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A METHOD FOR INTEGRATION OF
UNSTABLE SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATION SUBJECT TO TWO-POINT
BOUNDARY CONDITIONS

J. C. FALKENBERG

R

Abstract.

Instability problems in systems of differential cquations are discussed. A matrix
technique is given for producing numerical solutions to a system of ordinary differ-
ential equations with boundary conditions specified at each end of the interval
when the system contains dominant solutions which give rise to numerical insta-
bility in conventional integration methods. A method of “bringing up the initial
conditions” is described, whereby the two-point nature of the problem is made
use of to stabilize the system. Three numerical examples are included.

Introduction. )
We are considering a system of N linear equations of the form
d
=T() = A@)F(@)+B@) (1.1)

subject to the boundary conditions
JoF(zy) = Oy
JoF () = C,

where: I is a vector (N) of the dependent variables
A is an (N x N) matrix, assumed real and nonsingular
B an (N) vector
Jy an ((N—2M)x N) matrix and J, an (M x N) matrix
C, and (N — M) vector and €, an (M) vector

The indices 0 and and % refer to the beginning and end points
of the considered interval, see Fig. 1. .

The above type of equations frequently turns up in the stress analysis
of elastic bodies where the partial differential equations in two or three
variables can be reduced by various methods, (e.g. Fourier Analysis),
to a set of ordinary differential equations of the above type, [3].
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The A-matrix will then be a funetion of the geometry and material
characteristics of the structure, while the vector B will be a function
of the imposed loads. The function vector I' contains the displacements
and their derivatives.

The boundary value problem in ordinary differential equations has
been treated by a number of writers. The monograph by Fox [5] gives
a detailed treatment of the subject based upon finite-difference tech-
niques. Schemes suggested by other writers are mostly based on the idea
of determining the missing initial values, by direct or iterative methods,
so that the conditions specified at the far end of the interval will be
satisfied, whereafter the problem becomes one of the initial type, i.e.
a problem of direct integration. This technique will not always work,
even if all the initial values are known exactly, as is demonstrated in
the second example of seec. 4.

A paper by Midgley [6] is devoted to this particular aspect of the
initial-value problem with dominant solutions, a method heing given
for the caleculation of the subdominant complementary functions.

An important paper by Conte [10] presents a modification of a method
proposed by Godunov [11]. The basic idea consists in orthonormalizing
the complementary function vectors (7' in eq. 2.5) at intermediate points
in the interval, before the linear dependence of these vectors has become
too pronounced.

The method presented in sec. 2 of the present paper is somewhat
related to the Godunov-Conte method, but arrived at independently
and from a different basis [3].

An interesting embedding technique is presented by Bellman et al. [9].
Here the unstable boundary value problem is transformed into a non-
linear but stable initial-value problem by introducing the interval length
s as a new independent variable.

Extensions of methods to nonlinear problems have been proposed
[7, 8] in the form of iterations upon a linear system. It will be appreciated
that methods for linear systems that are sufficiently general and robust
with regard to numerical instability can be made good use of in this
field of applied analysis.

In the present paper, it is assumed that the elements of A are section-
ally continuous in the interval (a,b) but not necessarily expressible
analytically. This will be so when the equations are established in the
form s

OF' = A1F+Bl

where C' can be inverted only numerically to yield the system (1.1).
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A formal solution for the interval (0,2) can be established in the form
(see [1, 2, 4])

Fla) = kin(a:)Fﬂ +k§1Lk(m) = G(x)Fy+ L(z) (1.3)

where Fy = F(x;) and

L]

Go(@) = I, Gpnf@) = \ A@w)Gylu)du

[=L I

Ly(x) = S Blu)du, Ly.(@) = S AL (w)du .
0 0

The transfer matrix G(a) is termed the matrizant. For A =const. it
reduces to the matrix exponential

G(x) = I+ Axf11+ (A2l + ... = et= (1.4)

The series can be shown always to be convergent [1], although the con-
vergence may be so slow that the direct evaluation by (1.4) may be
practically impossible, an aspect which we shall consider in section 3.
In the important case when 4 and B are constant, (1.3) can be written
as
F, = ed5F ,+ A-Y(e4*—I)B (1.5)
where s=b—a.
Inversion of 4 can be avoided by expanding the last term of (1.5) as

L = (sI|/1+s*4/2!+...)B (1.6)

In general, we want to determine the function vectors, ¥, F,,...F, at
a number of points in the interval, as indicated in Fig. 1.

