SINTEF REPORT

SINTEF ™

SINTEF ICT Vocabulary for model-based user interface development
Address: P.0.Box 124, Blindern

0314 Oslo NORWAY
Location: Forskningsveien 1

0373 Oslo
Telephone: +4722067300
Fax: +47 2206 73 50

AUTHOR(S)

Enterprise No.: NO 948 007 029 MVA
Erik G. Nilsson

CLIENT(S)

The EMERGENCY project supported by the Research Council of
Norway, p.nr. 187799/S10

REPORT NO. CLASSIFICATION CLIENTS REF.
SINTEF A19533|Open
CLASS. THIS PAGE ISBN PROJECT NO. NO.OF PAGES/APPENDICES
Open 978-82-14-04982-4 |90B261) = 32
ELECTRONIC FILE CODE PROJECT MAN-?&(WJGS%/ CHE&KED B‘E’(rig%srem (
Ketil Stole (d { e, Gﬂ({ Ié?&n cfand <

FILE CODE DATE APPROVED BY/(NAME, POSITION, SI5N))

2011-05-26 Bjern Skjellaug ings

ABSTRACT f ; /J

The goal of the work presented in this report has been to define a precise, consistent and understandable
vocabulary for our work on model-based user interface development, by finding or making our own
definitions of concepts that are central in this field.

When working on the definitions, we have exploited general vocabularies for describing and categorizing
computer science, software engineering, user interfaces, as well as general and specific vocabularies used
in model-based user interface specification languages, and supplemented these with our own definitions
where needed.

We present the concepts at seven different levels spanning from general computer science independent
concepts to concepts that are specific to model-based user interface development. Definitions of concepts
are based on acknowledged definitions and/or built from the more general definitions presented earlier in
the vocabulary.

KEYWORDS ENGLISH NORWEGIAN
GROUP 1 ICT IKT
GROUP 2 HCI Menneske-maskin-interaksjon
SELECTED BY AUTHOR | YOcabulary Vokabular
Model based systems development Modell-basert utvikling
User interfaces Brukergrensesnitt

SINTEF)

TABLE OF CONTENTS

1 InErodietion emmmecsmmismmssmmrgsessanasosvivrssrosrsvsss oo sy RS VSRS UORESS 4
2 IResEARTHNIETIG. convmmsvmnsmnsomnmmsssmssnsnmnsssssns s asssmss s s o N B STREAATF 4
3 BASIC COMCEPLS ciiirrrrsvienruiressessienissiisserssisesssssssisiersassssisssssssstissssessarssssovesasensssasorssssnsssssansonrasssss 5
Tl EIBUEGE i, ik b R S R S AR R S R O oA RS 5
L e 5
3D SCIMAREIER cusuossrsvensosimmmensvemm o i o R A S P SR 5
34 PragmatiCS...cecieioiicii ettt ettt et et a et e et e bt saresanenee 6
3.5 MEEROM .ttt et a e nes 6
300 MethodOlOZY e i oo s s s s R s s s 6
L O T peeaoN 6
3.8 SPECIHTICALION 1uvviriieiiiieeiiet ittt ettt ettt s st et s e s e s e snaeeanaa e b s 6
3.9 DIOIMAIN. ¢ttt e et et h et et ene e nre et eres 7
310 DD syt o s i o0 v o0 i S o e Ve T R S S U o B e 7
I E i T —— 7
ol 2. WEOMAEI Y cvcnmmmammsrsossassmsssmss s memms s s o S o R85 B SR AT 7
3.13 Relations DEtWEEN COMCEPLSeirririiriieitieiiiteetit ettt e et e be e e eeeean 7
4 Computer SCIEIICE COMCEPLS..uiiiiiniisiiirrenisnesssnisirsssssnsisnsssnsisrsserisssrerssesssssesssnesssnsssssosessassssisns 8
4.1 BYSIEM e s e R 8
4.2 Platform and Implementation platformy.c.sssssorrmsasismmmsmommnsisresemg 8
A O PO s oo s i S e A A S 9
4.4 Systems deVElOPIMENT ..coiiiiiiiiiiiiiiirierie ettt a e s 9
4.5 Relations DEtWEEN COMCEPLS ..evvvveirrerrreerrreeieenireriscsieeesrutesseresrateesrnesssseesssesesasessneessens 9
5 Softwadre engmeering CONCEPLS vt 10
5.1 Prooratiiniii L Sl e ssmmsses s s S S R S R 10
5.2 Motlelling JamEMams cw s s oo s s sw8sTE 11
5.3 Specification langUagecoceoriiiiiierieeceeei et 11
54 TOO0L ittt ettt ettt b bbb e st e b e eas et e o rbenns 12
5:5 PrODUBIIITIIG sorsnsssmernsr i st s S s S s s e 12
5.6 Niodel-based systenms devel OpmIent s ooy mmesss smas s s s 12
Budl P OIBIE N uumsswsssmumasuenmusierssssonisosinessesns i oS B8 A P55 12
5.8 Model transformationccooceoiriiniiiei e 13
38 Relations Vet ee COTTECIINE om0 i onnrs smmn s i ms S A5 RS 13
6 Software engineering tool CONCEPLS suiiviinieaaisossssisiimnsisiresaismbiass stz 14
6.1 SBystemzdevelopment 100l semersrmmmmrmmmmsere sy R s 14
6.2 MOAEINE tOOL. . ciiiieeiiiciiieeeeree e s e s eae e ae e I5
0.3 SCIEEI PAINLET L..eeiiiiuieitiitieieit ettt ettt esa et e b saeebs e saeebb e s e s a e e e s e enenane s 15
6.4 Integrated development eNVIFONMENToocviiiirieiiiiiiiie e 15
0.3 "TransTorriation TOOl v smmm e smmmse s s o e 16
66 Codeuemeralotivmss ey omsim s TR PR 16
6.7 Relations DEtWEEN CONCEPLS ...oveiiiiiriiriiiie ittt e 16
T MOelliNg CONCEPLS uriiiiniisieiiesitissnsineesisisesssiiseesasissersasssssseesssssesssssssessstsssasssssssessssesnasas 17

