

Design av brukergrensesnitt på mobile enheter

Tutorial på Yggdrasil Lillehammer, 12 oktober 2009

Erik G. Nilsson SINTEF IKT

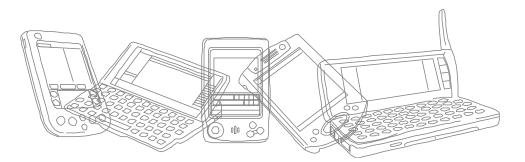
13:15 Introduction, user interfaces on mobile equipment, important choices

13:30 Overview of the patterns collection

13:45 Introduction to exercise

14:00 Utilizing screen space - presentation

14:20 Screen space challenges in the exercise – including break


15:20 Interaction mechanisms - presentation

15:40 Interaction challenges in the exercise

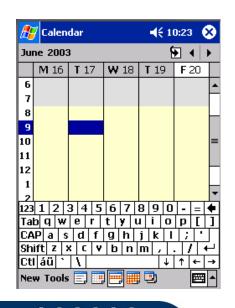
16:25 Adaptive solutions

16:45 Adaptive features in the exercise


17:15 Finish

FLAMINCO and UMBRA projects

UMBRA

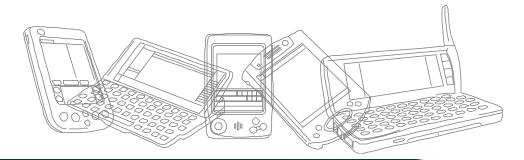

- Development of user friendly application on mobile devices
 - PDAs & SmartPhones
 - Design guidelines
 - Evaluation methods
- Duration: 2004-2005
- FLAMINCO FLexible Applications exploiting Multi modal INteraction and COntext
 - Address challenges when developing UI on mobile devices in the next years to come
 - Finding solutions to some of the major problems facing developers of future mobile solutions
 - handling layout in varying conditions
 - multi modal user interfaces
 - adaptive and context sensitive user interfaces
 - forms based user interfaces (including automatically generated ones)
 - Focus on user interface design
 - Addressed some challenges with regards to evaluation of mobile user interfaces
 - Duration: 2006-2008
- Both projects
 - User-driven innovation projects
 - Funded by the Norwegian Research Council

Characteristics of User Interfaces on mobile devices

- Screen size
 - dialog on a small screen
 - impossible to have more than one dialog available at a time
 - important to design user interfaces that are highly adapted to the users' tasks
- Interaction mechanisms are limited on mobile equipment
 - keyboard is often missing (or is limited)
 - some designated HW buttons
 - mouse is missing or replaced with pen
 - differences are even largest on consumer market mobile phones
- Limitations vs. opportunities

Important choices

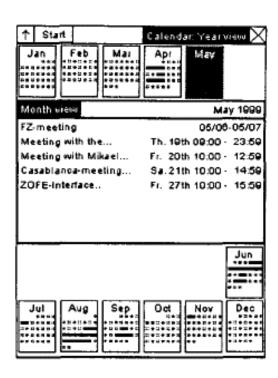
- Type of device
 - PC
 - Tablet PC/UMPC
 - PDA
 - **■** Smart Phone
- Platform
 - Linux (Android, Qtopia, ...)
 - Mac OS X (iPhone/iPod Touch)
 - Palm
 - Symbian
 - Windows Mobile/Phone (PocketPC/WinCE)
- WUI vs. GUI (vs. terminal server)
 - Application working towards web service(s)
- Stand alone vs. server based vs. hybrid
- Transactions vs. information
 - Usually given from (part of) application
 - Different challenges



- 13:15 Introduction, user interfaces on mobile equipment, important choices
- 13:30 Overview of the patterns collection
- 13:45 Introduction to exercise
- 14:00 Utilizing screen space presentation
- 14:20 Screen space challenges in the exercise including break
- 15:20 Interaction mechanisms presentation
- 15:40 Interaction challenges in the exercise
- 16:25 Adaptive solutions
- 16:45 Adaptive features in the exercise
- 17:15 Finish

Presentation structure for problems

- Main problem area (1-3)
 - Problem area (1-2)
 - Problem (1-n)
 - Description
 - More specific problem (0-p) or
 - General guidelines
 - Design pattern (0-q)
 - Description
 - Use when
 - How
 - Why