Joly = Oy "= AF+B J I, =C,
x=a = eb
| 1 1 |
) T : D) R
I (3 I
s J
5 1
Fig. 1

A formally correct way of doing this would be first, by some suitable
method, to integrate (1.1), so that we get the G and L matrices for the

entire interval
F,=GF,+L (1.7)
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and then use the boundary conditions (1.2) to determine the startpoint
vector F, by solving the system

[l 7= [e7] -

Having found F, we have transformed the problem to an initial-value
problem and we can apply our integration technique to determine F
at as many intermediate points in the interval as we wish, using the
known vector F; to determine the next vector F,.

In the following we shall consider two special problems which may
arise when we try to produce numerical solutions to the system (1.1)
and (1.2). Firstly, there is the problem of numerical instability, i.e. the
roundoff errors during the integration propagate to an extent which
makes the results unacceptable. To this effect may be added the effects
of the system(1.8) being ill-conditioned, yielding inaccurate values for
the initial vector F;, which makes the situation even worse.

Secondly we shall briefly deal with the problem of computing the trans-
fer matrices G and L as defined by (1.3) when the series (1.4) and (1.6)
are too slowly convergent to be of practical use.

The key to an understanding of both problems is the eigenvalue spee-
trum of 4, which can be represented as on Fig. 2. As we shall see, the
problem of convergence of the series (1.4) (or of integration methods
based upon a Taylor-type expansion, like Runge-Kutta methods) arise
when the spectrum has a large upper bound |4|,,,., While instability and
ill-conditioning is chiefly a consequence of a large spectral width u,
measured along the real axis, both causes being amplified by the total
length s of the interval over which the equations are to be integrated.

L 791 (2)

> ie(d)

i

Fig. 2. The eigenvalue spectrum of 4.
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In order to see how the problems of instability and ill-conditioning
arise, let us for the sake of simplicity assume that 4 is constant and
write A in terms of its eigenvalues and eigenvectors:

A =¥AY" (1.9)

where 1 is the augmented (N x N) matrix of eigenvectors (y;), assumed
non-singular, and / is the diagonal matrix of eigenvalues 4;. Considering
only the homogeneous part of (1.1) we see that integration over the
interval s yields

F, = @GFy= Yo "Y-\F, = YDY2¥, (1.10)
The eigenvalues, d, of & have the form

d = ¢* = ¢**(cosfs+1 sinfs) (1.11)
where A=« +1iff.
In the complex plane, for varying s, the loci of d will be spirals as
shown on Fig. 3.

(1m(d)

/‘ d(s)
<\1 re(d)
S

Fig. 3. Growth of the cigenvalues of 7,

The ratio between the largest and the smallest modulus in the eigen-
value spectrum of & can be represented logarithmically by

7 = 10810 ("max/Tmin) = #-8-10g e = 0.4343p-s (1.12)

7 can be used as an indicator of the instability of (1.1) as well as a measure
of the degree of singularity of G. As 5 approaches the number of decimal
digits with which the machine works, the smallest pair of eigenvalues of ¢
will for practical purposes approach zero, rendering & singular, its nullity
depending upon the number of vanishing eigenvalues. As s goes on increas-
ing, the largest pair of eigenvalues will become increasingly dominant,
and we may in fact reach a stage where @, as represented in the machine,
has the rank 2.

