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Abstract

We present initial results and description of a method for coupling long term hydro scheduling models to short term hydro schedul-

ing models. The method is based on an established approach but extends on the principle to increase the available information of

the future estimates provided by the long term model.
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1. Introduction

In hydropower scheduling, numerical models are used for various tasks depending on by planning horizon and user

needs. In a research setting, use cases could be long-term analyses investigating grid structure/expansions or future

scenario analyses, while in an operational scheduling setting the use case could be an immediate scheduling problem

for bidding in power markets.

This span has led to a hierarchy of models starting with very long term models at one end where the scheduling

horizon can be several years , the geographical span can be extensive and the level of detail usually coarse. The scope

of the models then decrease in scheduling horizon and geographical span and increase in level of detail to models

covering a year or several months or weeks . At the other end of the hierarchy the models tend to cover only a small

geographical region with a scheduling horizon of only days or a few weeks. However, the level of detail is much

greater than for the long term models .

This hierarchy is coupled through information shared between the different models so that results from one model

is input to the next model. One example is that a long-term market model produce power price forecasts that one

inputs to long-term or seasonal models. These models again provide estimates on, e.g., the value of stored water at a

certain time, which again can be used as input to more detailed short-term models.

In this paper, we present details of a method which uses the hydropower scheduling optimisation problem structure

to provide more information in the link between long-term and short-term models. The method has been developed
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using and applied to two models developed by SINTEF Energy Research, both of which are in operational use by

several of the market actors in the Nordic power markets. The method should be readily applicable to any set of

models using a similar solution approach; this will become apparent in the following section.

Nomenclature

All sizes are vectors unless explicitly noted otherwise.

Jt object function of the optimisation problem at time t, scalar

αt future cost estimate at time t, scalar

xt vector containing all variables at time t except the reservoir volumes

vt reservoir volumes at time t
ct vector containing all direct costs associated with xt

qt physical inflow

zt normalised inflow

mt mean of qt

Qt estimated standard deviation of qt, diagonal matrix representation

φ transition matrix in the inflow model

ξt noise term in the inflow model

AV matrix containing the hydrosystem topology

dt firm power demand at time t
St power balances at time t required to meet the firm power demand, matrix

λr
t hydro storage cut coefficient for cut r at time t
νrt inflow cut coefficient for cut r at time t
br

t right-hand side of cut description r at time t, scalar

2. Problem definition and information sharing

The two models used in this study are the long-term optimisation tool ProdRisk [1–5] and the short-term optimisa-

tion tool SHOP [6–8] . Both solve in essence the same optimisation problem, consisting of the optimisation problem

for t ∈ T periods defined by equations (1)-(6). We focus here on the equalities of the models, leaving most details to

their respective cited papers. The long-term model has a typical scheduling horizon of one to five years with t = 1

week and a geographical extension of one to a few river systems. The short term model has a typical scheduling

horizon of one to two weeks and is typically applied to one production area with a common price. The short-term

model has a more detailed and physically accurate description of the river system and the hydropower generation.

The objective of both models is to optimise the utilisation of the hydro resources through minimisation of the future

cost of operation,

Jt = min(αt + cᵀt xt) , (1)

subject to global and local constraints

vt = vt−1 + qt + AVxt (2)

Stxt = dt (3)

αt + (λr
t )
ᵀvt + (νrt )

ᵀzt ≥ br
t , r = 1, . . . ,R , (4)

xmin
t ≤ xt ≤ xmax

t (5)

vmin
t ≤ vt ≤ vmax

t . (6)



 Knut Skogstrand Gjerden et al.  /  Energy Procedia   87  ( 2016 )  85 – 90 87

These constraints can be either physical limitations or man-imposed. Examples of physical limitations are available

inflow or storage capacity and examples of imposed constraints are regulations on reservoir levels or (upper or lower)

restrictions on water flow in the river system due to environmental or aesthetic concerns.

Information on the estimated future is transferred between models as cuts of the form (4) which relates the expected

future cost to the inflow and volume of water in all reservoirs at a given power price. Mathematically speaking, the

set of R cut equations are collectively describing a future-cost hyperplane in the state space of reservoir levels. This

is illustrated for a two-reservoir system in Fig. 2. The key point is that the value of water in any reservoir at any time

is dependent on the water level and inflow in all other reservoirs. The short-term model uses this description (or an

interpolation between two such cuts) as the starting state for further optimization.
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Fig. 1. Expected income for a fictitious two-reservoir system. The expected income is a function of the state of all reservoirs making it a hyperplane

of the n + 1 state space comprising of n reservoirs and the future cost.

Inflow is input to both models. The short-term model uses deterministic inflow while the long-term model contains

an inflow model using first-order autoregressive approach on normalised (to eliminate seasonal variations) input data:

zt = φzt−1 + ξt (7)

qt = Qtzt +mt . (8)

Price is input to the short-term model and assumed deterministic over the modelling period, which is usually one

or two weeks. There is a strong auto-correlation in power prices which influences the water values. The long-term

model has to take this into account and contains the price model described in [9]. The price model is a discrete Markov

chain representation based on a price forecast. The forecast is typically obtained from a larger scale market model.

From the forecast, a model consisting of a grid of N price nodes pi,t by T time steps t is constructed. The value

(power price) a price node represents is calculated based on price scenarios from the forecast. Then node-transition

probabilities, P(p j,t+1|pi,t), (i, j) ∈ N, are calculated from the price scenarios through an optimization process. The

result is a Markov chain traversing the price nodes pi,t from t = 0 to t = T . For further details, we refer the reader to

[9].