Main problem and Problem areas

- Utilizing screen space
 - Screen space in general
 - Flexible user interfaces
- Interaction mechanisms
 - Handling input
 - Not using the stylus
- Design at large
 - Guidelines
 - "Difficult to understand"

Utilizing screen space

- Screen space in general
 - Presenting elements in lists
 - Space restrictions in lists
 - Functionality in lists
 - Presenting hierarchies in lists
 - Principles for grouping information
 - What should information be grouped according to?
 - Mechanisms for grouping information
 - Mechanisms for packing information
 - Horizontal scrolling

Utilizing screen space

- Flexible user interfaces
 - Presentation based on models how to do this on a small screen
 - Presentation based on data how to do this on a small screen
 - Handling crowded dialogs when software keyboard is shown and hidden
 - User interfaces that facilitate switching between portrait and landscape mode

■ User interfaces that are able to run on equipment with different

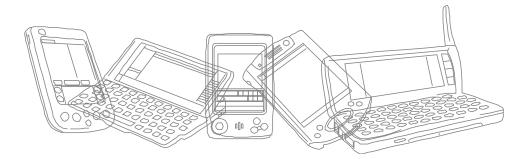
screen size

Interaction mechanisms

- Handling input
 - Mechanisms for entering text
 - Avoiding that the user has to type
 - Making typing easier
 - Order entry
 - Needs to be fast even if it contains large amounts of data and there are a number of rules
 - Mechanisms for entering numerical data
 - Multi modal interaction
 - Controlling the input cursor from an application
- Not using the stylus
 - Interacting with applications without using stylus
 - Retrieving data from a database without using keyboard

Design at large

- Guidelines
 - Design that supports branding, is aesthetic, and utilize screen space optimally
 - Searching large amounts of data
 - E.g. multi-step solutions
 - Visually coding of entry fields to mark editability
 - Must, may, may not
 - Conformance to standards
 - Use standard solution or develop own
- "Difficult to understand"
 - Synchronization solutions
 - User interaction during synchronization
 - User interaction for log-on/log-off
 - User interaction during long-lasting operations



12

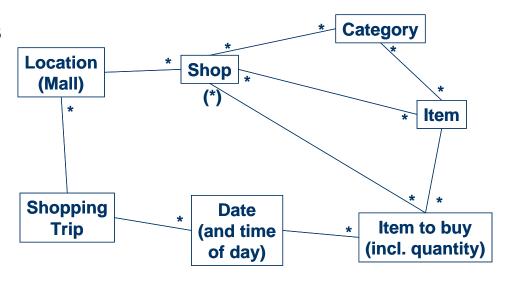
- 13:15 Introduction, user interfaces on mobile equipment, important choices
- 13:30 Overview of the patterns collection

13:45 Introduction to exercise

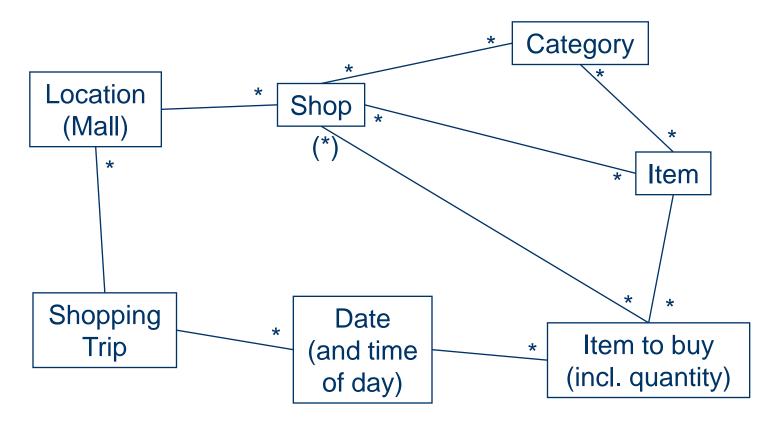
- 14:00 Utilizing screen space presentation
- 14:20 Screen space challenges in the exercise including break
- 15:20 Interaction mechanisms presentation
- 15:40 Interaction challenges in the exercise
- 16:25 Adaptive solutions
- 16:45 Adaptive features in the exercise
- 17:15 Finish