Clearly, it is possible before this extreme stage is reached, that the
system (1.8) becomes so ill-conditioned that an acceptable solution is
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unattainable. This will to some extent depend upon the form of J,
and J,.

On the other hand, from (1.10) it would seem that the largest relative
error in any element of F'; depends rather upon the width x of the spec-
trum and the interval s;=x;—a, if we assume that the smallest element
of F' grows exponentically with «,;,-s while the absolute error due to
roundoff grows exponentically with «,,.'s. We may therefore adopt
the quantity ,=0.4343u-s; as an indicator of the sensitivity of the
system to roundoff errors.

Clearly then, for a sufficiently large interval s, the propagating effects
of roundoff errors can become of the order of magnitude of the elements
of I' themselves, with disastrous results.

In practice, for an 8th-order system (1.1), say, it probably suffices for
7 to have a value of 3 or 4 to give rise to a degree of illconditioning which
renders the system (1.8) too sensitive to roundoff errors to allow the
sequence of vectors F; to be computed with sufficient accuracy. We
may find that having determined a wvalue of the starting vector I,
and integrated this up to the end point, the boundary conditions (1.2b)
at the end point will not be satisfied with acceptable accuracy.

In what follows, we shall present a procedure whereby the total inter-
val s is split into a few sub-intervals of length %, and an inversion is
performed after each sub-interval has been integrated, whereby at
each stage, ¢, I'; is expressed by M linear combinations of its own ele-
ments.

2. Stepwise inversion and the “bringing up” of initial conditions.
From the vector F we form two subvectors I and F of order M and

N — M, respectively, by premultiplying F by the operators @ and @

F

F

(2.1)

Ty hy
Il
[

where @ is an (M x N) matrix and @ is an ((¥N — M) x N) matrix, to be
chosen (see below).
Then - -

s g] i E’T] = B ] [i] (2.2)

(05 -wel

F = RF+RF
The boundary conditions (1.2a) give
Jy(RFy+RE,) = C,
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whence L
Fy = (JoB) " Co—JBF,)
(2.2) gives _ -
Fo = EF0+E(JDB)—1{GO_JDRFO)

which can be arranged thus
Fy = Ko+ 7, (2.3)

where K is an (N x M) matrix and ¥ is an () vector.

We have now succeeded in expressing, at the starting point, the full
vector Fy by M linear combinations, Iy, of F;. Below we shall show
how we, after integrating (1.1) over a step, can obtain an identical
representation to (2.3) at any point 2.

Let us assume that we possess a suitable integration method for the
numerical evaluation of the matrix G and the vector L in (1.3). Integrating
over the step (0,%), we then obtain by (1.3)

F, = GF,+L (2.4)
using (2.3) we get _
Fy = QEFo+Vo)+L = TF+U (2.5)
where 7' is an (N x M) matrix and U is an (V) vector.
Using (2.1) _ y
F.=QTF,+QU = TF,+U
yielding

F, = T-YF,-T) (2.6)
By (2.5) we can now express I, in terms of I,

7, = TT-YF,~ )+ U
or _
F, = K,F,+V, (2.7)

The form of (2.7) is identical to the form of (2.3) at the starting point,
and we can therefore say that we have “brought up” the initial condi-
tions. The form (2.3) or (2.7) is referred to as the “point form™.

We proceed, as above, step by step, until we reach the end-point of
the interval where we have

Fn = KTIF—IL+ V‘u © (2.8)
and by using the boundary conditions (1.2b) we find
jﬁn = (Ju'Kn)di(G-n_JnVﬂ) (2.9)

whence ¥, is found by (2.8).
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Having determined the function vector F at the end point », we can
now compute the succession of vectors F,_;,F, ... F, by making use
of the recurrence relation

Fiy=EK TYF—-U)+V;,
F'.'—l = Hi— F1+ Wi—l (2.10)

which can be established on the basis of (2.6) and (2.3).