Separate cuts are calculated for each node and time step in the Markov chain. To reduce calculation times the

number of price nodes in one time step is typically limited to less than 10 (default 7). The short-term model takes the

current power price (along with a deterministic prediction for the modelling period) as input, which usually ends up

being somewhere in between two price levels.

In order to calculate the future cost information, the long-term model uses a combination of stochastic dynamic

programming (SDP) and stochastic dual dynamic programming (SDDP) in an iterative approach to reach an optimal

strategy for resource management. The iteration consists of a calculation backwards in time and a simulation forwards

in time. When the future cost as calculated both backward and forward converge, the optimal solution is found. In

each backwards phase, cuts are generated. These state descriptions limit (cut) the total state space for the optimization

problem, thus building an increasingly detailed description of the future. A typical value for R is 500, and ProdRisk
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optimises for the node prices in the price model, so the total number of cuts available in the long-term model is in

the thousands, of which only a handful were selected to be used as input to the short-term model. A cut in itself

can consist of any valid values bounded by ±∞ and any constraints in the optimization problem and only describes

a possible state; only when it is binding in the optimization problem can it become a realization and represent water

values.

The new coupling method proposed consists in essence of sharing the entire future-cost hyperplane description1

between the models. The information is readily available as it is essential/central to the SDDP solution algorithm, so

the only cost of the method is the increased amount of data used in the coupling. This data overhead is very small

relative to the gain which has several aspects.

More cuts are shared. This means a better description of the future cost state space and should result in a better

optimisation in the short-term model. Instead of selecting in the long-term model which power price you expect to run

the short-term model for, cuts for all prices in the long-term model are available to the short-term model thus providing

a tighter price-coupling. This also allows for the short-term model to be run for more sets of input parameters without

re-running the long-term model. This is important in an operational setting in the power markets.

Finally, there is more information per cut through inflow correlation. In the old method, the shared cuts were

“corrected” so that the inflow information in them were referenced to zero auto-correlation because the long-term

model has no information on how the short-term model was to be run. When the full cut description is shared, the

short-term model can couple inflow series (which is input to both models) to specific reservoirs in the cut description

and correct for the specific inflow at the time of optimisation (the short-term model has an updated inflow description

as input).

To sum up, extended cut sharing between the long-term and short-term models includes more information with

finer detail and correlations in both inflow and price.

3. Results

The models are run on a medium-sized Norwegian watercourse comprising of 16 reservoirs and 8 power plants.

Results are obtained by running the long-term model once to generate the coupling information in the old scheme

and once to generate the new coupling information. Then, the short-term model is run several times either using

the full description from the long-term model or using the old single-price description. Using the old coupling, the

short-term model is first run using the price data from the long-term model and then re-run with this data scaled some

percentage up and down to achieve results for a spread around the mean value. This one way of creating bid curves

for the power markets. The new coupling provides this spread by default with the correlation between price and water

values inherent in the cuts and the short-term model is run for the same prices as for the old coupling, interpolating

between prices when needed. The difference for the short-term model is then not in the input price or inflow, but the

relevance of the information coupling between value of water and reservoir levels. The new method uses values from

the long-term optimization where the old method used extrapolation from a single optimization.

Fig. 2 shows the new and old cut information shared between the models. As previously stated, more information is

shared, resulting in a broader coverage of the optimisation state space available to the short-term model which should

result in a more accurate overall description as the price varies. The end result should be a more accurate production-

price curve which could be used for marked bids. Note that the coverage of possible water values is asymmetric, with

a much denser coverage for lower values. This asymmetry should lead to improved results in/from the short-term

model for lower prices, because the upper region already had some coverage with the old cut information.

Extracting the sum production for the hydropower system at hand, we find the aforementioned asymmetry in the

sum production curve, Fig. 3. The figure shows the sum of production in the system for a spread in the estimated

market price. The sum production changes less with the new cut coupling due to the correlation between expected

price and expected water value. In essence, low correlation in price and water value leads to higher correlation in

price and production. A higher correlation in price and water value indicates a system which responds better to

market signals and yields a flatter production curve, which is desirable with power producers. The new coupling

1 Technically plural as the power price is not part of (4) so there is one description per price level.
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Fig. 2. Future cost information as transmitted between models. Each cut gives one estimate on the future cost and the model was run with R = 500

and seven price levels thus totalling 3500 cut values. The value of the cut represents a single point in the cut hyperplane and if the cut is binding

the cut value is the value of water for that configuration. The new cut information is plotted in red and the old maximum available information is

plotted in blue.

results in a production curve more in tune with variations in the price because of the price information being part of

the complete cut description. The effect is greatest for lower prices, as anticipated. Remember that Fig. 2 indicated

the coverage of available cut information, it does not show which cuts are binding and thus water values can not be

inferred from this figure. Fig. 3 shows the result of the realized water values.
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Fig. 3. Production-price relation as calculated in the short-term model. Results based on the old cut information is plotted in blue and results based

on the new, expanded cut information is plotted in red.

4. Conclusions

We have presented a new method for coupling long-term and short-term hydropower-system optimisation models.

The method utilises more information which includes correlations in price and inflow in the transferred water val-

ues. This first study demonstrates changes of about 10% in suggested production from the short-term model when

compared to using the old approach. The change is expected direction, but we have not studied the optimality of the

effect. The analysis performed has so far only examined the effect of the additional price coupling. We expect also

an improvement when using the additional inflow coupling available through the new approach, but this has not been

studied as of yet.
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