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Abstract—Dynamic optimal power flow (DOPF) models are 
needed to optimize the operation of a power system with energy 
storage systems (ESSs) over an extended planning horizon. The 
optimal storage level at the end of each planning horizon depends 
on the possible realization of uncertainties in future planning 
horizons. However, most DOPF models simply require that the 
storage levels at the end and at the beginning of the planning 
horizon should be equal. In this paper we consider an AC DOPF 
model for a distribution system with ESS that explicitly takes into 
account the expected future value of stored energy. We illustrate 
the evaluation of the future value function for a system with a wind 
power plant and demonstrate the use of this value function in the 
operation of the ESS. The results show that such an operational 
strategy can be effective compared to not considering the value of 
stored energy. 
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I.  INTRODUCTION 
Deployment of energy storage systems (ESSs) is quickly 

gaining momentum for a number of different applications in the 
electric power system [1-3]. For instance, installing ESSs is 
increasingly relevant as an alternative to grid reinforcements, 
e.g. for improving the hosting capacity for distributed generation 
(DG) such as wind power [4, 5]. ESSs also introduce new 
challenges to the power system analysis that have attracted much 
attention from both the grid companies and the research 
community. Conventional optimal power flow (OPF) methods 
consider each time step separately, but ESSs introduce dynamics 
to the problem that that transforms the OPF problem to a multi-
period (or dynamic) OPF problem (DOPF). In other words, in 
the presence of ESSs, the optimization problem contains 
interdependencies (couplings) between different time steps, 
making it unfavourable to optimize each time step in isolation. 
A review of DOPF methods, although mostly in the context of 
economic dispatch under ramp rate constraints, is given in [6]. 
To compound the challenges, DG is typically introduced to 
distribution systems at relatively low voltage levels and often 
with relatively weak connections, where intermittent DG may 
cause voltage problems. Hence, one can generally not resort to 
simplifying the problem by linearizing the power flow, but has 
to solve a full AC DOPF. 

In this paper, we consider an OPF model for distribution 
systems including the following aspects: Energy storage 
dynamics, AC power flow, and intermittent distributed 
generation. A number of similar models have been reported in 
the literature in recent years; see e.g. [7-26]. A typical problem 
these models are set out to solve is determining the optimal 
scheduling of energy storage charging/discharging over a 
planning horizon, e.g. 24 hours. In the model presented in the 
present paper, we consider an additional aspect that to the best 
of our knowledge is not explicitly considered in the literature, 
namely the value of stored energy at the end of the planning 
horizon. The conventional approach is to require periodic 
boundary conditions for the planning horizon so that the amount 
of stored energy after the last time step has to be equal to, or 
larger than, the initial amount of stored energy [7-17]. Reference 
[18] instead includes a penalty function in the objective function 
that is proportional to the deviation of the amount of stored 
energy from the maximal energy capacity, promoting a fully 
charged energy storage at the final time step. In [19], on the other 
hand, a linear penalty function applies to all time steps. A similar 
model is used in [20], which includes a term in the objective 
function that is a linear combination of charged and discharged 
power for all time steps. Reference [21] sets the (fictitious) 
marginal operation cost of the ESS in the DOPF to be quadratic 
function of the amount of stored energy to promote charging 
when the generation costs in the power system and/or the storage 
level is low, and vice versa. A quadratic function is also used in 
[27] to penalize the deviation from a reference storage level, 
where both the penalty coefficient and the reference storage 
level varies over the day. 

In [28, 29], the marginal operation cost of storage is given as 
a static function of the storage level, resulting in a decoupling of 
the time steps, but no guarantee for optimality.   A more 
analytical approach is taken in [22], which relates the marginal 
value of storage capacity to the marginal value of electricity 
generation for a simple DC system under stochastic demand. 
Reference [23] shows that a policy that aims to keep the storage 
level balanced (at half the capacity) is suboptimal to a more 
dynamic policy obtained based on stochastic dynamic 
programming, but they do not consider network constraints in 
their work. Reference [24] presents a scheduling method based 
on stochastic dynamic programming that takes the future value 
of stored energy into account within each daily planning 
horizon. However, it does not explicitly discuss the storage level 
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at the end of the planning horizon or network constraints in the 
optimization problem. Other references on energy storage 
scheduling that does not consider power flow or network 
restrictions are excluded from this brief literature review. 

The main contribution of the present paper is to include 
explicit consideration of the value of stored energy at the end of 
the planning horizon when finding the optimal ESS 
charging/discharging schedule. The objectives of this paper are 
to investigate a) the expected value of energy stored at the end 
of the planning horizon and b) using this value in the objective 
function as a control signal in the operational strategy 
(scheduling of charging and discharging) of the ESSs. The main 
question we are asking is whether explicitly including the value 
of stored energy in the objective function could improve the 
performance of the operational strategy over using periodic 
boundary conditions as conventionally assumed in the literature. 