The (N x M) matrices H and the (N) vectors W can readily be formed
during the forward integration and stored.

By the above method the tendency of the roundoff errors to grow
exponentially over the length of integration is checked, at intermediate
stages, by the transformation to the “point form” (2.7), of the integrated
equation (2.4). A rigorous analysis of the numerical mechanism involved,
with estimates for errors ete., is outside the scope of this paper.

A word may be said about the choice of @ and @. Clearly, in order for
F, to be uniquely determined in terms of ', and C as well as in terms of
F, and Iy the matrices

or

['3] and [g] must be nonsingular .
In problems of elasticity, where N always is an even number (N=
4,6,8...) and M =N/2, it is always possible to specify @ and @ so that
the above conditions are fulfilled for any set of physically admittable
boundary conditions. By letting ' and F' consist of combinations of
the form f;=wu,+o; and f;=w;—o; where  is a displacement and o the
corresponding stress, this is achieved.

3. The evaluation of the transfer matrices G and L when the eigenvalues
of A are large. -
In general, the elements of 4 and B vary with x, and we must therefore

resort to numerical approximation methods for the calculation of &

and L. We shall briefly indicate a method of integration which is easily
coded and which is particularly efficient when the eigenvalues of 4 are

of an order of magnitude such as to make the series evaluation (1.4),

the convergence of which can be estimated by (1.10), practically im-

possible for a feasible step length % which otherwise would be small

enough to take proper care of the variable nature of the coefficients of
the equation.

From (1.10) it follows that the number of terms of the expansion (1.4)
that would be required to obtain a certain accuracy depends on the
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product -4, .. If we now consider a fourth-order Runge-Kutta method,
which in the case 4 =const. simply is a Taylor expansion truncated after
the fifth term it is easy to demonstrate that for five figure accuracy

I 2. £ 0.35 approximately (3.1)

max =

In practice, therefore, depending upon the largest eigenvalues of 4, it
may not be possible to employ a Runge-Kutta method without reducing
the step-size & far below what is practical.

The matrizant evaluation (1.3) is generally not suited for numerical
computation. Pipes [12] suggests a perturbation method whereby @ is
computed, for the interval (0,4) as

G = edh(145) (a)
where
8 =0,+0:+... (b)
1 h
4= —S A(u)du
ho

T
o,(z) = S e--'-‘-"a(u)e“_“du

dpie(2) = \ e=Aa(u)d,(w)du

Oty

a(u) = A(u)—4

stating that if the perturbation matrix a(x) is small in the interval, d
can be computed taking only one or two terms. However, the conver-
gence of the series (b) depends on the eigenvalues of 4 as well, and
although § in itself may be quite small, the series (b) may be illbehaved
and converge slowly when 4 has large eigenvalues. While the form (a)
is a very desirable hasis for numerical computation, a practical way
of computing 4, for the types of equations studied in the present paper,
is still lacking and we make the approximation §=0.
We then take for the interval &

= (4;+4;4)/2

= (B;+ B;4)/2 .

4
B

or, eventually, evaluate 4 and B at an intermediate point and use
Simpson's rule.
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We then evaluate G and L according to (1.5) and in evaluating the
matrix exponential make use of the relation

edh — (e.Tuuk)k (3.3)
where
J: = om
We compute (3.3) as
(. : .((EZILHc)‘.!)S! - .)2 (3'4)

By suitable choice of m, say m=06, we can evaluate the innermost
paranthesis with a few terms in the expansion (1.4), then square this
matrix, then square the result again and so on, m times. L can then be
evaluated as indiecated by (1.5), whereby an inversion of A has to be
performed.