Users

- Anyone
 - No required knowledge of computer or mobile device use
 - Easy to learn
 - Easy to use


Context

- To run on modern smartphone
 - Touch screen
 - 3-4" screen with "decent" resolution
- A PC based server solution for planning will be developed later, including synchronization etc.
- The first version will be stand-alone
 - All tasks must be supported on the device

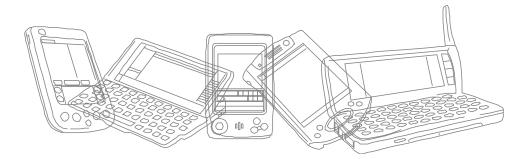


Tasks

- Planning usually performed "at home"
 - Plan what to buy and where to buy it
 - Planning for different dates
- Shopping usually performed "in the shop"
 - Tick off bought items
 - Supplement shopping lists
 - For this shopping trip
 - For other shopping tripsTodayOther date



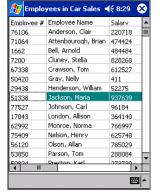
Conceptual model



- Important issues
 - Item has quite a few attributes
 - Some attributes may be present both on Item and Item to buy
 - The system should "remember" all relevant data
 - Location
 - Shop
 - Category
 - Item
 - Shopping history?

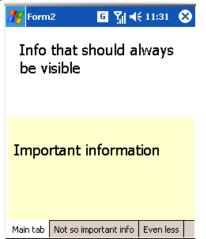
- 13:15 Introduction, user interfaces on mobile equipment, important choices
- 13:30 Overview of the patterns collection
- 13:45 Introduction to exercise
- 14:00 Utilizing screen space presentation
- 14:20 Screen space challenges in the exercise including break
- 15:20 Interaction mechanisms presentation
- 15:40 Interaction challenges in the exercise
- 16:25 Design at large & Adaptive solutions
- 16:45 Adaptive features in the exercise
- 17:15 Finish

Important challenges and solutions for utilizing screen space


- Utilizing screen space
 - Screen space in general
 - Presenting elements in lists
 - Space restrictions in lists
 - Functionality in lists
 - Presenting hierarchies in lists
 - Principles for grouping information
 - What should information be grouped according to?
 - Mechanisms for grouping information
 - Mechanisms for packing information
 - Horizontal scrolling
 - Flexible user interfaces
- Interaction mechanisms
- Design at large

Mechanisms for grouping information

- Description
 - Needs for grouping
 - Principles
 - Do not group
 - E.g. use scrolling
 - Levels of grouping
 - One
 - More
 - Number of levels / number of group per level
 - Grouping by "class" vs.
 - Grouping within "class"
 - Coupling to use
 - Including frequency of use



20

Mechanisms for grouping information

- Design Patterns
 - Use tab folders for grouping
 - Template below
 - Let the user expand and collapse blocks of information
 - Use different dialogs for grouping
 - Use wizard for grouping
 - Use tree view control for grouping
- General Guidelines
 - Combination of mechanisms
 - Pros and cons of the patterns

Use different dialogs for grouping

Description

Different dialogs with intuitive navigation as grouping mechanism

Use when

- Most situation
 - A need to present more information than will fit in one dialog and scrolling should be avoided
 - When it is not convenient to do editing in the same view as the information is presented

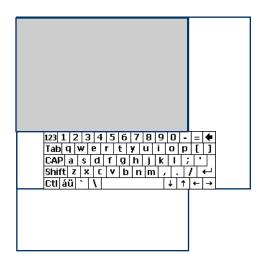
How

- Split info into categories
 - Presented in menu or list
- Split into a set of connected screens
- Editing in separate dialogs
- Maintain the connection between the dialogs
 - Button placement
 - Button layout
 - Manipulation gestures
 - Animation

Why

- More room for presenting information in each dialog
- Maintains less context information
- Possible to edit fairly large number of attributes in dialogs that are not too crowded

22


Important challenges and solutions for utilizing screen space

- Utilizing screen space
 - Screen space in general
 - Flexible user interfaces
 - Presentation based on models how to do this on a small screen
 - Presentation based on data how to do this on a small screen.
 - Handling crowded dialogs when software keyboard is shown and hidden
 - User interfaces that facilitate switching between portrait and landscape mode
 - User interfaces that are able to run on equipment with different screen
- Interaction mechanisms
- Design at large

