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Abstract

We present a method for software development in which information flow se-
curity is taken into consideration from start to finish. Initially, the user of the
method (i.c., a software developer) specifics the system architecturc and sclects
a set of sccurity requivements (in the form of secure information flow propertics)
that the system must adhere to. The user then specifies each component of the
system architecture using UML inspired state machines, and refines/transforms
these (abstract) state machines into concrete state machines. It is shown that
if the abstract specification adheres to the security requirements, then so does
the concrete one provided that certain conditions are satisfied.

1 Introduction

Security incidents occur on a daily basis within many companies, In CSI/FBI
Computer Crime and Security Survey for 2005 [9], 74% of the companies re-
ported security incidents. Despite the importance of security, careful engineer-
ing of sccurity into overall design is often neglected and security features are
typically built into an application in an ad-hoc manner or arc only integrated
during the final phases of system development [29].

Model-Driven Security (MDS) [3] advocates the opposite. MDS aims to
raise the level of abstraction in design end development of secure systems by
supporting (1) a model-driven development process in which security is taken
into account from start to finish, (2) a clear scparation of abstract, platform
independent models (PIMs) and refined, platform specific models (PSMs), and
(3) adherence preserving transformations between PIMs and PSMs.

The central idea of MDS is that systems can be specified and shown to he
in adherence with security requirements at different levels of abstraction. Ab-
straction is believed to simplify analysis, facilitate reuse of designs and carly
discovery of design flaws. At each level of abstraction, we distinguish between a
system specification and a set of sccurity requircments the system specification
must adhere to. When we have established that a system specification adheres
to the security requirements at a given level, this relationship should also hold
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Figure 1: Model-driven security (pictured)

at, the next level so that the invested eflort to establish adherence is not, wasted.
Hence, we would like adherence to be preserved under transformation. Adding
details to a specification may of course require some additional analysis. How-
ever, it should not be necessary to recheck the adherence relationship already
established at the more abstract level.

The MDS framework is illustrated in Fig.1. Here a platform independent
model together with its security requirements are transformed into several plat-
form specific models with associated security requirements.

Already published approaches to MDS include [2, 3, 5, 8, 10, 14, 22, 37].
Although interesting, they are in most cases of a rather informal nature; the
semantics of the languages used (at abstract or/and concrete levels) are not
sufficiently precise to allow for rigorous reasoning at more than one level of
abstraction. Moreover, some of the approaches ({2, 3, 8, 22]) consider transfor-
mation of security requirements only, and not transformation of system speci-
fications. Thesc approaches allow adherence checking only at the lowest level
of abstraction. Others ([5, 8, 10, 37]) do not clearly characterize what it means
for a system to adhere to a security requirement. Instead, security is described
in terms of a security mechanism.

Security is often defined as the preservation of confidentiality, integrity, and
availability [15]. In this report, we, however, focus on security in the more
narrow sense of secure information flow properties (sec e.g., [4, 11, 25, 27, 30,
31, 35, 38]) which provide an elegant way of specifying confidentiality as well as
integrity requirements [26].

The notion of transformation is closely related to refinement. That is, re-
finement is the (possibly manual) process of making an abstract specification
more concrete, whereas transformation typically is a special case of refinement
in which this process is automatic. There are scveral kinds of refinement. One
of the refinement notions considered in this report, is refinement w.r.t. under-
specification, i.e., the process of removing alternative design choices that are
equivalent in the sense that it suffices for an implementation to provide only
of them. In the classical literature, this kind of refinement is often referred
to as behavioral refinement or property refinement |6]. It has long been recog-
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Figure 2: Overview of method

nized that secure information flow properties are not preserved under standard
definitions of refinement w.r.t. underspecification [16]. We avoid this problem
by defining refinement in a semantic framework which is more expressive than
conventional frameworks. In our method, system specifications are written in a
state machine notation inspired by UML. But contrary to UML state machines,
we have two constructs of choice; one describing alternative design choices, and
one describing choices which should be provided by the system. The distinction
between the two kinds of choices is necessary in order to handle refinement of
secure information flow properties [13, 17, 31].

Software systems are almost never built entirely from scratch, i.e., a set of
alrcady implemented operations is usually available from the operating systerns,
runtime environments, or from libraries of programming environments. To take
this into account, our state machines are allowed to reference events that are al-
ready available in a predefined event library. These events arc later substituted
by their definitions by a so-called eveni transformation. The transformation
may therefore be understood as a special case of what in the literature is known
as action refinement [36). We provide a formal characterization of the syntax
and semantics of transformations that are induced by event libraries, and de-
fine general conditions under which transformations induced by event librarics
preserve arbitrary secure information flow propertics.

