Johan Seland

Cloud Computing and Future Trends

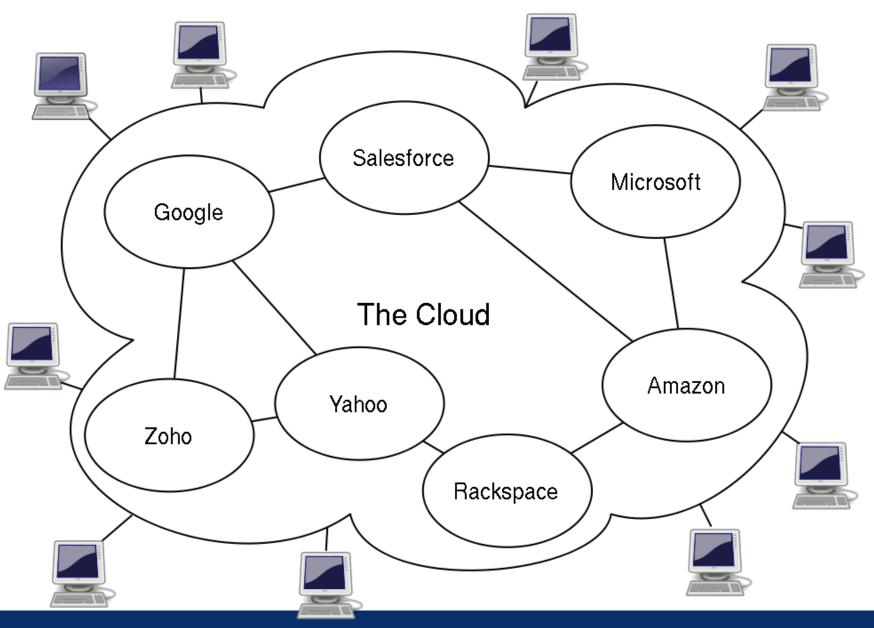
SINTEF Petroleum Development Workshop – Session 3 Trondheim - 9. December 2010

1

Overview

- Cloud Computing
 - Amazon Web Services
 - Case study: CloudSCORE
- Future Trends
 - Computer Architectures
 - Languages and tools
 - You

The best way to predict the future is to invent it. Alan Kay


What is it really?

Cloud computing is web-based processing, whereby shared resources, software, and information are provided to computers and other devices on demand, like the smart phones

Keywords:

- Web-based
- Shared resources
- On-demand

Benefits of cloud computing

- "Infinitely" scaleable
- Pay-as-you go
 - Same price:
 - 1000 hours on one node
 - 1000 nodes for one hour
- Deploy on browser
 - No requirements on users hardware
 - Make GUI work on tablets and cell phones
- Potentially licensing

Problems with Cloud Computing

- Security
 - Who has access to our data?
 - Virtual Private Clouds
- Latency
 - Gaming as a service is coming (OnLive)
- Deployment Development
 - Yet a new set of tools and APIs
- Licensing
- Lock-in
- Lock-out (Wikileaks)
- What if the cloud goes "down"?
 - Compare to power supply lines

What's different this time?

Is this any different than

- Mainframes, X-terminals and Thin-clients?
 - Scalability (elasticity)
 - Pay-as-you go
 - Web delivery (not tied to vendors client)
- Grid computing?
 - Definitely some overlap (Foster/Kesselman)
 - Non-interactive
 - Batch based
 - Grid has no business model
 - Lot's of cloud technology was developed as grid-technology
 - Friday 17/12-2010 Andre Brodtkorbs trial lecture (Oslo):
 - Cloud Computing How is it different from Grid Computing?

Everything as a service

The cloud can be seen as the combination of:

- Software as a Service (SaaS)
- Platform as a Service (PaaS)
- Data as a Service (Daas)
- Utility as a service (UaaS)
- Is the enterprise ready for this?
 - SINTEF/ERGO
 - A larger Norwegian Oil Company
- Can it afford not to?
 - Economy of scale
 - Is our enterprise large enough to host a cloud?