Handling crowded dialogs when software keyboard is shown and hidden

- Description
 - Touch screen devices
 - Mostly used on devices without keyboard
 - Available screen real estate vary at run time
 - View port resized
 - Resize dialog?
 - Different (importance) for different styles of UI
 - Form based
 - Graphic based
 - Repetition based
 - Document based
 - Icon based
 - Element with focus may disappear
 - Auto-scrolling
 - More difficult combined with flipping the screen

Handling crowded dialogs when software keyboard is shown and hidden

- Design patterns
 - Add or adjust scroll bars
 - Let the keyboard cover part of the UI

Only use the part of the screen that will not be covered by the

keyboard

Use one large UI control as a buffer

Include the keyboard as part of layout

Use full screen keyboard

- Have two variants
- General guidelines
 - Dynamic resizing

June 2003

M 16 | T 17 |

⋠ 10:23

W 18 | **T** 19 | **F** 20

Include the keyboard as part of layout

- Description
 - Application specific keyboard that is designed to be part of the layout
- Use when
 - Mass market products
 - Supported by the OS
- How
 - Develop application specific keyboard
 - Solution is well supported by the development tools in iPhone
- Why
 - Efficient
 - User friendly
 - Finger-friendly
 - User may loose context information

13:15 Introduction, user interfaces on mobile equipment, important choices

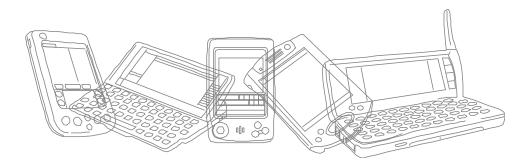
13:30 Overview of the patterns collection

13:45 Introduction to exercise

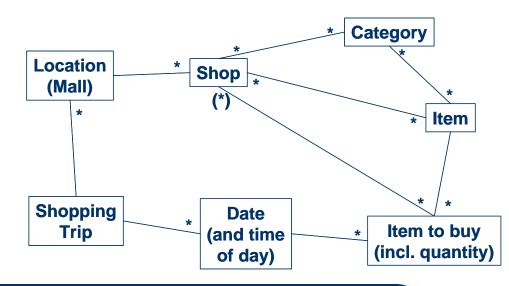
14:00 Utilizing screen sp

14:20 Screen space challen

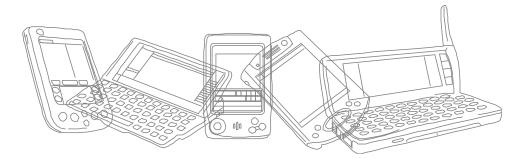
ise – including break


15:20 Interaction mechanism

15:40 Interaction challe


16:25 Adaptive solutions

16:45 Adaptive features in the exercise


17:15 Finish

- What are the main screen space challenges?
 - Which tasks are most challenging?
- Overall dialog structure
 - Task or data oriented? (or something else)
 - Which dialogs are needed?
 - Navigation between dialogs
- Challenging dialogs
 - Grouping
 - Packing
 - Dynamic aspects?

- 13:15 Introduction, user interfaces on mobile equipment, important choices
- 13:30 Overview of the patterns collection
- 13:45 Introduction to exercise
- 14:00 Utilizing screen space presentation
- 14:20 Screen space challenges in the exercise including break
- 15:20 Interaction mechanisms presentation
- 15:40 Interaction challenges in the exercise
- 16:25 Design at large & Adaptive solutions
- 16:45 Adaptive features in the exercise
- 17:15 Finish

Important challenges and solutions for interaction mechanisms

- Utilizing screen space
- Interaction mechanisms
 - Handling input
 - Mechanisms for entering text
 - Avoiding that the user has to type
 - Making typing easier
 - Order entry
 - Needs to be fast even if it contains large amounts of data and there are a number of rules
 - Mechanisms for entering numerical data
 - Multi modal interaction
 - Controlling the input cursor from an application
 - Not using the stylus
- Design at large