This report is structured as follows: Sect. 2 gives an overview of our method.
In Sect. 3 - 9 the individual steps of our method are presented. Scct. 10 dis-
cusses related work, and Sect. 11 provides conclusions and directions of future
work. In the appendix, we formally define state machines (App. A) and event
transformations (App. B). A glossary of symbols is provided in App. C and
proofs are presented in App. D.
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2 Overview of method

The goal of our method for model-driven information flow security is to support
the specification and development of secure software systems. As illustrated in
Fig. 2, the method has seven main steps.

In step I, the user of our method (i.e., a software developer) specifies the
system architecture using UML composite structures. The system architecture
is an overview of the components of the system and their associated communi-
cation channels. The user then partitions the system into security domains by
labeling the system architecture with security relevant annotations.

In step II, the user sclects a set of secure information How properties (typ-
ically from a library) that the specification must adhere to. The secure infor-
mation flow properties of the library are assumed to be defined in our security
property schema [33, 34] which ensures that the adherence to the propertics is
preserved when design decisions are resolved by refinement in later steps.

In step ITI, the user specifies each component of the system architecture
using our UML inspired state machines. The state machine notation provides
constructs for specifying both design choices and choices that must be offered
by the components of the system. The specified state machines may reference
events that are already provided in a predefined event library. In this step, new
event specifications may also be uploaded to the event library.

In step IV, the user verifies that the state machine based specification ad-
heres to the security properties selected in step II. There are many techniques
and methods that can be used for this purpose. We do not go into details
on these. However, we provide a precise characterization of what it means for
a system specification to adhere to a sccure information flow property. This
characterization provides a formal foundation for adherence verification.

In step V, the user refines the specification by removing alternative design
decisions until all design decisions are decided. The validity of adherence is
guaranteed to be preserved under this kind of refinement.

In step VI, the state machine specification of step V is transformed into a
more concrete specification by substituting the event references of the specifica-
tion by their definitions in the event library. We give a formal characterization
of the syntax and semantics of these so-called event transformations, and show
that they satisfy some desirable properties.

In step VII, the user verifies that the event transformation of step VI pre-
serves adherence to the security properties selected in step II. We present con-
ditions that can be used to check that the transformation preserves adherence.

In the MDS terminology, the specification produced in step V may be seen
as a platform independent model (PIM), whereas the state machine produced in
step VII may be seen as a platform specific model (PSM). Note that although
a fully general approach to MDS would consider the transformation of both
(abstract) security properties and system specification into (concrete) security
properties and system specifications, we only consider the transformation of
the system specifications. The reason for this is that the security properties we
consider are essentially paramcterized w.r.t. to the different levels of abstraction.
Hence, there is normally no need to transform the actual specification of the
properties.
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Figure 3: Architecture of the PM system

3 Step I: Specify and annotate the system ar-
chitecture

In step I of our method, the user specifies the system architecture, i.c., an
overview of the basic state machines that the system specification consists of and
their associated communication channels. We will often refer to the architecture
specification as a composite state machine. After the architecture has been
specified, the user partitions the system into sccurity domains by annotating
the specification. In the following, we introduce a running example which will
be used to explain this step and the subsequent steps of our method.

Consider a large software developing company that aims to develop a dis-
tributed system, the project management system (the PM system), in order
to centralize all storage of software development projects. Software developers
should be able to retrieve projects from a server to their local machines, edit or
add files to the project, and upload any changes baclk to the server.

Currently, the company has no unificd development method, and developers
worldng on different projects are to a large degree given flexibility in the method
they choose to adopt. The company wants to assess the different methods in
order to recommend improvements, and possibly to introducc a unified devel-
opment process. This task is assigned to a group of researches. The researchers
arc to pick a set of sample projects, and asscss cach project thoroughly with
respect to progress, quality of code ete. For convenience, the PM system should
be augmented slightly such that the researchers will be able to retrieve projects
from the server over the Internet on a regular basis. This additional function-
ality is not of high priority, thus it will be implemented with little resources. It
is not initially known whether the researchers should use the same client as the
developers.