7 N [T (0T <) (T T T 17

SINTEF 3

7.2 Task model.....oeevervearrannnnne. ettt be s s e R R I 17
1.3 Domain modelc e I s s ettt et aas 18
14 Relationsbelween conceplsu s T 18

8 Genéral userinterface conCepts. ... ommssissmmsmanimnmusssmsnnssanmnannnm LB
8.1 User interface and Graphical user interface...........coccoccorvvveerennne.. N TR AR 19
8.2 User INteTface tYPE .c.ovveereeceeerieieecreeir et e cversressnesrensaesresnesseennsans | 9
8:3 Userinterface stvle wusnius: T et re et e b e et e eanns 19
Ba Usermitetface medality..c.opmmmsnssmmpnmsisnmnsmas S R s 19
8.5 Multi modal user interface.........ccccoeevviveveivieeeeiiieinn, S S 19
B0 THPEL i it bamssenmsmsnsnnsns OO PP ORUPSUUPPPIROIRt S — 20
8.7 User interface componentceceveeeevveenevvernevennenn et ettt esbe et e e b e ennaas .20
5.8 Abstractuserinferface COMPONENTt qs i mumsiims s e ssmmi SRR snemasrmesrarmssaasareane 20
8.9 Concrete user interface component................. T R——

8.11 Model-based user interface developmentccoevvvveviviveeereinnnene. ceeete e Tl
8.2 Relations belweeti comepls i @i iiiGossamnesssns oo tr e e nreeabaees 21

9 Model-based user interface development CONCEPLScrmrererrenrnrirenussssasssnessorassarsosesssonses 23
0.1 INteractor.....cccvmrierrriee e T — P 23
9.2 Abstract Interactor......c.cecvveeeeieeevireeeeieeeeece e AR .
0.3 Concrete iNteractor.......cooiveeeeiveeeeveeceiee s ettt aeearaeenns crrersrernrenenes 23
94 ser interfacemnodel .o samsmpsmn o Y ererere e e e 23
9.5 Presentation model................... T ——— S s 24
9.6 Dialog model........cc.c......... TR —— B T— 24
9.7 User interface specification..........ccovvvueverevevieveeieiesieeenns A SV S 24
9.8 User interface modelling languageccooeeieeiiiioiice e .24
9.9 User interface specification language e W e, 24
9.10 Abstract user interfacecccvcevevinens A S TR Y S BV R R)
9.11 Concrete user interface ettt a e eaan s T — 25
9.12 Final user interface............... et e e n e st e s e s entraeaaaasen e et eaaaas 285
0.13 Relations betwesn coneepls wnanammnsmmss Sl nrrsnrsansasmsssnsreenss aemssaamsarens S 25

10 Conclusionsand Tuture research ..uosinsnsissassesiissmsmsiamisimissiiiaasstis s 28
Acknowledgements, ..omnmmmmpanemsnnmmsessm e
Alphabetic list of concepts in the VOCADUIALYcvvveervsernccrecrencrnsenicesnsreorasssssesnssssssenssnssssssesss 29

RETCICIICES ceecrerercarrerrnrrrrarsrrorarsasersserssssssssasssseesssessssssnassrsnsssensasssnsssssssssnsasssssasssansesessesssranssassonssnnresd 1

SINTEF 4

1 Introduction

In this report we try to define a precise, consistent and understandable vocabulary for model-
based user interface development. The goal has been to find or make our own definitions of
concepts that are central for model-based user interface development in general. It is important to
have well-functioning definitions of these concepts, to be used as a basis for our work on model-
based user interface development in the EMERGENCY project. A major challenge has been to
come up with a vocabulary that is precise and yet understandable also for readers outside the field
of model-based user interface development. In pursuing this, we look into general vocabularies
for describing and categorizing computer science, software engineering, user interfaces, as well as
general and specific vocabularies used in model-based user interface specification languages, and
supplemented these with our own definitions where needed.

We present the concepts at seven different levels of generality. These levels span from concepts
that are defined independently of the computer science field, through computer science concepts
as well as general and more specialized software engineering concepts and general user interface
concepts, ending up in concepts that are specific to model-based user interface development. Note
that not all these levels are levels in a strict sense, as e.g. modelling concepts and general user
interface concepts may be considered to be at fairly the same level.

The rest of this report consists of nine sections. In Section 2, we define the research method used
when collecting and structuring the definitions in the vocabulary. In Sections 3-9 we present the
vocabulary on the seven levels just mentioned. Finally, we give a brief conclusion and outline
how the vocabulary will be used in our future research.

2 Research method

Defining the vocabulary has consisted of three main activities, 1.e. selecting the concepts to
include, finding and/or choosing definitions that are both appropriate and sound, and structuring
the concepts.

When selecting the concepts to include, we have started from the most specific levels and
identified a set of concepts that we have used in our previous work on model-based user interface
development (Nilsson et al, 2006), and supplemented this with concepts that have emerged in our
current work in the field. Based on this set of concepts, we have identified the concepts at the
more general levels that were needed as basis for defining the concepts at the more specific levels.
A few concepts have emerged while reading through papers and vocabularies. In these cases, the
new concepts have replaced other less useful ones identified earlier.

When finding and/or choosing definitions for the concepts in the vocabulary, we have come
across a number of challenges. For the most general concepts (like language and model) it is quite
easy to find acknowledged definitions, but there exist a plethora of such definitions. For other
concepts, especially at the general software engineering and user interface levels, it is sometimes
difficult to find acknowledged definitions, and/or different definitions are diverging. For the
concepts at the most specific level, the main challenge is to find acknowledged definitions. The
main criterion for choosing among varying and/or diverging definitions has been to use the
definitions that are most useful as (basis for defining the) user interface modelling concepts. In the
cases where we have not found definitions that fit our needs, we have made our own definitions,
usually by combining definitions of the more general concepts they are built from. The main
sources for definitions are (sorted by priority of use): dictionaries, text books, journal articles,
conference papers, project deliverables, on-line vocabularies, as well as less reliable web-based
sources like Wikipedia. For a number of concepts, we have included more than one definition,

SINTEF :

possibly with a discussion of the appropriateness of the different definitions for our needs. Unless
other is noted, the last definition that is presented is the one we use.