4, Numerical examples.
4.1. Ezxample 1.
Consider the equation

reee rrr

¥ =4y 6y — 4y 5y = 1 (4.1)

gy =y =0,z=0

4.2
?l“ i yfff - 0’ T =8 ( )
The equivalent 1st order system is
Yy 1 Yy
i y‘ — 1 5 y’ £
dx |y" e w L) BZ1"
' —54 —6 4] |y 1
or
F'=AF+B (4.3)
and the boundary conditions
| 0
Ir. 1. ] Flo) = [0] or JoFy = Cy
.. 1.7 F(s) = [0 (4.4)
[_ . ]] I:O:| JT!FTI = C,

The eigenvalues of 4 are

11'2 = ii, )13’4 = 2_‘[’_'?:
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hence
po=2

The system (4.3) and (4.4) has been solved numerically by stepwise
inversion as well as by the ‘“‘classical’” method described in section 1,
involving inversion over the whole interval s.

The linear combinations F are simply

F:Eqmme=L:?ﬂmmg=Fi:j (4.5)

Complete solutions have been produced for different ranges of the vari-
able z, thus §=2.0,4.0...18.0.

For s=2.0 the results of the two methods correspond to 5 decimal
places, for s=4.0 to 3 places.

For s=6.0 we have =5.2, while for §=8.0 we get #=6.9, and the
situation is clearly critical.

The results for the two latter interval lengths are given in table 4.1,
illustrating the instability of the system in the critical range of s. For
the method of stepwise inversion the total execution time including print-
out was 1.15 sec. on a UNIVAC 1107.

The fact that 4 is constant was not made use of in writing the pro-
gramme; in fact, no special time-saving features were incorporated.
Execution time could probably be halved by paying more attention to
such details.

4.2, Example 2.
The equations

rr

" = a(lv—u), u{o) = v'(0) = 0 (4.6)
w"' = flu—v), w'(s) =0, ¥'(s) =c¢
have the analytical solution
w = ¢[fy[r®+ px[r®— Py cosh (ra)frd+ 2 sinh (ra)[ar’]
v = c[fy[r3+ px[r*+ ay cosh (rz)[r3— B sinh (rz)[r*]
where
r=J)a+p
y = (B[« cosh(rs)+ 1)/sinh(rs) " (4.7)

In order to isolate the effect of roundoff errors we can compare the solu-
tion obtained by numerical integration from the exact initial values
with the analytical solution. For a=f#=0.25 and §=10.0 the solutions
correspond to 5 decimal places. For a=f=2.5 and s=10.0 the errors
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are of the order of the elements themselves towards the end of the
interval, as can be seen by table 4.2. The method of stepwise inversion,
however, is completely stable for both sets of parameters. 10 steps were

used, @ being taken as
- i A
a-[ 1]

and ¢=10-%,

4.3. Example 3.

The stress-displacement analysis of elastic shells in the form of a sur-
face of revolution subjected to a load which can be expressed as a Fourier
series around the circumference, leads to an Sth order system where the
function vector {¥;¥,... Yy} contains the displacements %, v and w
and certain of their derivatives. Internal stresses in the shell are found
by premultiplying ¥ by a “stiffness matrix” H. However, this need
not concern us here, and we only consider the differential equation.
The A and B matrices have been printed out (see table 4.3) at two adja-
cent stations in the middle of the interval. As can be seen, there is some
variation in 4. B happens to be constant, as we have considered a radial
load with constant amplitude over the height of the shell, which is of
the form of a hyperboloid fixed at the base and free at the top, where it
is loaded with an additional load in the s-direction of 100-cosf.

20 subdivisions were used. The results at every second point are given
in table 4.3. The G and L matrices were computed as deseribed in sec-
tion 3 and 12 terms were used in the expansion, (1.4), and m (eq. 3.3)
was 6.

The accuracy of the solution can be estimated by checking the over-all
equilibrium of the shell, i.e. comparing the total external load in various
directions, overturning moments, ete. with the reactions at the base.
Such a check gives an accuracy of about 19, part of which is due to
other causes than the solution of the differential equations, and which
at any rate is adequate for engineering purposes. More steps would im-
prove the accuracy.