To make the assessment as realistic as possible, the developers should not
know which projects the researchers have sampled for the assessment. As we
will see later, this requirement may be enforced by selection an appropriate
securc information flow property.

Fig. 3 shows the architecture specification of the PM system with one client
acting on the behalf of the developer (ClientD), onc client acting on the behalf of
the rescarcher (ClientR), and one server (Server). The architecture specification
is intended to give an overview of the components or basic state machines that
the system specification consists of. Asa graphical notation, we have chosen to
use UML composite structures (see App. A for more details).

After the system architecture has been specified, the user partitions the ar-
chitecture into sccurity domains by annotating the components with the sccurity
domain they belong to. In our running example, developers are not allowed to
find out which projects the rescarchers have sampled for the assessment. Thus
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Figure 4: Annotated architecture of the PM system

we let the developers belong to one security domain which we call the low level
domain, and the researchers belong to another domain, which we call the high
level domain. We require that information should not flow from the high level
domain to the low level domain.

In Fig. 4, the domains that the developer and the researcher clients belong
to are specified by the labels << Low >> and << High >, respectively. For
short, we denote the low level domain by L, and the high level domain by
H. Semantically, we interpret a security domain by a set of events, where an
cvent represents the transmission or the reception of a message. In the current
example, this means that L denotes all events that represent messages that can
be sent to or from ClientD, whereas H denotes all events that represent messages
that can be sent to or from ClientR.

4 Step II: Select security properties

In step II, the user selects a set of secure information flow properties, referred
to as security properties for short, that the system must adhere to. A security
property defines what it means that information lows from one sccurity domain
to another.

The security requirement of the running example may be formalized by the
security property non-inference [30] denoted NF. This is one of the most well-
known security propertics of the literature. It treats all the behavior of the high
level domain H (the behavior of the researchers in this example) as confidential,
and requires that the low level user (the developer) must not deduce that any
event in H has occurred.

We assume (1) that the developer may observe all events in L, i.e., its own
communication with the server and (2) that the developer has complete knowl-
edge of the system specification. Therefore, for each observation (i.e., a sequence
of events in L) that the developer can make by interacting with the server, the
developer can look at the specification and construct the so-called low level
equivalence set of all traces (i.e., sequences of cvents describing system execu-
tions) that are compatible with that observation. The developer will know that
one of the traces in this set has occurred, but not which one. However, if all the
traces of this set include a high level event in H, then the developer can con-
clude with certainty that the researcher has done something. In this case, the
specification would not be secure w.r.t. the NF property. Conversely, if there
is onc trace in the low level equivalence set which does not include a high level
event, then the developer cannot conclude with certainty that the researcher
has done something.

In gencral, the underlying idea of all secure information flow propertics is to
demand that cach low level equivalence set must contain a trace which prevents
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the low level user from deducing that some confidential behavior has (or has
not) occurred.

The above discussion suggests that all security properties have two essential
ingredients:

o a definition of low level equivalence;

o a definition of the high level behavior which should be regarded as confi-
dential.

Formally, two traces s and t are low level equivalent, written s ~ ¢, if they
contain the same sequences of low level events, i.e.,

sl =t|L (1)

where t|r, yields the trace obtained from ¢ by removing all events not in the set
of events L. The definition of low level equivalence is the same for all security
propertics. The definition of confidential behavior, however, differs depending
on the property. For the NF property — which treats traces that contain any
high level event in H as confidential - the sct of confidential behavior C may
be defined by the following predicate

C(t) Ztla # () @)

where () denotes the empty trace. In other words, a trace is confidential if it is
non-empty when all non high level events have been removed from it.

For a system S, whose set of possible traces is denoted by [S1, to adhere to
the NF property, there must, for each low level observation that can be made
from [$], be a trace in [ S] which is not confidential (i.c., not included in C)
and which is low level equivalent to the observation. Formally we have

NF([S]) £t € [S]:Fue [S]: Clu) Aun~t (3)

All security properties are of a similar form as (3). In fact, NF may be expressed
as an instance of a sccurity predicate schema which is parameterized by a pred-
icate which characterizes confidential behavior (see (34, 33]). We assume that
all security properties that can be selected by the user in step II are instances
of the security property schema.

5 Step III: Specify system components

In step III of our method, the user specifics cach basic state machine of the
architecture. It is assumed that a library of predefined event specifications is
available to the user. These events can be referenced in the state machine
specifications.