The outline of the paper is as follows. In Sec. II we present 
the model and the methodology we use for determining the value 
function and compare it to other methods of taking into account 
the energy stored at the end of the planning horizon. Section III 
describes the test case for which we present results illustrating 
the methodology in Sec. IV, and the implications and limitations 
of our results are discussed in Sec. IV. Although the purpose of 
this paper emphatically is not to present a detailed decision 
support tool, we also discuss in Sec. V possible extensions of 
such a model to provide more useful decision support for real-
life problems. In Sec. VI we summarize the main findings and 
the most interesting directions for future research. 

II. METHODOLOGY 
In this section, we first formulate the DOPF model we have 

used before describing the methodology for considering the 
value of stored energy and using this value in the optimization 
of the distribution system operation. 

A. Dynamic optimal power flow model with energy storage 
The problem we consider is to optimize the operation over a 

given planning horizon of a distribution system with a single 
energy storage system connected to one of the buses and a wind 
power plant connected to another bus. The planning horizon is 
defined as the time steps 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} each of duration Δ𝑡𝑡. For 
the case study carried out for this work we assume a planning 
horizon of one day with hourly resolution, i.e. 𝑇𝑇 = 24 and Δ𝑡𝑡 =
1 h, and we are primarily concerned with determining the 
schedule of charging and discharging the ESS over this planning 
horizon. The amount of energy stored in the ESS at each time 
step is denoted by 𝐸𝐸𝑡𝑡.  

The distribution system is assumed to have a single Point of 
Common Coupling (PCC) to the transmission system through 
which power is imported or exported. We assume that the 
distribution system is to be operated to optimize social welfare, 
which corresponds to minimizing the total cost given by the 
objective function 

 𝑓𝑓 = � �𝑐𝑐𝑡𝑡
imp ⋅ 𝑃𝑃𝑡𝑡

imp + 𝑐𝑐rat �𝑃𝑃𝑖𝑖,𝑡𝑡rat

𝑖𝑖

�
𝑇𝑇

𝑡𝑡=1
Δ𝑡𝑡

− 𝛼𝛼(𝐸𝐸𝑇𝑇 , 𝑣𝑣𝑇𝑇). 
(1) 

In this objective function, the first term is the cost or revenue 
associated with importing or exporting electric power, 
respectively. The second term represents the cost associated 
with rationing or shedding load. The last term represents the 
expected future value associated with having an amount of 
energy 𝐸𝐸𝑇𝑇 stored in the ESS at the end of the planning horizon, 
given that the wind speed at that time is 𝑣𝑣𝑇𝑇. This term will be 
treated in more detail below, and it is henceforth simply referred 
to as the value function. The PCC is modelled as a generator 
with real power 𝑃𝑃𝑡𝑡

imp injected to the grid at time step 𝑡𝑡. 𝑃𝑃𝑡𝑡
imp >

0 when power is imported and 𝑃𝑃𝑡𝑡
imp < 0 when power is 

exported. Slack generators with non-negative power outputs 
𝑃𝑃𝑖𝑖,𝑡𝑡rat are introduced to all load buses 𝑖𝑖 to represent rationing. The 
power prices 𝑐𝑐𝑡𝑡

imp and 𝑐𝑐rat are associated with importing and 
rationing power, respectively. 

The decision variables in the OPF problem are, in addition 
to the stored energy 𝐸𝐸𝑡𝑡 for all time steps, all real and reactive bus 
power injections and voltage magnitudes and angles for all time 
steps. These variables are related through the full AC power flow 
equations. Other grid constraints that are considered in the 
model are voltage magnitude limits for all buses and time steps 
and apparent power flow limits for all branches and time steps. 

The ESS is modelled as separate fictitious generators for 
charging (c) and discharging (d), with real power injection to the 
grid given by 

 𝑃𝑃𝑡𝑡ESS = 𝑃𝑃𝑡𝑡
ESS,d + 𝑃𝑃𝑡𝑡

ESS,c.  (2) 

Energy storage dynamics, i.e. the evolution in time of the energy 
stored in the ESS, is expressed by the energy balance equation 

 𝐸𝐸𝑡𝑡 = 𝐸𝐸𝑡𝑡−1 − 1
𝜂𝜂out

 𝑃𝑃𝑡𝑡
ESS,d − 𝜂𝜂in 𝑃𝑃𝑡𝑡

ESS,c, (3) 

where 𝜂𝜂in and 𝜂𝜂out is the efficiency of charging and discharging 
the ESS, respectively. In principle, there can be solutions to this 
DOPF problem in which charging and discharging occurs 
simultaneously, but such  solutions are typically disfavored by 
the optimization problem for 𝜂𝜂in < 1 and/or 𝜂𝜂out < 1.  