When structuring the concepts in the vocabulary, one challenge has been to find the right level to
place the concepts. In many cases, related concepts will occur at different levels, usually as more
specialized concepts at the less general levels. E.g. language will be define at the basic level,
while modelling language will be defined at the software engineering level and user interface
modelling language will be defined at the most specific level. The main principle has been to
define the concept at the most general level providing a useful definition to use either in the core
vocabulary or as basis for defining concepts in the core vocabulary. It is of course a prerequisite
that the concepts are used fairly often at the given level. In some cases the same concept may be
used with different meanings at the different levels without being qualified (like component, type,
system, platform and tool). Such concepts are defined at the most specific level providing a useful
definition, possibly referring to a more general definition.

3 Basic concepts

This section contains definitions of concepts that are drawn from general language and/or other
disciplines than computer science.

3.1 Language
Merriam-Webster (2011) primary definition of language is:

o The words, their pronunciation, and the methods of combining them used and understood
by a community.

One of the secondary definitions is:

e A formal system of signs and symbols (as FORTRAN or a calculus in logic) including
rules for the formation and transformation of admissible expressions.

Of these two definitions, the latter is most in line with the needs of computer science and its focus
on machine execution.

The fields of semiotic (the study of signs and symbols, esp. the relations between written or
spoken signs and their referents in the physical world or the world of ideas (Collins, 2003)) and
linguistics (the scientific study of language (WordNet, 2011)) both have syntax, semantics and
pragmatics as central concepts.

3.2 Syntax
Merriam-Webster (2011) primary definition of syntax is:

e The way in which linguistic elements (as words) are put together to form constituents (as
phrases or clauses).

3.3 Semantics
The American Heritage Dictionary of the English Language (2009) defines semantics as:

e The meaning or the interpretation of a word, sentence, or other language form.

This definition fits well with the definition of syntax in the previous section.

SINTEF §

3.4 Pragmatics
One of the Merriam-Webster (2011) definitions of pragmatics is:

o A branch of semiotics that deals with the relation between signs or linguistic expressions
and their users.

Collins English Dictionary (2003) defines pragmatics as:

o The study of those aspects of language that cannot be considered in isolation from its use.

Although the first definition probably is most in line with the definitions for syntax and semantics
in the two preceding sections, we find the latter to be most useful, as it is more open and focus on
how a language is used.

3.5 Method
The American Heritage Dictionary of the English Language (2009) defines method as:

e A means or manner of procedure, especially a regular and systematic way of
accomplishing something.

WordNet (2011) adds the notion of steps in a method:

* A way of doing something, especially a systematic way; implies an orderly logical
arrangement (usually in steps).

As a basis for further definitions, we combine these two definitions into this one:

* A means or manner of procedure, especially a regular and systematic way of
accomplishing something using an orderly logical arrangement (usually in steps).

3.6 Methodology
The American Heritage Dictionary of the English Language (2009) defines methodology as:

e A body of practices, procedures, and rules used by those who work in a discipline or
engage in an inquiry; a set of working methods.

3.7 Model

In the context of philosophy/logic, the American Heritage Dictionary of the English Language
(2009) defines model as:

e A simplified representation or description of a system or complex entity, esp. one designed
to facilitate calculations and predictions.

Although this definition is from a different domain than software engineering, it is a good basis
for more specific definitions. The way model is defined above, it denotes an artefact that is the
result of doing a modelling task. Model may also be used as a verb.

3.8 Specification

One of the American Heritage Dictionary of the English Language (2009) definitions of
specification is:

SINTEF 7

e A detailed, exact statement of particulars, especially a statement prescribing materials,
dimensions, and quality of work for something to be built, installed, or manufactured.

Comparing the definitions of model and specification together, especially in a software
engineering context, it is evident that models may be used as part of a specification, and that
specifications may include parts (e.g. requirements) that are not possible or convenient to express
using models. Furthermore, models may be used in many other contexts than as a part of a
specification, e.g. to express aspects of a glossary, which is an application of models that we use
in this report.

3.9 Domain
WordNet (2011) defines domain as:

e The content of a particular field of knowledge.

A common synonym to domain, especially when used in more formal settings, is universe of
discourse.

3.10 Type
Collins English Dictionary (2003) defines type as:

e A kind, class, or category, the constituents of which share similar characteristics.

It should be noted that type is used both qualified and unqualified in a number of ways in software
engineering, like data type in a programming language and an abstraction of a class in abstract
data type sense. In our further use of type we apply it in the more general sense defined by the
Collins English Dictionary.

3.11 Transformation
In the context of linguistics, the American Heritage Dictionary of the English Language (2009)
defines fransformation as:

e A rule that systematically converts one syntactic form or form of a sentence into another.

3.12 Modality

In the context of physiology, the American Heritage Dictionary of the English Language (2009)
defines modality as:

e Any of the various types of sensation, such as vision or hearing,

3.13 Relations between concepts

In Fig. 1 through Fig. 3, we have shown how the basic concepts defined in this section relate to
each other. The models are expressed using UML class diagrams (Pilone, 2005).

SINTEF 3

Language

e

[1 | |—‘; ‘
[Syntax L Semantics ; : Pragmatics ‘
1 i

Fig. 1 - Language, syntax, semantics and pragmatics

* *
Method Methodo!ogy]

Fig. 2 - Methodology and method

[Contains b *
Specification IO - Model
L J |

Fig. 3 - Model and specification

4 Computer science concepts

In this section the concepts are drawn from computer science in general, typically concepts that
are more general than software engineering concepts.

4.1 System
Collins English Dictionary (2003) defines system as:

e A group or combination of interrelated, interdependent, or interacting elements forming a
collective entity; a methodical or coordinated assemblage of parts, facts, concepts, etc.

Even though this definition covers system as used in computer science, we apply the definition
given in the Random House Dictionary (2011) in the context of computers:

e A working combination of hardware, software, and data communications devices.

4.2 Platform and Implementation platform

Used in the context of computer science, platform is sometimes qualified as computer platform or
software engineering platform.

In this context, The American Heritage Dictionary of the English Language (2009) defines
platform as:

e The basic technology of a computer system's hardware and software that defines how a
computer is operated and determines what other kinds of software can be used.

