to
degree 12
Next: Start video from interactive section. (Paper Accepted for 
Eurographics 2008 
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Start of the GPGPU-project

We started out addressing explicit solutions of partial 
differential equations:

Simple grids and data structures.
Classical finite-difference methods are very simple.
Embarrassingly parallel.
Almost perfect speedup expected.

Limitation of GPUs until now:
You can read from general locations 
You can only write a limited number of floats to specific location
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Why solve PDEs on GPUs?

Simple grids and data structures.
Classical finite-difference methods are very 
simple.
Embarrassingly parallel.
Almost perfect speedup expected.
Best speed up for advanced schemes 
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Example: Heat Equation

yyxxt uuu +=

Discretication by finite differences over a regular grid:
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Each fragment updated as a 
weighted sum of its nearest five
neighbours.
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Example: Linear Wave Equation

Discretication by finite differences over a regular grid:

yyxxtt uuu +=
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Almost the heat equation, but
needs extra texture to store the
value at n-1
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Wave Equation contd.
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Wave Equation contd.
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Systems of Conservation Laws

Fundamental laws of physics: conservation of quantities like mass, 
momentum and energy.

In arbitrary space dimension this reads:

Example: Shallow water equations

)()0,(                ,0)( 0 xQxQQfQt ==⋅∇+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
0
0

2
2
12

2
2
12

yxt
ghhu

huv
hv

huv
ghhu

hu

hv
hu
h



40Applied mathematics

Solving Hyperbolic Conservation Laws 
on GPUs (or Cell processors) - Motivation

Most high-resolution schemes for conservation laws are explicit. 
Explicit schemes are embarrassingly parallel.
Single precision is not a problem due to numerically stable algorithm. 
Vector of unknowns in each cell         easy to utilize vector operations.
Complex schemes        high number of arithmetic operations per 
memory operation.
Finite speed of wave propagation         easy to decompose 
computational domain into subdomains. Benefits: 

Overcomes lack of memory on GPUs.
Potential for cluster implementations.
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Classical scheme: Lax-Friedrich
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Speedup - Lax-Friedrichs
Runtime per time step and speedup factor for the CPU versus GPU 
implementation of Lax-Friedrichs

26.75.54148.001024x1024
25.21.4737.10512x512
19.80.469.09256x256
9.530.232.22128x128

SpeedupGPU**
ms

CPU*
ms

N

* 2.8 GHz Intel Xeon (EM64T)
** GeForce 7800 GTX (450 MHz)
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Linear Advection

Models various transport phenomena of (passive) quantities. Simple 
equation, but difficult to compute solutions correctly.

Classical schemes: excessive smearing or spurious oscillations. 
Need for more sophisticated schemes.

1st order scheme: Lax-Friedrich 2nd order scheme: Lax-Wendroff
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Linear Advection contd.

Modern high-resolution schemes:

Higher-order approximation of smooth parts and no spurious 
oscillations at discontinuities.

Dissipative Compressive
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Semi-Discrete High-Resolution Schemes

Evolution of cell averages described by ODEs

Steps in the algorithms:
Reconstruction of piecewise polynomials from cell averages
Evaluation of reconstruction at integration points
Numerical computation of edge fluxes
Evolution by Runge-Kutta scheme
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Speedup – 2nd order high-resolution

Runtime per time step and speedup factor for the CPU versus the GPU 
implementation of bilinear interpolation with modified minmod limiter for the 
shock-bubble problem of gas dynamics. The results relate to second-order
Runge-Kutta time stepping.

30.068.320501024x1024

28.916.8486 512x512

29.14.19122      256x256

24.21.2730.6128x128

SpeedupGPU*
ms

CPU*
ms

N

* 2.8 GHz Intel Xeon (EM64T)
** GeForce 7800 GTX (450 MHz)
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Variable bottom topography



48Applied mathematics

Well balanced schemes

The terms in red should balance exactly
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2nd order central upwind scheme 
- Variable bottom topography
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Example – Shallow Water Waves

Free-surface flow over a variable bottom topography under the influence of gravity 
can be modeled by the shallow-water equations

Here B(x,y) is the bottom topography, h(x,y,t) is the distance from the bottom to the 
(wavy) surface, [u,v] is the depth-averaged velocity, and g is the gravitational 
acceleration.
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23.01.42e-13.27e-01024

18.83.19e-25.99e-1512

17.78.09e-31.43e-1256

SpeedupGeForce 7800 GTXIntel Xeon 2.8 GHzN

Runtimes per time step in seconds of the dam-break problem on a N x  N grid simulated using a 
dry-states shallow-water scheme.
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2nd order central upwind scheme 
- Well balanced and with dry states
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2nd order central upwind scheme 
- Well balanced and with dry states

Initial wave map Initial bottom map
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Euler equations
The two dimensional Euler equations model the dynamics of 
compressible gasses:

ρ denotes density, u and v velocity in x- and y- directions, p pressure
and E the total energy.

The three dimensional
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Example: 2D Euler Equations - Interaction of a 
low-density bubble with a shock.
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Speedup of 2D shock-bubble on NxN cells

16.57.62e-21.26e-019.91.48e-12.95e-01024

17.11.72e-22.95e-120.83.32e-26.90e-1512

24.74.37e-31.08e-120.08.69e-31.74e-1256

13.61.38e-31.88e-211.83.70e-34.37e-2128

speedup7800AMDspeedup6800IntelN

Bilinear reconstruction

14.42.99e-14.32e-09.37.14e-16.67e-01024

15.06.86e-21.03e-09.41.78e-11.67e-0512

19.81.74e-23.45e-18.44.99e-24.20e-1256

17.24.60e-37.90e-28.61.22e-21.05e-1128

speedup7800AMDspeedup6800IntelN

CWENO reconstruction
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Example – 3D Euler Equations contd.

11.51.72e-11.98e-081

13.98.2e-21.14e-064

12.64.16e-25.23e-149

SpeedupGeForce 7800 GTXAMD X2 4400+N

Runtimes per time step in seconds of the Rayleigh – Taylor instability on a  N x N x N grid simulated 
both on a GPU and a CPU.

The images below shows a circular explosion inside a cubic container.
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Semi-Discrete High-Resolution Schemes

Evolution of cell averages described by ODEs

Steps in the algorithms:
Reconstruction of piecewise polynomials from cell averages
Evaluation of reconstruction at integration points
Numerical computation of edge fluxes
Evolution by Runge-Kutta scheme
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Future plans

We hope/expect the GPGPU-project to be extended for 
the period 2008-2010 under the name “Heterogeneous 
Computing”
We plan to continue work within 3 work packages

Generic heterogeneous computing
Partial Differential Equations

Parallelization on Cell BE
Parallelization on GPU-clusters

Geometry processing
Visualization of Scalar and Vector fields
Intersection and collision detection
FEM model preparation