The operation of the ESS is constrained by the real power 
capacity as given by the inequalities 

 0 ≤ 𝑃𝑃𝑡𝑡
ESS,d ≤ 1

𝜂𝜂out
 𝑃𝑃maxESS,  (4) 

 𝑃𝑃minESS ≤ 𝑃𝑃𝑡𝑡
ESS,c ≤ 0.  (5) 

The amount of energy in the ESS can never be negative or above 
the energy capacity 𝐸𝐸max of the system: 

 0 ≤ 𝐸𝐸𝑡𝑡 ≤ 𝐸𝐸max.  (6) 

In addition, we include the constraint  

 𝐸𝐸𝑇𝑇 ≥ 𝐸𝐸min,  (7) 

i.e. that the amount of energy stored at the end of the planning 
horizon should be at least at a minimum value 𝐸𝐸min. 

 The DOPF model is implemented using MATPOWER's 
extensible optimal power flow architecture [30, 31]. Energy 
storage dynamics is implemented in the OPF by making 𝑇𝑇 
duplicates of the MATPOWER network model and coupling 
them by the energy balance equality constraint (3). 



B. Future value function for stored energy 
Including the future value function 𝛼𝛼(𝐸𝐸𝑇𝑇 , 𝑣𝑣𝑇𝑇) in the 

objective function can be understood as a control measure for 
avoiding myopic operation of the ESS. Taking into account the 
estimated expected future value will ensure (on average) optimal 
operation also beyond the current planning horizon. The 
functional form of the value function is in general unknown and 
must be determined for each problem, but for this work, we have 
chosen to parameterize the value function in the objective 
function as a quadratic function of stored energy 𝐸𝐸𝑇𝑇. The 
motivation for this choice is threefold: 1) It generalizes the more 
restrictive linear value or penalty functions employed by some 
works in the literature, 2) using a simple two-parameter function 
allows for more convenient and instructive presentation than 
using functions depending on even more parameters, and 3) it 
makes implementation in MATPOWER straightforward. 
Another alternative that could be quite conveniently 
implemented is a piecewise linear function, which is an 
interesting option for possible improvements of this model. For 
the purposes of this paper, however, a quadratic function seems 
to approximate the actual value function sufficiently accurately. 

In parameterizing the chosen quadratic value function, we 
have chosen to express it on the form  

 𝛼𝛼(𝐸𝐸, 𝑣𝑣) =  𝛾𝛾(𝑣𝑣)𝛽𝛽(𝑣𝑣)𝐸𝐸 −
𝛾𝛾(𝑣𝑣)[𝛽𝛽(𝑣𝑣) − 1]

𝐸𝐸max
𝐸𝐸2 (8) 

as a function of stored energy 𝐸𝐸 and wind speed 𝑣𝑣. In this 
parameterization, the dependence on wind speed 𝑣𝑣 is contained 
in the parameters 𝛾𝛾(𝑣𝑣) and 𝛽𝛽(𝑣𝑣). Although these parameters are 
to be understood as functions of 𝑣𝑣, we will for notational 
convenience simply write 𝛾𝛾 and 𝛽𝛽 in the rest of this section.  The 
parameter 𝛾𝛾 can be interpreted as the unit value of stored energy 
of a fully charged ESS, as 𝛼𝛼(𝐸𝐸 = 𝐸𝐸max, 𝑣𝑣) = 𝛾𝛾𝐸𝐸max. 𝛽𝛽 is a 
parameter determining the curvature of the value function, with 
𝛽𝛽 = 1 giving a function where the value varies linearly with the 
amount of stored energy.  

  
Fig. 1. Example of the quadratic form chosen for the value function for a set 
of parameter values. 

We then introduce 𝑒𝑒 = 𝐸𝐸/𝐸𝐸max to denote the amount of 
stored energy normalized on the energy capacity of the ESS, 
such that the ESS is fully charged when 𝑒𝑒 = 1. For ease of 
presentation we can express the value function normalized on 

the energy capacity of the ESS by defining the normalized value 
function 𝛼𝛼� = 𝛼𝛼/𝐸𝐸max: 

 𝛼𝛼�(𝑒𝑒, 𝑣𝑣) = 𝛾𝛾𝛽𝛽𝑒𝑒 − 𝛾𝛾(𝛽𝛽 − 1)𝑒𝑒2. (9) 

This form of the value function is illustrated as a function of 
energy for a number of different values of 𝛾𝛾 and 𝛽𝛽 in Fig. 1. Here 
we have used dimensionless, constant electric energy prices 
equal to 1. 