SINTEF 9

WordNet (2011) defines platform as:

o The combination of a particular computer and a particular operating system.

Our need for the platform concept is mainly for describing targets for transformations from
abstract specifications/models all the way to implementations running on a platform. Adding our
focus on user interface development, we refine the definitions above into our own definition of an
implementation platform:

e The combination of an operating system and a windowing system.

Operating and windowing systems are usually pairs, but there are operating systems (e.g. UNIX-
based ones) where there are different windowing systems running on the same operating system.

4.3 Component
WordNet (2011) defines component as

o An artifact that is one of the individual parts of which a composite entity is made up;
especially a part that can be separated from or attached to a system.

Even though this definition covers components as used in computer science, we apply the more
precise definition given in UML (OMG, 2008):

o A modular part of a system, that encapsulates its content and whose manifestation is
replaceable within its environment. A component defines its behavior in terms of provided
and required interfaces.

4.4 Systems development
Based on the definition of system in Section 4.1, we define systems development as:

o Development of computer-based systems.

The concept is related to software engineering, but systems development may involve handling
organizational aspects and well as choices regarding the hardware aspects of the given platform,
and is thus a slightly wider concept.

4.5 Relations between concepts

In Fig. 1, we have shown how the computer science concepts defined in this section relate to each
other and to some of the basic concepts.

SINTEF 10

AR S SR —

| | Systems
Somagnent; | development |
1]
* *
* * *
S A ¢ S
[f |
* * | & * * *
Domain — System i — — Method ———————— Methodology
| |
]] NI L -
/,/] S—
bt » | T
,"/./. E T =
st S <
* _ - * T "_7_‘
/’/ | \"\‘_
Y (e i O SR S
. Contains b * ‘
Platform Specification > e Model
I N
0
[
Implementation ‘
| platform

Fig. 4 - System, platform, component and various basic concepts

5 Software engineering concepts
In this section the concepts are drawn from software engineering in general, and are thus not user
interface specific.

5.1 Programming language
The American Heritage Dictionary of the English Language (2009) defines programming
language as:

e An artificial language used to write instructions that can be translated into machine
language and then executed by a computer.

The American Heritage Dictionary of the English Language (2009) defines syntax in the context
of computer science to be:

e The rules governing the formation of statements in a programming language.

This definition is quite close to a definition applying the linguistic definition of syntax given
above on a programming language, which could be something like “the way in which the
elements of a programming language are put together to form statements in this language”.

Applying the same approach for programming language semantics gives this definition:
¢ The meaning or the interpretation of statements in a programming language.
Using this approach for programming language pragmatics would lead to a definition like “the

relation between the elements of a programming language and their users”. To make the concept a
bit more precise, we give this definition of programming language pragmatics:

SINTEF 1

e A method or other guidance on how to use a programming language.

5.2 Modelling language
Based on the definitions of language and model above, we define modelling language as:

e A language to express models.

In a similar manner, we define modelling language syntax to be:

e The way in which the elements of a modelling language are put together to form legal
models in this language.

In software engineering, it is quite common to make a distinction between abstract and concrete
syntax of a language. The abstract syntax is a definition of the element in the language and their
structure, usually expressed in a meta model. The concrete syntax is the actual textual, graphical
or other representations of constituents of the language. In the field of programming languages,
this distinction is primarily used to make a distinction between the internal representation of a
program in the compiler (abstract syntax) and the syntax used by the programmer (concrete
syntax) (The Free On-line Dictionary of Computing, 2010). In modelling languages, the
distinction may be visible for the modeller, as there may be one graphical syntax used in
diagrams, and one or more textual syntax used for representation and exchange of the models by
computers,

In the same way as modelling language syntax, we define modelling language semantics to be:
e The meaning or the interpretation of models expressed in a modelling language.
Finally, we define modelling language pragmatics to be:

e A method or other guidance on how to use a modelling language.

5.3 Specification language
Based on the definitions of language and specification above, we define specification language as:

e A language to express specifications.

Specification languages vary more than modelling languages, i.e. when making a specification, a
number of specification languages may be used, varying from natural language, through using
modelling languages to express models that are part of a specification, to formal specification
languages.

For specifications expressed using natural language or a modelling language, syntax, semantics
and pragmatics are defined above. For specifications express using other means, we define
specification language syntax to be:

¢ The way in which the elements of a specification language are put together to form legal
specifications in this language.

SINTEF 12

In the same way as specification language syntax, we define specification language semantics to
be:

e The meaning or the interpretation of specifications expressed in a specification language.
Finally, we define specification language pragmatices to be:
e A method or other guidance on how to use a specification language.

5.4 Tool
Collins English Dictionary (2003) defines foo! as:

e Anything used as a means of performing an operation or achieving an end.

Even though this definition covers tool as the concept is used in software engineering, we apply
the definition given in The American Heritage Dictionary of the English Language (2009) in the
context of computer science:

e An application program, often one that creates, manipulates, modifies, or analyzes other
programs.

5.5 Programming
WordNet (2011) defines programming in the context of computer science as:

e Creating a sequence of instructions to enable the computer to do something.

The Wikipedia (2011) article describing computer programming includes the presence of source
code.

5.6 Model-based systems development

Our traditional notion of model-based systems development seems to be more or less a Norwegian
speciality. The concepts that are mostly used for this are model-driven engineering (MDE), of
which OMG’s model-driven architecture (MDA) is an example.

ERCIM Working Group Software Evolution (2008) defines MDF as:

e A software engineering approach that promotes the use of models and transformations as
primary artifacts throughout the software development process. Its goal is to tackle the
problem of developing, maintaining and evolving complex software systems by raising the
level of abstraction from source code to models. As such, model-driven engineering
promises reuse at the domain level, increasing the overall software quality.

5.7 Property
Wiktionary (2011) defines property as:

e An attribute or abstract quality associated with an individual, object or concept.

SINTEF

L3

Although quite general, this definition fits fairly well to the software engineering field. Generally,
property is often used as synonym to attribute, but in software engineering there is a distinction in
the way that an attribute is more representational oriented (attribute of class or data base record),

while property also may be used more abstractly. Specifically in some software engineering tools,
property is used for denoting predefined attributes of components in the application programming

interface (API) of the platform or the tool.