5. Computation scheme.

Below is given an outline of a computation scheme, based on the
author’'s FORTRAN program, for the deseribed method.

Input of parameters for problem
form @ and Q
form J; and C,
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transform J Fy=C, to Fo=K,Fo+V, (2.1-3)
z=a
de=(b—a)/n (n=number of intervals in (a.b))
form 4; and B, (at x=a)
DO1:i=1n
r=x+dx
form 4, and B, (at x=a;)
form A =(4;+4,)/2 and B=(B,+ B,)/2
Integrate to form (f and L (method of sec. 3, Runge-Kufta, or other)
form T'=GK; ; and U=GV,_+L (2.5)
compute (QT)1=T-1 (2.6)
form K,=TT-1and V,=U-K,U (2.7)
form H; =K, ,T-! and W, ,=V;,—K, ,T-1U (2.10)
store H; , and W,_;
copy 4, and B, into A, and B,
1 CONTINUE
form J, and C,
solve for F,=(J,K,)XC,—J,V,) (2.9)
compute F,=K,F,+ 7V,
print (store) F,
DO2i=n,1, —1
compute F,_,=H, . F,+W,, (2.10)
print (store) I';_;
2 CONTINUE
STOP
END
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6. Tables.

Stepwise inversion

& = 6.00

pt. no.

0

He 23 10

C=I - S B

¥
.00000000
.03493289
12752949
24545095
34753194
39817975
37976027
.20828883
17928293
05280673
—.067587565

Inversion for whole interval

s = 6.00

pt. no.

0

—

T oA WL

S D w1 s

[

U
.00000000
03493289
12752949
24545100
34753225
39818095
37976328
.20820212
7926774
.05268701

—.06807613

Table +.1a.

’

4
.00000000
11292824
18641248
190480174
.13521637
02853871
.08815765
17590268
21176738
20575656
19833209

’

Y
.00000000
11292824
18641249
19480193
13521718
02854007
.08815426
17590001
.21183942
200608164
.19931944

g

¥
19999583
.16506865
.07249118
—.045356006
—.14724220
—.1976416G0
—.18000939
—.10559110
—.01656034
.02338871
.00000000

e

b
.19990883
16506866
07249130
—.0453565651
—. 14724055
—.197038567
—.18001095
—.10503295
—.01677253

.02268704
—.00150644

rer

¥
.00000017
—.11291641
—.18635079
—. 19459621
—.13477349
—.02838208
08412815
.15208700
12566026
—.00362583
.00000000

e

Y
.00000017
—.112910635
—.18635044
—.10459504
—. 13477000
—.02838120
08410498
A5195128
125617175
—.00480711
—.00108808

99
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Stepwise inversion

s = 8.00
pt. no. v ¥ ¥ ¥’
0 .00000000 .00000000 .10099820  —.00000323
1 .06066208 .14346862 13033628 —.14347140
2 .20584388 10090771 —.00584514  —.19990969
3 .34748023 13508270  —.14747971  —.13508032
4 .30065792  —.01168118  —.19964797 .01170085
5 .33073331  —.15134865 —.13060588 .15138515
6 18252884 —.19920325 01746822 .19802004
7 .04488037  —.12649821 .15416027 .12365916
8 .00051459 02081438 .19200856  —.03374180
9 .07257974 .14750353 10553210  —.16713786
10 .21024068 18157208 .00000000 .00000000

Inversion for whole interval

a = 8.00
pt. no. ¥ v ¥’ ¥
0 .00000000 .00000000 .10999820  —.00000323
1 .06066208 14346861 .13933632 —,14847133
) .20584390 10990782 —.00584471  —,19990864
3 .34748062 13508875  —.1474775¢  —.13507682
4 .30066018 —.01167723  —.10964348 .01169896
5 .33073905 —.15134723  —.13071904 .15128526
6 18251278  —.19920081 .01719804 .19828021
7 04462775 —.12713802 .15286401 .12167343
8 —.00083536 01854766 .10059150  —.03167602
9 .06946055 14755680 12134158 —.10416654
10 .22184108 .23755038 .16595310 .38392383