C. Determining the value function 
We determine the value function by considering the dynamic 

OPF problem for the current planning horizon as the first stage 
of a multi-stage decision problem. In our case, the objective is 
to optimize social welfare when operating the distribution 
system, not only for the current planning horizon 𝑝𝑝, but also for 
future planning horizons {𝑝𝑝 + 1, 𝑝𝑝 + 2, … }.  Our approach 
follows the stochastic dynamic programming approach 
presented in [32] in the context of hydro power scheduling, 
where a recursive Bellman equation on a form similar to 

 𝛼𝛼𝑝𝑝+1(𝐸𝐸𝑇𝑇 , 𝑣𝑣𝑇𝑇) = 𝔼𝔼
𝑘𝑘
�𝑓𝑓𝑝𝑝+1∗ (𝐸𝐸0, 𝑣𝑣0)�  (10) 

is solved iteratively. Here 𝛼𝛼𝑝𝑝+1 denotes the future expected 
value function at the end of the current planning horizon 𝑝𝑝, 
𝑓𝑓𝑝𝑝+1∗ (𝐸𝐸0, 𝑣𝑣0) is the optimal objective value for the next planning 
horizon 𝑝𝑝 + 1 with initial values 𝐸𝐸0 and 𝑣𝑣0, and the expectation 
is taken over a set of possible realizations of stochastic wind 
speed time series, 𝑘𝑘 ∈ {1,2, … , 𝑘𝑘max}. The stored energy 𝐸𝐸𝑇𝑇 and 
wind speed 𝑣𝑣𝑇𝑇 are the state variables taken into account in this 
multi-stage decision problem, and they are being passed from 
one stage to the next. This means that the initial values 𝐸𝐸0 and 
𝑣𝑣0 of the next planning horizon 𝑝𝑝 + 1 equal the values 𝐸𝐸𝑇𝑇 and 
𝑣𝑣𝑇𝑇, respectively, for the last time step of the current planning 
horizon 𝑝𝑝.  

To evaluate how the expected future value function depends 
on 𝐸𝐸𝑇𝑇 and 𝑣𝑣𝑇𝑇, we must solve the optimization problem for the 
next planning horizon 𝑝𝑝 + 1 repeatedly for a set of initial values 
𝐸𝐸0 and 𝑣𝑣0 and for different possible realizations of wind speed 
uncertainty. The iterative procedure is shown schematically in 
Fig. 2.  For the first iteration, the value function term in the 
objective function is initialized to zero by setting 𝛾𝛾 = 0. Each 
subsequent iteration will update the values of 𝛾𝛾(𝑣𝑣0)  and 𝛽𝛽(𝑣𝑣0)  
for all the values of the initial wind speed 𝑣𝑣0 that are considered. 
The iterative procedure is continued until convergence of the 
values of 𝛾𝛾(𝑣𝑣0)  and 𝛽𝛽(𝑣𝑣0)  is reached for all values of 𝑣𝑣0. To 
represent the stochasticity of the wind speed, a discrete-state 
Markov chain model is used to generate a number 𝑘𝑘max of 
synthetic wind time series for each value of 𝑣𝑣0 based on 
transition statistics from historic data.  

For each iteration and each value of 𝑣𝑣0 and 𝐸𝐸0, the 
optimization problem is solved for all the synthetic wind speed 
time series 𝑘𝑘 ∈ {1,2, … , 𝑘𝑘max} to estimate the average optimal 
objective value 𝑓𝑓∗  as a function of 𝐸𝐸0. This estimated function 
𝑓𝑓∗(𝐸𝐸0) is used to estimate the value function, and the chosen 
quadratic functional form (8) is fitted to the data, determining 
values of the parameters 𝛾𝛾(𝑣𝑣0) and 𝛽𝛽(𝑣𝑣0) to be used in the next 
iteration. Since 𝛼𝛼(𝐸𝐸, 𝑣𝑣) is determined as a continuous function 
of 𝐸𝐸, but for a discrete set of values of 𝑣𝑣, linear interpolation or 
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extrapolation is used to determine the parameter values 𝛾𝛾(𝑣𝑣𝑇𝑇) 
and 𝛽𝛽(𝑣𝑣𝑇𝑇) for the actual value of 𝑣𝑣𝑇𝑇 to use in the objective 
function term 𝛼𝛼(𝐸𝐸𝑇𝑇 , 𝑣𝑣𝑇𝑇) when solving the optimization problem.  

 
Fig. 2. Flow chart of the procedure used to determine the value function. 