5.8 Model transformation
Based on various definitions above, we define model transformation as:

o A rule that systematically converts a model to another model in the same or a different
modelling language

5.9 Relations between concepts

In Fig. 5 through Fig, 7, we have shown how the software engineering concepts defined in this
section relate to each other and some of the basic and computer science concepts.

Syntax Semantics Pragmatics—‘
|
\ e e,
‘ ‘

,
L/

| |

[Language
AT
£\

N

\ [—7 [
Specification Modelling | ‘ Programming
language language | language

Fig. S - Languages

SINTEF 14

[[' T
. Specification | Modelling Programming
language ‘ language language
D 1
1 1 Done in A
1 *

Y
[— e
| | Modelbased | |

i | systems Programming
S | Erpressedin A | development |

e o . s —m S —
+ Conlains p |
e i | Systems 1 *
Specification R { Model " development | System
L g L |

System

o B

[~ Transformation

transformation

Fig. 7 - Property and model transformation

6 Software engineering tool concepts
In this section the focus is on concepts describing tools used in software engineering.

6.1 Systems development tool

The term Systems development tool does not seem to be widely used. In Wikipedia (2011),
Software development tool(s) redirects to Programming tool, described as:

e A programming tool or software development tool is a program or application that
software developers use to create, debug, maintain, or otherwise support other programs
and applications. The term usually refers to relatively simple programs that can be
combined together to accomplish a task, much as one might use multiple hand tools to fix
a physical object.

The Free On-line Dictionary of Computing (2010) defines sofiware engineering environment as;

e A set of management and technical tools to support software development, usually
integrated in a coherent framework.

SINTEF 15

The Wikipedia description is too restricted for our needs. Although the Free On-line Dictionary of
Computing is more general than the Wikipedia description, it only partly covers our notion of a
systems development tool, i.e. it fits with IDE well, but not a modelling tool. We define systems
development tool to be:

* Any tool that support systems development, including modelling tools, screen painters,
integrated development environments (IDEs), as well as more restricted programming
tools.

6.2 Modelling tool
By modelling tool we mean:

o A systems development tool supporting development/description/editing of models in a
given modelling language. An example of such a tool is the parts of IBM’s Rational
Software Developer that supports drawing and documenting UML models.

6.3 Screen painter
Wikipedia (2011) describes graphical user interface builder as:

» A graphical user interface builder (or GUI builder), also known as GUI designer, is a
software development tool that simplifies the creation of GUIs by allowing the designer to
arrange widgets using a drag-and-drop WYSIWYG editor. Without a GUI builder, a GUI
must be built by manually specifying each widget's parameters in code, with no visual
feedback until the program is run.

This description includes the integration of drawing user interfaces and programming their
behavior. This is on the one hand wise, as a pure drawing tool is of little practical use other than
for paper prototyping, but on the other hand, including too much programming functionality
makes such tools quite similar to IDEs. Thus, we make a more restricted definition of screen

painter to be:

e A systems development tool supporting development of user interfaces through “painting”
them on the screen.

6.4 Integrated development environment
Wikipedia (2011) describes IDE as:

* An integrated development environment (IDE) also known as integrated design
environment or integrated debugging environment is a software application that provides
comprehensive facilities to computer programmers for software development. An IDE
normally consists of a source code editor, a compiler and/or an interpreter, build
automation tools and a debugger. Sometimes a version control system and various tools
are integrated to simplify the construction of a GUL

As can be seen by comparing this description with the description of GUI builder, an IDE focuses
more on the programming process.

SINTEF 16

6.5 Transformation tool
Based on various definitions above, we define transformation tool as:

e A tool that transforms one software engineering artefact to another software engineering
artefact, being of the same or a different type.

In a model-based software engineering setting, the artefacts are usually a combination of models
and programs. This definition also covers tools like compilers.

6.6 Code generator
Based on various definitions above, we define code generator as:

e A transformation tool that transforms a model to source code or a representation that may
be interpreted.

6.7 Relations between concepts

In Fig. 8, we have shown how the software engineering tool concepts defined in this section relate
to each other and some of the basic, computer science and software engineering concepts.

Modelbased *
systems Programming
development

Systems
development

- o I
Tool ’ ’
— f,\f — Use ¥
* ’ *
. & RPN (S

‘ | Systems ‘
| Model ¥ —————— development
EL tool %
. . Iy
TohA

; T
From& 4. —J — . - — :
. | Integrated
« | . Modelling tool Transtfg;r[nation | Screen painter | development L»
‘ ‘ environment | *

Model o
transformation

Code generator

Fig. 8 - Software engineering tools

SINTEF 17

7 Modelling concepts

In this section the focus is on concepts describing modelling in software engineering, and thus the
concepts are not user interface specific.

7.1 Meta model
ERCIM Working Group Software Evolution (2008) defines meta model as (referring to the MOF
standard):

* According to the Meta-Object Facility (MOF) standard, a metamodel is a model that
defines the language for expressing a model.

Although this definition of meta model is not used in the current version of the MOF standard
(OMG, 2006), we find the definition useful. In the current version, a meta model is defined as “a
model used to model modeling itself”. This definition is supported in the Wikipedia (2011) entry
on metamodelling in the context of software engineering, which describes metamodelling loosely,
vet in a useful way:

o Metamodeling is the construction of a collection of concepts (things, terms, etc.) within a
certain domain. A model is an abstraction of phenomena in the real world; a metamodel is
yet another abstraction, highlighting properties of the model itself. A model conforms to
its metamodel in the way that a computer program conforms to the grammar of the
programming language in which it is written.

For our further definitions, it is useful to view a meta model both as something defining a
language for expressing a model and as a model of a model, thus applying both these definitions.
Furthermore, a meta model may also denote the schema of a repository for storing models.

7.2 Task model
Allen (1997) defines a task model as:

o A task model is a description of a task as well as strategies for completing that task.

Paterno (1999) adds the aspect of using an application for completing tasks, and defines task
models as:

¢ Task models describe how activities can be performed to reach the users’ goals when
interacting with the application considered.