Table 4.1b.
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& =250 B =250 s=100
Analytical solution

pt. no. u v u’ v’
0 —0.00000 4.47214—04 1.00000—03 —0.00000
1 6.90708—04 7.47505—04 5.563439—04 4.46561 —04
2 1.22105-03 1.22616—03 5.06711—-04 4.04280 —04
3 1.72333—-03 1.72388—03 5.00010—04 4.99390—04
4 2.22358—03 2.22363—03 5.00060—04 4.99940—04
5 2.72360—-03 2.72361—-03 499093 — 04 5.00007 —04
6 3.22358—-03 3.22364—03 4.90035—04 6.00065 — 04
7 3.72333—-03 3.72388—-03 4.99390-—04 5.00610—-04
8 4.22106—-03 4.22616—03 4,04280 —04 5.05711 —04
9 4.69071—-03 4.74751—03 4.465661 —04 5.53439—04
10 5.00000—03 544721 —-03 —0.00000 1.00000—03

Stepwise inversion

pt. no. u v u’ v’

0 0.00000 4.47214—-04 1.00000—03 0.00000
1 6.99708—04  7.47505—04 5.53430—04 4.46501—04
2 1.22106—-03  1.22616—03 5.06712—04 4,04280—04
3 1.72333—-03  1.72388—03 5.00610—04 4.09390—-04
4 2.22358—-03  2.223064—03 5.00005—04 4.90036 —04
b 2,72360—03  2.72361—03 5.00000—04 5.00000—04
6 3.22358—-03  3.223064—03 4,99935—04 5.00065 — 04
7 3.72333—-03  3.72388-03 4,00300—04 5.00610— 04
8 4.22106—03  4.22616—03 4.04289 — 04 65.06711—04
9 4,60071 —-03  4.74751—-03 4.46501 — 04 5.53439—-04

10 5.00000—-03  5.44721—-03 —1.73472—-18 1.00000—03

Integration from exact initial values

. ’

pt. no. u v u v
0 —0.00000 4.47214—-04 1.00000—-03 —0.00000
| 6.99708—04 7.47505—04 5.53439—04 4.465061 —04
2 1.22105—03  1.22616—03 5.05711—-04 4.94289—04
3 1.72333—-03 1.72388—-03 5.00600—04 4.09301 —04
4 2.223567—03  2.22364-—-03 5.00053 — 04 4.90947—04
5 2.723566—03  2.72366—03 4.99801 —04 5.00109—04
6 3.22312—-03  3.22409-03 4.98018—04 5.01082—-04
: | 3.71008—03  3.72814-—03 4.80871—-04 5.101290—04
8 4.18122—03  4.26599—03 4.05227—04 5.94773—04
9 4,32704—03 5.12017—03 —3.86744—04 1.38674—03
10 1.51317—03  8.93404—03 —7.79679—-03 8.70679—03

Table 4.2,
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Btress anulysis of hyperboloid with radinl lond = 1-cos(theta)