For our case, we restrict ourselves to an infinite horizon 
problem where all planning horizons are assumed to be identical 
on average, and the function 𝛼𝛼𝑝𝑝+1 is independent of 𝑝𝑝. The 
expected value function 𝛼𝛼(𝐸𝐸) is meant to represent the 
additional value of having stored the energy amount 𝐸𝐸, and  
𝛼𝛼(0) = 0 by definition. In practice, we therefore choose to 
calculate the function 𝑎𝑎(𝐸𝐸0) =   𝔼𝔼

𝑘𝑘
{𝑓𝑓∗(𝐸𝐸0) − 𝑓𝑓∗(0)}, subtract-

ing for each iteration the objective value for 𝐸𝐸0 = 0, and use this 
to construct the estimate for the value function 𝛼𝛼(𝐸𝐸). The slope 
of the resulting value function, the expected marginal value 
𝛼𝛼′(𝐸𝐸) of adding one unit of energy to the ESS, corresponds to 
the so-called water values of hydropower scheduling [32]. 

D. Energy storage operational strategies  
To evaluate the use of the value function as a control signal 

for the operation of the ESS, we carry out simulations of the 
distribution system over an extended simulation period 

spanning multiple 24-hour planning horizons. After finding the 
solution to the DOPF for one planning horizon, the value of 𝐸𝐸𝑇𝑇 
is used to initialize 𝐸𝐸0 for the next planning horizon.  We use 
historic wind speed time series covering the full simulation 
period to capture the time correlations of wind speed both 
within each planning horizon and between subsequent planning 
horizons. The effectiveness of the distribution system operation 
is evaluated by the sum of the objective function (the total cost) 
for all planning horizons that are simulated. 

This use of the energy value function in the operation of the 
ESS is evaluated with this simulation approach by comparing it 
with two more commonly used ways of considering the amount 
of energy stored at the end of the planning horizon. We define 
the following operational strategies of the ESS: 

a) Constraining the minimal amount of stored energy 𝐸𝐸T 
at the end of the planning horizon, 0 ≤ 𝐸𝐸min ≤ 𝐸𝐸max. This is the 
strategy most commonly considered in the literature, but its 
effectiveness is likely dependent on the system at hand and on 
the choice made for 𝐸𝐸min. 

b) Adding a linear value function 𝛼𝛼(𝐸𝐸𝑇𝑇) = 𝛾𝛾𝐸𝐸𝑇𝑇 to the 
objective function to promote a higher amount of stored energy 
at the end of the planning horizon. This strategy is also assumed 
by a number of works in the literature, but its effectiveness is 
likely dependent on the choice made for the marginal energy 
value 𝛾𝛾 > 0. 

c) The operational strategy described in this work: 
Adding a value function 𝛼𝛼(𝐸𝐸𝑇𝑇 , 𝑣𝑣𝑇𝑇) as given in (8) to the 
objective function that is determined by the procedure 
described in Sec. II. This strategy takes into account the actual 
expected future value of stored energy, considering the 
stochasticity and time correlations of future wind power beyond 
the current planning horizon. 

III. TEST SYSTEM 
To illustrate our model and the evaluation of the future 

value of stored energy, we consider a modified version of the 
test system presented in [5]. This is a simplified representation 
of a real distribution system on an island at the Norwegian 
coastline, shown in the single line diagram in Fig. 3. We refer 
to [5] for detailed grid data for the test system and present here 
only what are for our purposes the key characteristics. As in [5], 
the motivation for choosing this test system is that the location 
has wind conditions suitable for installing a wind power plant 
but limited grid capacity. A wind power plant with rated power 
of 10 MW is represented by a generator at bus 10. The 
difference from [5] is that we consider the possibility of 
installing an ESS in the system connected to bus 11, whereas 
the possibility investigated with a different method in [5] was 
the installation of an electrolyzer for H2 production. We make 
no specific assumption of what energy storage technology is 
being used for the case study, but to be able to illustrate storage 
dynamics and the future value of stored energy for time scales 
of the order of one day, we choose a relatively large energy 
capacity of 𝐸𝐸max = 20 MWh. The power capacity is chosen to 
be 𝑃𝑃maxESS = −𝑃𝑃minESS = 5 MW, and the charging and discharging 
efficiency is chosen to be 𝜂𝜂in = 𝜂𝜂out = 0.9. We assume for this 
case that the ESS does not provide reactive power support to 
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the grid, and hence 𝑄𝑄t
ESS = 0. However, the model can also 

include reactive power 𝑄𝑄t
ESS as a decision variable, subject to 

constraints depending on the power electronics interface of the 
ESS.  

The wind power generator has a real power output given by 
0 ≤ 𝑃𝑃𝑡𝑡wind ≤ 𝑃𝑃𝑡𝑡

wind,max, with 𝑃𝑃𝑡𝑡
wind,max being the maximal 

potential wind power generation for time step 𝑡𝑡 as given by the 
wind speed and the power curve. We are using the same power 
curve as given in [5] and the same wind speed time series, 
measured for a nearby location. For our analyses, we have only 
used data for January and February to be consistent with the 
assumption that expected values for each planning horizon are 
identical. In the solutions of the DOPF the decision variable 
𝑃𝑃𝑡𝑡wind typically takes the value 𝑃𝑃𝑡𝑡

wind,max to maximize the power 
exported to the transmission grid, but the possibility of 
curtailment is represented by solutions 𝑃𝑃𝑡𝑡wind < 𝑃𝑃𝑡𝑡

wind,max for 
time steps where grid and/or ESS constraints would have to be 
violated to export all the available wind power. The wind power 
generator has a constant power factor that is set to 0.96 lagging.  