Task models are usually considered being a result of task analysis and/or task modelling, Paterno
connects task analysis with the requirement or analysis phase of systems development, stating that
the purpose of task analysis is to identify what the relevant tasks are, while he connects task
modelling mainly to the design phase, stating that the purpose of task modelling is to build a
model which describes precisely the relationship among the various tasks identified. These
relationships include temporal and semantic ones.

Paterno’s definition and considerations fit fairly well with our view on task models, but as we

think that task models also should cover descriptions of tasks performed without ICT support, we
use this simpler and wider definition:

e A model of tasks performed by users.

SINTEF 18

7.3 Domain model
Based on the definitions of domain and model above, we define domain model as:

e A model expressing relevant aspects of a given domain.

The term conceptual model is sometimes used as a synonym to domain model, but in our view
conceptual model is a wider term. Also, the term concept model is sometimes used as a synonym
to domain model, e.g. in the CAMELEON reference framework (Calvary et al, 2002, Calvary et
al, 2003). In this framework, “domain models™ is used as a common term for task and concept
models, a use that is consistent with our definition.

7.4 Relations between concepts

In Fig. 9, we have shown how the modelling concepts defined in this section relate to each other
and some of the basic concepts.

Meta model
}]

‘ Defines ¥

|
|
]
‘ Model '
I
A
L_‘\
|
| ;
Task model | | Domain model
| L
*
Describes¥
*
Domain

Fig. 9 - Models

8 General user interface concepts

In this section we define some basic user interface concepts. These concepts characterize
technology and context for running user interfaces, and are thus independent of how user
interfaces are developed.

SINTEF 19

8.1 User interface and Graphical user interface
The Free On-line Dictionary of Computing (2010) defines user interface as:

e The aspects of a computer system or program which can be seen (or heard or otherwise
perceived) by the human user, and the commands and mechanisms the user uses to control
its operation and input data.

WordNet (2011) defines graphical user interface as:

o A user interface based on graphics (icons and pictures and menus) instead of text; uses a
mouse as well as a keyboard as an input device.

8.2 User interface type
We define user interface type as:

o A paradigm characterizing the Jook and feel of a large set of applications and services.

Examples: Character-based Uls (also called command-line interfaces), Graphical Uls (GUI), Web
Uls (WUTI).

This definition is supported by the Wikipedia (2011) article on user interface.

8.3 User interface style
We define user interface style as:

e A way of presenting information and offering interaction mechanisms to the user
exploiting a uniform visual presentation and interaction techniques. User interface styles
are usually mixed on implementation platforms, and usually also in applications, but less
often in individual windows and dialogs.

Examples: map-based, forms-based, text-based.

The notion of user interface style is used in a similar way in the Interaction-Design.org
Encyclopedia (2011) article on interaction styles, using command entry, form fill-in, menu
selection and direct manipulation as examples, thus having styles that are a bit more general than
our.

8.4 User interface modality
Based on the definitions of modality and user interface above, we define user interface modality
as:

e Interaction mechanisms exploiting a limited set of modalities.
Examples: pen-based, speech-based, gesture-based.

8.5 Multi modal user interface
In the CAMELEON glossary (2003), multi-modal user interface is defines as:

o A user interface that supports multi-modality,

SINTEF 20

Furthermore, multi-modality (of a user interface) is defined as:

e Capacity of a system to support multi-modal interaction, i.e., the user is provided with
more than one modality (simultaneously or not) to observe the system state and/or can use
more than one modality (simultaneously or not) to communicate information to the
system.

8.6 Target
The CAMELEON reference framework (Calvary. 2002) defines a target to be:

o A “triple of the form "e, p, u" where e is an element of the environments set considered for
the interactive system, p is an element of the platforms set considered for the interactive
system, u is an element of the users set for the interactive system.

With regards to our needs, this definition covers too much. Thus, we want to restrict the definition
to aspects of the user interface and the platform on which it runs:

e An arbitrary combination of platform, type, style and modality used in a running user
interface.

8.7 User interface component

Based on the definitions of component and user interface modality above, we define user
interface component as:

e A component representing user interface functionality.

Compared to the way component is usually used in computer science, user interface components
tend to be rather “small” components, like labels, buttons and various containers. User interface
components representing more complex compositions are more seldom, and are mostly used for
standardized dialog boxes like a file open dialog. User interface components are often also
denoted widget, gadget or user interface control.

8.8 Abstract user interface component
Based on the definitions above, we define abstract user interface component as:

e A user interface component that is described independently of the target.

8.9 Concrete user interface component
Based on the definitions above, we define concrete user interface component as:

e A user interface component that is target specific.

8.10 Program-based user interface development
Based on the definitions above, we define program-based user interface development as:

e Development of the user interface part of an application using programming as a central
means.

SINTEF 21

This definition implies that such development typically utilizes integrated development
environments. It does not exclude the use of screen painters, as these usually must be
supplemented by programming, certainly to specify behaviour, but also to some extent to specify
or change the presentation.

8.11 Model-based user interface development
Based on the definitions above, we define model-based user interface development as:

o Model-based systems development focusing on development of the user interface part of
an application.

8.12 Relations between concepts

In Fig. 10 through Fig. 12, we have shown how the general user interface concepts defined in this
section relate to each other and some of the concepts defined in the previous sections.

| User interface _| User interface | Userinterface | ,
‘ style ; | type 1 modality
L

— __*__I l T | Jj *'71_

| ¢
e rs van i ‘ - |

Modality

User interface

L4

! Graphical user ‘ Multi modal us:‘Oﬁ*
inteface inteface

|

Fig. 10 - User interface, style, type and modality

SINTEF

| User interface

1 style type

Component

Al

w‘ |

‘ User interface
component |

1 |

L I

Concrete user | Abstract
interface
component |
|

1

Target

user interface
component

- _—) ‘ o
User interfacj‘ User interface
} modality

[

Fig. 11 - User interface component and target

Systems
‘ development

/3
|
| -
Modekbased
systems | Programming
development |
A \

user interface

! development

—

Modelbased ‘
[
|

S ; User interface

Fig. 12 - User interface development

Program-based
user interface

development

*
|

Platform

SINTEF 23

9 Model-based user interface development concepts
In this section we define central concepts for model-based development of user interfaces.