Virtualization – "Abstracted Hardware"

- One physical server runs multiple OS
- Allows higher utilization of servers
- Useful in development environments
 - Virtualbox, VMWare
- Typically 97%++ barebones performance
- Dedicated drivers can give HW access

Application

Hypervisor

Hardware

AMAZON WEB SERVICES

AWS Service Umbrella

- Compute
- Messaging
- Storage
- Content Delivery
- Monitoring

- Database
- Networking
- Web Traffic
- E-Commerce
- Payments
- Workforce

Most interesting to us

- Elastic Compute Cloud (EC2)
 - On-demand servers
- Amazon Elastic Block Store (EBS)
 - Persistent off-instance storage
- Simple Storage Service (S3)
 - HTTPS-based interface for loads/stores
- Databases?
 - SimpleDB (NoSQL) and RDS (Relational)

Example Pricing

Service	Price
Micro Instance	\$0.02 / hour
Large CPU Instance (7.5 GiB RAM, 2 cores)	\$0.34 / hour
High CPU Instance (7.0 GiB Ram, 8 cores)	\$0.68/ hour
Cluster Compute Instance (23 GiB, 8 cores, 10GiB Ethernet)	\$1.60/ hour
Cluster GPU Instance (22 GiB, 8 cores, 2 Tesla GPUs, 10GiB Ethernet)	\$2.10/hour
High Redundancy S3 Storage	\$0.14 / GiB / Mnth
Reduced Redundancy S3 Storage	\$0.093 / GiB / Mnth
EBS Storage	\$0.10 / GiB / Mnth
Small MySQL Instance	\$0.22 / hour

EC2 Overview

- Interfaces
 - Web based console
 - Command line tools
 - APIs

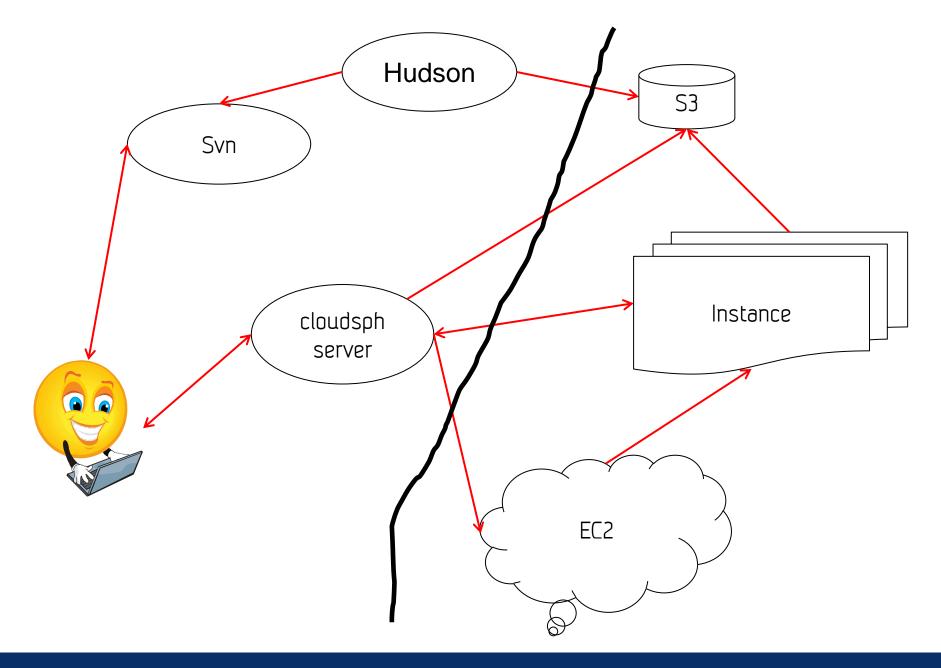
- API Bindings
 - Java
 - PHP
 - Python
 - Ruby
 - .NET
- No C/C++/Fortran

EC2 Terminology

- Instance
 - A running virtual machine
- Instance Type
 - Which "hardware" to run on
- AMI
 - Amazon Machine Image
- Region
 - Physical location of instance
- Key pair
 - A public/private key pair used to login to instances
- Security Groups
 - Manages the firewall settings of instances

CloudSPH

Main Features:


- SPH Simulations take a long time
- Start instances on EC2 from browser
- Download result in background
- Automatic building of simulator from SVN
- ≈ 5000 lines of code
- AVAILABLE TODAY!