The load buses in the test system all have an identical profile 
for electric load variations during the day, with load distribution 
and load variations as presented in [5]. To represent typical load 
conditions for January and February, the average load over a 
day is set to 0.97 MW. All load buses have a power factor set 
to 0.95 lagging. The electricity prices we use are taken from the 
Nord Pool day-ahead area prices for Monday 2016-02-01 for 
the same region of Norway as the distribution system [33], 
augmented with a variable tariff term to account for marginal 
losses in the transmission system [34]. All cost and value results 
in this paper are given as dimensionless values measured 
relative to the average electric energy cost over the period 
(168.7 EUR/MWh). In these units, the cost of rationing is 
chosen to be 𝑐𝑐rat = 1000. 

 

Fig. 3. Single line diagram of the test system, based on [5]. 

Voltage levels for all buses are restricted to lie between 0.94 
p.u. and 1.06 p.u. As in [5], this typically implies that voltage 
limits at bus 9 are violated as wind power generation is 
approaching the rated power of 10 MW, depending on the load 
level in the system. For simplicity, we assume that the voltage 
value at the PCC is restricted within the same interval as the 
other buses and that there are no restrictions on the reactive 

power exported or imported at the PCC as long as the 
restrictions in the rest of the grid are not violated.  We make no 
specific assumptions of how the voltage at the PCC is 
controlled in practice, whether it is by tap changers at the 
transformer or by the installation of separate devices for 
reactive compensation. 

IV. RESULTS 
Using the procedure described in Sec. II for the case 

described in Sec. III, the function 𝑎𝑎(𝐸𝐸0) is evaluated using six 
values of 𝐸𝐸0 for five different values of 𝑣𝑣0. In our analyses, we 
have generated 𝑘𝑘max = 50 synthetic wind time series for each 
value of 𝑣𝑣0 for determining the value function for stored energy, 
and the same time series are used across all initial values 𝐸𝐸0. In 
the calculations, the fmincon solver of the MATLAB 
Optimization Toolbox with the default interior point algorithm 
[35] is used to solve the OPF problem.  

A. The value of stored energy 
 

 
Fig. 4. Estimated future value of stored energy as a function of the amount of 
stored energy for different values of the wind speed. 

The resulting estimate for the value function after 5 
iterations is shown in Fig. 4. The data points are the calculated 
values 𝑎𝑎/𝐸𝐸max and the dashed lines show the function 𝛼𝛼� fitted 
to the data. The chosen quadratic parametrization of 𝛼𝛼 is seen 
to be a good approximation (𝑅𝑅2 ≿ 0.9999) in our test case. The 
future value of stored energy at the end of the planning horizon 
decreases for decreasing wind speed 𝑣𝑣𝑇𝑇 at the end of the 
planning horizon. This is expected as high values of 𝑣𝑣𝑇𝑇 are 
correlated with high average wind speeds in the next planning 
horizon (with correlation coefficient 0.67 in our test case). High 
wind power generation in the next planning horizon in turn 
increases the probability of wind power curtailment if the ESS 
does not have the energy capacity to accommodate the part of 
this intermittent generation that cannot be exported. We also 
observe that the value functions have a weak but negative 
curvature that increases somewhat for higher wind speed 
values. This corresponds to an expected marginal value of 
stored energy that decreases as more energy is stored in the ESS 
and can again be explained by the increasing risk of wind power 
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curtailment as the room for storing additional energy decreases. 
Fitting the chosen quadratic value function to the data yields 
values of the parameter 𝛾𝛾 (i.e. the unit value of a fully charged 
ESS) in the range 0.29 to 0.90 and values of the parameter 𝛽𝛽 
(indicating curvature) in the range 1.06 to 1.43. As the wind 
speed 𝑣𝑣𝑇𝑇 increases, 𝛾𝛾 decreases and 𝛽𝛽 increases. The values of 
the parameters converge rapidly after a few iterations. 

B.  Comparing different energy storage operation strategies 
We now evaluate the use of the energy value function 

determined above in the operation of the ESS by carrying out 
simulations as described in Sec. II.D. The wind data used are 
the same historic wind speed time series for January and 
February as were used to generate the synthetic wind time 
series. This means that the simulation period over which the 
operation of the system is evaluated consists of 59 24-hour 
planning horizons. The use of the determined value function 
(strategy c) is compared with the two other strategies described 
in Sec. II.D. 