9.1 Interactor
In the CAMELEON glossary (2003) two definitions of interactor are given:

e An abstraction of a software component that allows users to manipulate and/or observe
domain concepts and functions.

e A computational abstraction that allows the rendering and manipulation of entities
(domain concepts and/or tasks) that require input and output resources.

The first definition is quite close to our definition of abstract user interface component above. The
second definition is wider, and in line with Tratteberg’s (2002) definition of an interactor:

e A generic mediator of information, between the system and user, in both directions, or the
generic component from which such a mediator is built.

The second CAMELEON definition as well as Trztteberg’s definition allow “larger” interactors
that are compositions of other interactors, and thus we find it more flexible. Modelling languages
following the first CAMELEON definition usually need special modelling concepts for handling
containment.

9.2 Abstractinteractor
Based on the definitions of interactor above, we define abstract interactor as:

e An interactor that is defined independently of a target.

9.3 Concrete interactor
Based on the definitions of interactor above, we define concrete interactor as:

¢ A target-specific interactor.

9.4 User interface model
Based on the definitions of user interface and model above, we define user interface model as:

e A model expressing one or more aspects of a user interface.

User interface model should be considered an abstract concept, i.e. it is a common term for a set
of models that describe different aspects of user interfaces. This means that there will never be
any “instances” of user interface models. Examples of types of user interface models are
presentation models, dialog models and user model (see CAMELEON glossary (2003), Nilsson
(2001), Szekely (1996), Tretteberg (2002) and Wikipedia (2011) for more comprehensive lists). It
should also be mentioned that the term user interface model is often also used to denote models
that do not express aspects of a user interface directly, but that rather are used as basis for making
other user interface models. Examples of such models are task models and domain models.

SINTEF o

9.5 Presentation model
Calvary et al (2003) define presentation model as:

e A presentation model specifies presentation aspects of the resulting Ul in abstract terms
and how to invoke them.

A presentation model is usually manifested as instance hierarchies of some type of building
blocks. The concepts used for these building blocks vary between modelling languages, but
usually involves some sort of abstract interactors as well as different types of abstract containers.

9.6 Dialog model
Paternd (1999) defines dialog model as:

e An abstract description of the actions, and their possible temporal relationships, that users
and systems can perform at the user interface level during an interactive session.

Such a description often contains references to different (parts of) presentation models and how
the user may navigate (in an abstract sense) between them.

9.7 User interface specification

Based on the definitions of user interface and specification above, we define user interface
specification as:

e A specification of one ore more aspects of a user interface.

Unlike user interface model, user interface specification should not be considered an abstract
concept. As with any specification in software engineering, specific user interface models may be
an important part of a user interface specification.

9.8 User interface modelling language

Based on the definitions of user interface and modelling language above, we define user interface
modelling language as:

e A language to express user interface models

Syntax, semantics and pragmatics of such a language may in the same way be defined as
specializations of the corresponding definitions in the section on software engineering concepts
above.

9.9 User interface specification language

Based on the definitions of user interface and specification language above, we define user
interface specification language as:

e A language to express user interface specifications

Syntax, semantics and pragmatics of such a language may in the same way be defined as
specializations of the corresponding definitions in the section on software engineering concepts
above,

SINTEF 25

9.10 Abstract user interface
Calvary et al (2003) define abstract user interface as:

e A canonical expression of the renderings and manipulation of the domain concepts and
functions in a way that is independent from the concrete interactors available on the
targets.

They also describe an abstract user interface to be a collection of user interface models. Szekely
(1996) use the concept abstract user interface specification quite similarly as Calvary et al use
abstract user interface. We find that omitting specification makes the concept more flexible. We
prefer to define abstract user interface as:

o A collection of user interface models describing the user interface part of an application
using abstract interactors.

9.11 Concrete user interface

Calvary et al (2003) describes a concrete user interface as being dependent on target-specific
concrete interactors. Szekely (1996) use the concept concrete user interface specification quite
similarly as Calvary et al use concrete user interface. We find that omitting specification makes
the concept more flexible. We prefer to define concrete user interface as:

e A collection of user interface models describing the user interface part of an application
using concrete interactors.

9.12 Final user interface

Calvary et al (2003) describes a final user interface as being generated from a concrete user
interface, and expressed in source code. In our view, there should not be a need for source code,
as it should be possible to interpret a final user interface. A more general definition of final user
interface is:

e The resulting user interface from using model-based user interface development, i.e. the
user interface intended for end users.

9.13 Relations between concepts

In Fig. 13 through Fig. 17, we have shown how the model-based user interface development
concepts defined in this section relate to each other and some of the concepts defined in the
previous sections.

SINTEF

,,fT

Abstract user

interface

Fig. 13 - Interactor

|
| component

Abstract Concrete
L interactor I interactor ‘
[]

Concrete user
interface
component

L
\\ /

User interface
’ component

|

\\ /

Component

Task model

Presentation
model

User interface
model

LA

Domain model

SO

I

Dialog model

Fig. 14 - User interface models

26

SINTEF

Language ‘
S
A
Modelling Specification
language language

ey _ et

£ L‘A
S,

User interface User interface W

| modelling | specification
\ language \ language
1 | 1|

*

. L

F User interface l
I model

L

I Contains p ‘

Model <> Specification

User interface
specification ‘

Fig. 15 - User interface model and specification languages

27

SINTEF

28

Target ‘ User interface
——p |
1 LA
* 1
SIS ‘ -
Final user Concrete user Abstract user
interface interface interface
[
« * & * O
* *
L o —
Modetbased | .
systems _ : | Use:r:g:grace
development |
£\
* ®
Concrete Abstract Presentation
interactor | interactor model

1

Fig. 16 — Abstract, concrete and final user interfaces

I

Abstract user |

interface ‘ &
* | Transformation ‘ * * Model
. tool | transformation
| - | _—

Concrete user
interface

*
Code generator }

Final user |
interface

Fig. 17 — Transformations

10 Conclusions and future research

In this report, we have presented a vocabulary for model-based user interface development, where
the concepts are built from more general concepts, partly being independent of computer science
and partly collected from different fields within computer science, software engineering and user
interfaces. The vocabulary defines model-based user interface development concepts in a general

way, independently of application domains.