J0 and C0 matrices

1.000 400 0.000 0.000
0.000 1.000 + 00 0.000
0.000 0.000 1.000+- 00
0.000 0.000 0.000
A and B matrices at & = 41,81
—0.000 —0.000 —0.000
—0.000 —0.000 —0.000
—0.000 —0.000 —0.000
3.062—03 1.250—=03 3.281—-03
1,998 — 04 6.235—04 2.810—04
—0.000 —0.000 —0.000
0.000 0.000 2.654 —05
3.417402 8.834 401 3.269 402
4 and B matrices at @ = 52.07
—0.000 = 0.000 —0.000
—0.000 —0.000 - 0.000
—0.000 —0.000 —0.000
4.441—03 1.313-03 +.005—-03
5.252 =04 7.225— 04 2,796 = 04
—0.000 —0.000 —0.000
0.000 0.000 3.073-05
4,172 402 0.3284-01 4.0254-02
Jp and €, matrices
7.1064+02 —4£.836G+ 08 0.000
2418408 ~—3.5584-02 7778402
0.000 0.000 —.354—02
0,000 0.000 —0.408—02
Numerical golution
& Uy s
102.38 7.099—-02 —2.238—02
02,31 6.480—-02 —2.340—-02
82,30 5.144—02 —2,984—02
72.29 4.010—-02 —=2.209-02
62.23 3.074—02 —=2.096—02
52.07 2.300-02 —1.807—02
41.81 1.683—-02 —1.468—02
31.40 1.163—02 ~—1.107—02
21.03 7.220—-03 —17.379—-03
10.54 3.390—-03 —3.667—03
.00° 0.000 0.000

0.000
0.000
0.000
0.000

1.000 + 00
= 0.000
- 0.000
0.607—03
2.230—02
—0.000
0.000
0.000

1.0004- 00
—0.000
—0.000

h168—03

2,468—02
= 0.000

0.000

0.000

= 1042405
0.000
0.000
0.000

Y
—B8.607—02
—6.803 —02
—5.343—-02
—4.058—02
—3.051—-02
—2.301—02
—1.759—-02
—1.378—02
—-1.117—02
—0.451—-03

0.000

0.000
0.000
0.000
0.000

—0.000

—0.000

= 0,000

—0.676-02
0.607—03

=0.000
0.000

= 1.090--03

= 0.000
1.000+ 00

—0.000

— 0,144 —02
0,168 —03

—0.000
0.000

—1.019--03

.00V
—2.604+405

0.000

0.000

Ys
1.585—03
1.427—03
1.2356—03
1.027—03
8.340—04
(3,745 — 04
5.600—04
4,680—04
3.017—04
3.432—04
2.887—04

Table 4.3.

0.000
0.000
0.000
1.000+-00

—0.000

—0.000
1.000+4 00
2.670-08
+4.210-03

—0.000
1.452-03
2.880—-03

—0.000

—0.000
1.0004 00
3.120-08
3.012—03

—0.000
1.729—03
3.335—-03

0.000
0.000
2.061-01
8,000+ 00

e
1.324—04
8.302—05

—1.976—-05
—1.402—04
—2.602~04
—3.133—-04
—3.428—04
—3.530—-04
—3.547—04
—3.038—-04
—3.217—04

0.000
0.000
0.000
0.000

—0.000
—0.000
—0.000
—2,780—06
—0.000
1.000 400
9.607—03
—=2.007-01

—0.000
—=0.000
—0.000
—3.407—-06
—0.000
1.000+ 00
0.158—03
—3.641 =01

0.000
0.000
2.170 402
0.000

Ya
—1.566—03
—1.063—-03
—1.601-03
—1.205—-03
—0.207—-04
—6.250—04
—3.077—04
— 2,300 =04
—1.242-04
—=86.114—05

0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
—0.000 0.000
—0.000 0.000
—0.000 0.000
—0.000 0.000
—1.137-08 0.000
—=0.000 0.000
—4.608—-03 —0.000
9.607—03 1.000 400
—0.000 0.000
—0.000 0.000
—0.000 0.000
—0.000 0.000
—1.564—08 0.000
—0.000 0.000
—4.608—=03 —0.000
9.158—-03 1.000400
0.000 0.000
0.000 1.000 02
0.000 0.000
1.000+ 00 0.000

iz Uy
—3.492—-056 7.884—03

—2.210-05 —1.060—-01
—1.064—-05 —1.642-—-01
—1.831-05 —1.052—01
—1.677—-056 —4.530—02
—1.449—-06 —1.188—03
—1.218—-05 2,400—-02
—1.0156—-056 3.706—-02
—8.470-00 4.314—02
—T7.082-00 4.274—02
—7.317—-03 —=2.057+00
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