For the first planning horizon of the simulation, we choose 
to initialize 𝐸𝐸0 = 𝐸𝐸min for strategy (a) and 𝐸𝐸0 = 0 for strategies 
(b) and (c) in order to have an unbiased comparison of the 
strategies. To this end, we furthermore ensure that the ESS is 
emptied at the end of the final planning horizon by setting γ =
0 before running the DOPF model for that final planning 
horizon for strategies (b) and (c). For strategies (b) and (c), 
𝐸𝐸min = 0.  

The results for the total cost over the simulation period are 
shown in Fig. 5. Because strategies (a) and (b) depend on the 
choice of the parameters 𝐸𝐸min/𝐸𝐸max and γ, respectively, these 
strategies are evaluated for a set of different values of these 
parameters. For strategy (c), there is no varying parameter. The 
values are negative for all strategies because the distribution 
system is a net energy exporter during the simulation period due 
to the large wind power generation. A lower value of the total 
cost implies a more effective strategy for operating the ESS. It 
is clear that taking into account the expected value of stored 
energy at the end of each planning horizon (strategy c) is better 
than the alternative strategies. This result holds irrespective of 
the choice of values for the parameters of strategies (a) and (b). 
If constraining the energy stored 𝐸𝐸𝑇𝑇 by a lower bound 𝐸𝐸min 
(strategy a), it is advantageous to choose 𝐸𝐸min ≈ 𝐸𝐸max/2, but 
even then this strategy is inferior to including a value function 
in the objective function. The effectiveness of strategy (b) is 
almost independent of what unit value γ is assigned to the stored 
energy as long as it lies in the range 0.3 ≤ γ ≤ 0.75, but 
strategy (b) becomes comparable to strategy (a) if a value of γ 
is chosen that lies outside this interval. It should be noted that 
the difference between strategies (b) and (c) is small relative to 
the total cost for each planning horizon.  

 To better understand the mechanisms behind these results, 
we also present in Fig. 6 the fraction of the potential wind power 
generation that is curtailed for the three strategies for operating 
the ESS. Generally, more wind power is curtailed if operating 
the ESS with a lower bound on 𝐸𝐸𝑇𝑇 (strategy a) than if assigning 
a value to 𝐸𝐸𝑇𝑇 (strategies b and c). However, for some values of 
the marginal energy value 𝛾𝛾, a linear value function not 
depending on wind speed (strategy b) seems to result in less 

curtailment than strategy (c). The reason why strategy (b) is 
nevertheless slightly less effective than strategy (c) also for 
these values of 𝛾𝛾 is that although the wind power generation is 
higher, this effect is offset by higher grid losses in the 
distribution system.  

 

 

Fig. 5. Comparison of different ESS operational strategies in terms of the total 
cost of the distribution system over the simulation period. 

 

Fig. 6. Comparison of different ESS operational strategies in terms of the 
fraction of potential wind power over the simulation period that is curtailed. 

V. DISCUSSION 
The main purpose of the DOPF model presented in this 

paper was to investigate the future value of stored energy in an 
ESS in a distribution system and to demonstrate in principle 
how this information can be taken into account in the operation 
of the ESS. Viewed as decision support tools for actual ESS 
operation, such models have a number of shortcomings. Firstly, 
such models are often demonstrated on test cases where a fixed 
24-hour schedule is determined once a day [8-13, 18, 21, 25, 
26, 36]. This choice of a 24-hour planning horizon is not a 
limitation to our approach, but is chosen to illustrate the benefits 
of looking beyond such a daily planning horizon. Second, it is 
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assumed that the problem is deterministic within each planning 
horizon. In our case, this implies a perfect 24-hour wind speed 
forecast, which is clearly not realistic. Although the actual wind 
speed 𝑣𝑣𝑇𝑇 at the end of the planning horizon will be correlated 
with the forecasted value, the uncertainty is substantial. One 
could therefore consider reducing the length of the planning 
horizon to a time interval over which the forecast is more 
accurate [27]. Another possible extension of such models to 
take into account stochasticity within each day would be to 
retain the 24-hour planning horizon as a rolling horizon, 
updating the schedule for the operation of the ESS e.g. each 
hour [14, 27, 37].  