SINTEF 2

In our work on efficient development of highly flexible user interfaces supporting emergency
response, using model-based user interface development approach is one of several possible
approaches. The vocabulary will be an important basis for assessing how well existing approaches
for model-based user interface development approaches are able to handle the special challenges
in the emergency response domain (Nilsson & Stelen, 2010), including the applicability of further
developing our prior work on model-based user interface development (Nilsson et al. 2006), as
well as assessing whether deficiencies in these approaches may be overcome using different
development approaches, like domain specific models.

Acknowledgements

The work on which this report is based is supported by the EMERGENCY project (187799/S10),
funded by the Norwegian Research Council and the following project partners: Locus AS, The
Directorate for Civil Protection and Emergency Planning, Geodata AS, Norwegian Red Cross,
and Oslo Police District.

Alphabetic list of concepts in the vocabulary

Concept Page
Abstract interactor 23
Abstract user interface 25
Abstract user interface component 20
Code generator 16
Component 9
Concrete interactor 23
Concrete user interface 25
Concrete user interface component 20
Dialog model 24
Domain 7
Domain model 18
Final user interface 25
Integrated development environment 15
Interactor 23
Language 5
Meta model 17
Method 6
Methodology 6
Modality 7
Model 6
Model transformation 13
Model-based systems development 12
Model-based user interface development 21
Modelling language iy
Modelling tool 15
Multi modal user interface 19

SINTEF

Concept Page
Platform and Implementation platform 8
Pragmatics 6
Presentation model 24
Program-based user interface development 20
Programming 12
Programming language 10
Property 12
Screen painter 15
Semantics 5
Specification 6
Specification language 11
Syntax 5
System 8
Systems development 9
Systems development tool 14
Target 20
Task model 17
Tool 12
Transformation 7
Transformation tool 16
Type 7
User interface and Graphical user interface 19
User interface component 20
User interface modality 19
User interface model 23
User interface modelling language 24
User interface specification 24
User interface specification language 24
User interface style 19
User interface type 19

30

SINTEF 31

References

Allen, Robert B. (1997): Mental Models and User Models; In Helander et al (ed.): Handbook of
Human-Computer Interaction, second edition, North-Holland, 1997, p. 49-63

The American Heritage Dictionary of the English Language; Fourth Edition; 2009. Houghton
Miftlin Company. Accessed through http://www.thefreedictionary.com/ (accessed February 18,
2011)

Calvary, G., Coutaz, J., Bouillon, L., Florins, M., Limbourg, Q., Marucci, L., Paterno, F., Santoro,
C., Souchon, N., Thevenin, D., Vanderdonckt, J. (2002): The CAMELEON Reference Framework;
Deliverable 1.1, CAMELEON Project; Available at:

http://giove.isti.cnr.it/projects/cameleon/pdf/ CAMELEON%20D 1.1 RefFramework.pdf (accessed
Feb. 9, 2011)

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J. (2003). 4
Unifying Reference Framework for Multi-Target User Interfaces, Interacting with Computer 15,3
(2003) 289-308

Collins English Dictionary, Complete and Unabridged; HarperCollins Publishers. 2003. Accessed
through http://www.thefreedictionary.com/ (accessed February 18, 2011)

CAMELEON glossary (2003); Deliverable 1.1 Companion, CAMELEON Project; Available at:
http://giove.isti.cnr.it/projects/cameleon/glossary.html (accessed March 4, 2011)

ERCIM Working Group Software Evolution (2008): Terminology; Available at
http://wiki.ercim.eu/wg/SoftwareEvolution/index.php/Terminology (accessed Feb. 18, 2011)

The Free On-line Dictionary of Computing (2010); Available at http://foldoc.org/ (accessed Feb.
18,2011)

Interaction-Design.org Encyclopedia (2011); Available at http://www.interaction-
design.org/encyclopedia/ (accessed Feb. 18, 2011)

Merriam-Webster Dictionary (2011); Available at http://www.merriam-webster.com/ (accessed
February 18, 2011)

Nilsson, E. G. (2001): Modelling user interfaces — challenges, requirements and solutions;
Proceedings of Yggdrasil 2001 — Norwegian Computer Society’s annual conference on user
interface design and user documentation.

Nilsson, E. G., Floch, J., Hallsteinsen, S. & Stav, E. (2006): Model-based User Interface
Adaptation, Elsevier Computers & Graphics, 30 (5) 2006, p. 692-701

Nilsson, E.G. and Stelen, K. (2010): Ad Hoc Networks and Mobile Devices in Emergency
Response — a Perfect Match? Proceedings of Second International Conference on Ad Hoe
Networks, Victoria, British Columbia, Canada

OMG (2006): MOF Core specification; Available at http://www.omg.org/spec/MOF/2.0/
(accessed February 18, 2011)

SINTEF -

OMG (2008): OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2; Available
at http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/ (accessed February 18, 2011)

Oviatt, S. (2002): Multimodal interfaces, In Jacko, J. & Sears, A. (Eds.) The Human-Computer
Interaction Handbook. Lawrence Erlbaum, 2002, p. 286-304

Paterno, F. (1999): Model-based Design and Evaluation of Interactive Applications, Springer,
1999

Pilone, D. (2005): UML 2.0 in a Nutshell; O’Reilly, 2005

Random House Dictionary; Random House, 2011; Accessed at http://dictionary.reference.com/
(accessed February 18, 2011)

Szekely, P. (1996): Retrospective and Challenges for Model-Based Interface Development; In
Computer-Aided Design of User Interfaces — Proceedings of CADUI ‘96

Treetteberg, H. (2002): Model-based User Interface Design; PhD thesis, NTNU; ISBN 82-471-
5459-5

Wikipedia, The Free Encyclopedia (2011); Available at http://en.wikipedia.org/wiki/Main_Page
(accessed February 18, 2011)

Wiktionary, the free dictionary (2011),; Available at
http://en.wiktionary.org/wiki/Wiktionary:Main_Page (accessed Feb. 18, 2011)

WordNet, a Lexical Database for English (2011); Available at http://wordnet.princeton.edu/
(accessed February 18, 2011)