Multi modal interaction

- Description
 - Goal: avoid typing

Pen, finger(s), bar code reader, RF-ID, Bluetooth, various keyboard, voice control, motion detectors

- Multi modal
 - Alternative interaction mechanisms separately
 - Combination of alternative interaction mechanisms
- Technological challenges
- Requires specialized equipment
- Maturity level
- Efficiency
- Avoiding errors

Multi modal interaction

- General guidelines
 - Alternative modalities
 - Different suitability
 - Stylus
 - Gestures
 - On screen
 - Using device
 - Hardware buttons
 - Hardware keyboard
 - Bar code reader
 - RF-ID based solutions
 - Camera
 - Voice control
 - Sensors
 - GPS
 - Compass
 - Accelerometer
 - Proximity sensor
 - Modalities in parallel
 - Uls for controlling use of modalities
 - Automagic behaviour vs. user control

Important challenges and solutions for interaction mechanisms

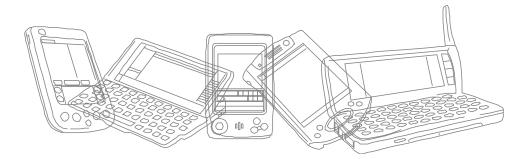
- Utilizing screen space
- Interaction mechanisms
 - Handling input
 - Not using the stylus
 - Interacting with applications without using stylus
 - Retrieving data from a database without using keyboard
- Design at large

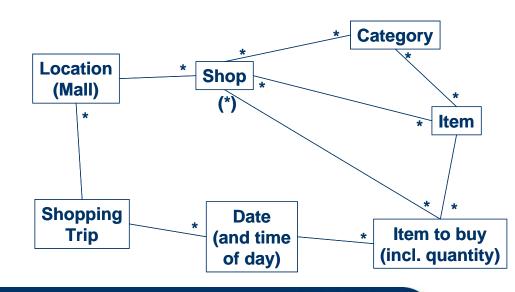
Interacting with applications without using stylus

- Description
 - Touch screen devices
 - Hardware buttons
 - Special functions
 - Soft keys
 - Wheels / joy sticks / navigation pads
 - Generic support in UI controls
 - Some users / situations require finger control
 - Nails
 - Fingertip
 - Gloves
 - Pointing is coarser
 - Larger parts of the screen is covered by the hand
 - Increasing component size enhance screen space problems
 - Intuitive mapping of hardware buttons
 - May only be relevant for parts of an application

Interacting with applications without using stylus

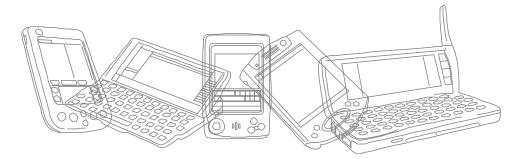
- Design patterns
 - Finger friendly
 - Menu choices
 - Lists
 - **...**


230 1:15 10:27p 5:00 yd 6



- General guidelines
 - Choose most appropriate UI components
 - Simple adaptation of UI components
 - Appropriateness and adaptation for finger navigation
 - For Windows Mobile UI controls
 - Table
 - Advanced adaptation of UI components
 - Develop custom UI controls
 - Gestures

- 13:15 Introduction, user interfaces on mobile equipment, important choices
- 13:30 Overview of the patterns collection
- 13:45 Introduction to exercise
- 14:00 Utilizing screen space presentation
- 14:20 Screen space challenges in the exercise including break
- 15:20 Interaction mechanisms presentation
- 15:40 Interaction challenges in the exercise
- 16:25 Adaptive solutions
- 16:45 Adaptive features in the exercise
- 17:15 Finish


- What are the main interaction challenges?
 - Which tasks are most challenging?
- Typing intensive tasks
 - How to avoid typing
 - Exploit domain knowledge?
 - Smart solutions
 - At home or in the shop?
- Multi modal interaction?
- Use the stylus or not?
 - Finger friendly
 - Gestures?