The results presented in Fig. 5 demonstrated a clear benefit 
of explicitly associating an value with stored energy in the 
objective function (strategy c) compared to simply restricting 
from below the amount of energy stored at the end of the 
planning horizon (strategy a). For strategy (b), such a benefit 
compared to strategy (a) only holds if the marginal energy value 
parameter γ in the linear value function is judiciously chosen.  
However, as long as this is the case, the advantage of strategy 
(c) over strategy (b) is relatively modest, at least for the test case 
we have considered. Using a corresponding method to 
determine the value function α(𝐸𝐸𝑇𝑇) = γ𝐸𝐸𝑇𝑇 assumed in strategy 
(b) as the function α(𝐸𝐸𝑇𝑇 , 𝑣𝑣𝑇𝑇) used for strategy (c) indicates that 
the marginal value of stored energy in strategy (b) should 
optimally be set to 𝛾𝛾 ≈ 0.62. There are two differences between 
operational strategies (b) and (c) that can explain the difference 
(albeit small) between their performance: i) Strategy (b) does 
not take into account the time correlations in wind speed 
between planning horizons, and ii) strategy (b) does not capture 
the fact that the risk of wind power curtailment depends on the 
storage level. By fixing the curvature parameter β = 1 when 
determining the value functions used for strategy (c), we find 
that the difference in performance can be explained just as much 
by difference (ii) as by (i). In other words, the benefit of taking 
time correlations in wind speed into account in optimizing the 
operation of the ESS is very limited in our case.  

Fig. 6 showed that whereas strategy (c) was more effective than 
strategy (b) when measured by social welfare, measuring the 
effectiveness by the amount of wind power curtailment would 
give the opposite conclusion. This demonstrates how the 
criteria of minimizing the DG curtailment or maximizing the 
utilization of DG, which is sometimes used in the literature as a 
performance measure [7, 23, 36], is not necessarily giving the 
best operational strategy from the perspective of the distribution 
system [13]. The implication of this result is that a using the 
amount of wind power curtailment may be misleading as metric 
for the effectiveness of the ESS operational strategy. 

In this work we have for simplicity chosen a quadratic form 
of the value function. As we remarked in Sec. II.B, there is no 
reason to expect that the actual future value function is a 
quadratic function. In fact, since the nonlinear AC power flow 
equalities makes the OPF a nonlinear and non-convex 
optimization problem, there are not even reasons to expect the 
value function to be concave. However, for the results presented 
for the test case considered, the value function appears to be 
both concave and fairly well approximated by a quadratic 
function. Nevertheless, since a non-concave value function is 

possible for this type of problem, care should be taken when 
fitting a specific function to the estimated future value function. 

In our test case, the energy storage system was only 
considered for one primary application, namely improving the 
hosting capacity of intermittent DG. It is likely that energy 
storage systems in power distribution systems can reach their 
full economic potential only when the same ESS is deployed 
and used for multiple applications [1], which is an interesting 
direction for future research. Neither has the purpose of the 
paper been to consider which energy capacity is economically 
viable for this specific application. The ESS assumed in the test 
case had a large energy capacity relative to the distributed 
generation, but tests with smaller energy capacities show 
similar results although with smaller benefits of optimized 
operation. We also considered a single ESS at one specific 
location in the grid relatively close to the distributed generation. 
Optimization of the location and capacity of multiple ESSs in a 
power system is a large and interesting set of problems in its 
own right, and the capital expenditure assumed for installing a 
given ESS would have a major impact on the results. However, 
when the ESS is in fact already installed, obtaining even a small 
improvement in the performance of the operational strategy of 
the ESS would improve the economic benefit of the project at 
almost no additional cost. 

VI. CONCLUSIONS AND FURTHER WORK 
In this paper, we have presented a dynamical optimal power 

flow model for a distribution system with an energy storage 
system and a wind power plant where the expected future value 
of stored energy is explicitly taken into account. We have 
determined this future value for a realistic test case, taking into 
account both the stochasticity and time correlations of the wind 
power generation. Furthermore, we have demonstrated that 
using this information as a control signal in the operation of the 
energy storage system is an effective operational strategy 
compared to requiring that the amount of stored energy at the 
end of each planning horizon is above a certain level. We have 
also demonstrated how the criteria of minimal wind power 
curtailment does not necessarily lead to an operational strategy 
that maximises social welfare.  

However, the differences in effectiveness between different 
operational strategies were not very large for the test case we 
considered. Taking into account time correlations of the wind 
power between planning horizons when determining the value 
of stored energy offered only relatively modest improvements. 
Approximating the value function to be a linear function of 
stored energy also turned out to be a fair approximation for the 
operational strategy of the ESS.  It should be noted that the 
above findings are most likely system dependent. Therefore, it 
would be interesting to investigate whether detailed modelling 
of the value function has greater impact for other systems and 
other applications of energy storage.  

Another interesting direction for further work would be to 
augment such a DOPF model to take into account stochasticity 
and forecast uncertainty also within each (daily) planning 
horizon. The present paper has demonstrated the value of taking 
into account the uncertainty associated with next planning 
horizon when making decisions for the current planning 



horizon, but a practical decision support tool should be able to 
support decision making under uncertainty for both for the 
current and future planning horizons. 
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