Technical info

- Mashup of many technologies
 - SCORE simulator in C++/OpenMP/CUDA
 - Java for server side logic
 - Generated Javascript for web GUI
 - Ubuntu Linux on EC2-instances
 - SSH for communication with instances
 - Shell scripts on instances
 - A sparkle of XML for static data
 - Hudson to CI server to build binaries push into S3
- Encrypted communication (https and SSH)

Google Web Toolkit

- Tools that compile Java into Javascript
 - Not full Java library on client
- Develop server and client code simultaneously
- Async calls between client and server

Experiences

- Easy to forget instances
 - \$\$\$\$
- Relatively slow to transfer data out
 - Uses US region
- APIs from Amazon are good and well documented
- GWT is relatively pleasant
- Synchronization issues

Cloud Questions and Discussion

- How to get started:
 - aws.amazon.com
- Time to start playing with web GUIs

Future Trends

Future Trends

- Computer Architectures
- Languages and tools
- You

CPU Roadmaps (Server/Workstation)

- 2011: Intel Sandy Bridge, 16-core AMD Bulldozer, AMD Fusion
 - On-chip low/midrange GPU
 - Dynamically scale power between CPU and GPU
- 2012: 16-core Ivy Bridge, AMD NG Bulldozer/Fusion
 - NUMA
- 2013: Haswell
 - 22 nm process
 - New cache design
 - Fused Multiply-Add
- 2014: Rockwell
 - 16 nm die shrink of Haswell

Speculation next 5-10 years

- Moores law will hold (Intel has plans to 2029)
- Focus on TDP (thermal design power) rather than performance
- Number of cores will continue to increase
- Dynamic clocking
- No jump in clock frequency on the horizon
 - Exotic cooling solutions in server rooms
 - Cooling of server rooms already problematic
- New memory hierarchies
- More vector units
 - CPU/GPU fusion

GPU Roadmaps and speculation

What we know:

- 2011: Nvidia Kepler (28nm, 1.4 TFlops?)
- 2013: Nvidia Maxwell (22nm, 3.9 TFlops?)
 - 330 TFlops in a 42U rack
 - 3 racks will make a petaflop machine

Speculation:

- "Big-iron" features in high end GPUs
 - NUMA
 - Virtual Memory
 - Virtualization

Languages, compilers and curriculums

- Hardware is 5++ years ahead of mainstream languages
 - C++/Java/C# is getting good support for task-parallelism
 - Data-parallelism in libraries (90/10-rule)
 - Network support is good in most languages except Fortran and C/C++
- Lots of research languages
- Full auto-paralleliztion is a dream
 - Even if compiler research has seen a boost lately
- Parallelization is still an "advanced" topic in CS curriculums
 - Ongoing debate in ACM/IEEE

Language speculation

- Programmer should expose parallelism
 - Compiler backends for various hardware
 - Language VMs (JVM, CLI) will optimize just-in-time
- Functional languages might make a comeback
- HW optimized libraries
 - BLAS, FFTs for vendors
 - Experts (Applied Maths [©]) should write the kernels
- Scalability more important than optimal algorithms?
- Cloud constructs in languages?

Long Range Speculations

Scary to make predictions more than a few years

- Moores law will probably hold (Krauss/Starkman predict 600 years)
- Memristors
 - Combine HDD and RAM first (HP 2013?)
 - Memory and logic on the same chip
 - Many-to-many communication
- Everything will be networked, cheap and small
 - Networked vessels in bloodcells?
- Optical or quantum computers
 - A new jump in "frequency"
 - 500 GHz supercooled, single transistor has been demonstrated (IBM)
- 2100++ Monoliths, Matrioshka brains?