- 13:15 Introduction, user interfaces on mobile equipment, important choices
- 13:30 Overview of the patterns collection
- 13:45 Introduction to exercise
- 14:00 Utilizing screen space presentation
- 14:20 Screen space challenges in the exercise including break
- 15:20 Interaction mechanisms presentation
- 15:40 Interaction challenges in the exercise

16:25 Adaptive solutions

- 16:45 Adaptive features in the exercise
- 17:15 Finish

Exploiting contextual information

- Context changes are frequent for mobile user
 - Not just location and multi dimensional
 - Location, movement
 - Environment (near-by objects, visual conditions,
 - Personal characteristics
 - Tasks
 - Social role
 - Available information
- Exploiting information about context and context changes is important
 - May facilitate more user friendly applications and services
- Enhancing existing solutions by exploiting contextual information vs.
- Context driven solutions

Example:

Adaptive UIs in navigation systems

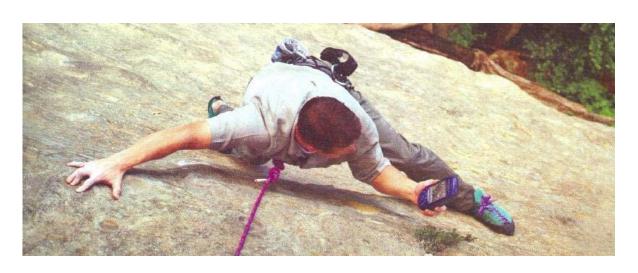
- Adjust layout based on screen characteristics
 - At startup
 - At runtime
 - Optimize information panel
- Estimated arrival time
 - Based on distance and speed limits
 - Based on distance, speed limits and actual speed past x minutes
 - Based on information about
 - Traffic
 - Road conditions
 - Weather
 - Based on historical data
- Adjust zoom level of map based on context
 - Based on speed
 - Based on events along the route
 - Based on type of road
- Tunnel simulation
 - Based on speed when entering
 - Based on speed when entering and speed limits
 - Use speed information from the car

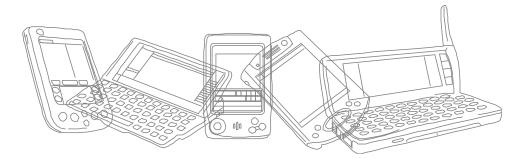
40

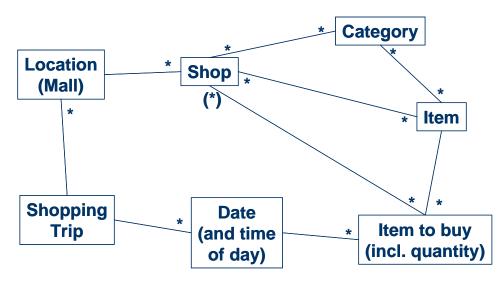
Example:

Adaptive UIs in navigation systems

- When are instructions given?
 - Based on distance or time?
 - Based on speed limit / road type
- Information about speed limits
 - Show speed limits
 - Warn when breaking speed limits
 - Visually
 - Using audio
 - Absolutely vs. relative
 - Taking type of road and speed limits into account
- Information about speed cameras
 - Based on distance
 - Based on distance and speed limit
 - Only cameras on the current road/route
 - Only in current direction
 - Only when breaking the speed limit
 - Take acceleration into account
 - Slow down the car
- Switch between day and night mode
 - Manually
 - Based on position, date and time of day
 - Based on actual light conditions




Other important issues



- Mobile users often focus on tasks outside the mobile device
 - Restricted attention to the visual part of an application
 - Hands free / one hand use
 - Safety
- Battery life, capacity, etc.

- 13:15 Introduction, user interfaces on mobile equipment, important choices
- 13:30 Overview of the patterns collection
- 13:45 Introduction to exercise
- 14:00 Utilizing screen space presentation
- 14:20 Screen space challenges in the exercise including break
- 15:20 Interaction mechanisms presentation
- 15:40 Interaction challenges in the exercise
- 16:25 Adaptive solutions
- 16:45 Adaptive features in the exercise
- 17:15 Finish

- Can your solution be enhanced with adaptive behaviour?
 - Which sensors?
 - When and how should the UI adapt?
- Revisit multimodal interaction
 - Add if you don't have any
 - Improve/enhance if you have

Contact details

- Erik G. Nilsson
- SINTEF ICT, Oslo
- egn@sintef.no
- +47 22 06 78 85 / +47 930 89 477
- Patterns collection at:
 - www.flaminco.net