Fig. 5 shows the specification of the two clients ClientD and ClientR. ClientD
receives an input document from its user (not shown), and passes that document
on to the server by sending the message storeDoc. In the state machine notation,
the black circle represents the initial state and the boxes with rounded edges
represent standard states. Transitions are specified by arrows hetween states.
Transitions may be labeled by action ezpressions of the form nm.sifbz]/ef,
where nm.si is an input cvent, [bz] (where bz is a boolean expression) is a
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Figure 5: Specification of the clients

guard, and ef is an effeci. Event triggers, guards, and effects are all optional in
the expression.

Intuitively, if the current state of the state machine is g, and the state ma-
chine has a transition from ¢ to state ¢’ that is labeled by nm.sibz]/ef, then
the state machine will set its current state to ¢’ if it receives signal si from the
basic state machine whose name is nm and the guard bz is evaluated to true.
The effect ef will be executed when the state machine moves to ¢'. There are
two kinds of eflects: onlpul events and assignments. An output event is an
expression of the form rnm.si that represents the transmission of a signal si to
the state machine whose name is nm. Assignments are denoted by expressions
of the form z = ex where z is a variable and ez is a term built from common
basic types such as booleans, integers, and strings, and common operations for
these.

The graphical notation used for specifying state machines is essentially a
subset of the UML state machine notation. Sce App. A for more details.

We assume that the message transmission protocol between the server and
the client is provided by the event library. As specified in Fig. 5, the clients
invoke the action P1 (for protocol 1) in order to send messages to the server.

The client acting on the behalf of the researcher (ClientR) is similar to
ClientD, except for two differences. First, the rescarcher retrieves documents
from the server instead of storing them, and sccond ClientR has the choice of
either using protocol P1 or using protocol P2. This is indicated by the alt-
construct which is used to specify design choices that are potential in the sense
that one of the choice alternatives can be removed during refinement. In the
current example, the design choice is specified because it is not initially known
whether or not ClientR will use the same protocol as ClientD.

The specification of the server is shown in Fig. 6. Upon recciving the message
storeDoc (resp. getDoc) from the client, it sends the message storeDocument
(vesp. retrieveDoc) to a data base (not shown) which stores (vesp. retrieves) the
document. The server, moves into a state in which it waits for an ok message
from the data base. If the server receives any message fromn the clients while
waiting for the data base, then these messages are simply dropped. As indicated
by the alt-construct, the protocol used in order to transmit and rececive messages
to the rescarcher client is an open design choice.
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The denotational semantics of standard state machines is usually given as
the sot of traces that is obtained by recording the events of all paths in the
state machine when starting from the initial state. However, we distinguish
between two kinds of choice, and interpret state machines as sets of trace sets
called obligations. Intuitively, the traces of an obligation are equivalent in the
sense that an implementation is only required to produce one of them. Thus,
each trace of an obligation represent underspecification, or potential choices.
However, an implementation is required to produce at least one trace in cach
obligation. Thus obligations represent explicit choices that have to be present
in an implementation.

The obligations described by a basic state machine P is denoted by [ P 1 (see
App. A.3 for a formal definition). Choices that are not potential will result in
new obligations being created, whereas potential choices will result in obligations
being collapsed. For instance, the semantics of ClientD is

[ClientD] = {{(} {(Pui,ls.p1) }, {{Pud, s5.p1, i lspl)}, .0}

Here a new obligation is created for cach finite iteration of the loop in ClientD.
Each obligation consists of a single trace since there are no potential choices in
ClientD. Note that state machine names and signal names have been shortened,
and that expressions of the form ?nm. st and Inm.si represent input and output
events, respectively.

The semantics of ClientR is given by

[ClientR] = {{()},{(?u.i,!s.pl),(?u.i,!s.p2)},{(?u.i,!s.pl,?u.i,!s.pl),
(Tw.d, 1802, Tud, 18.p2), . . ]y }

Contrary to ClientD, the obligations of ClientR are not singleton sets because
ClientR contains potential choices. For instance, in obligation {{?u.i,!s.pl),
(7u.4,1s.p2)}, the traces (?u.i, ls.pl) and (?u.i,1s.p2) represent potential choices.
Note that pl and p2 for the time being are just syntactic suffixes of events. It
is first when we make use of event libraries that they come into play.

We assume that basic state machines are autonomous, and therefore exe-
cuted in parallel. Semantically, parallel composition is defined by interleaving
traces. For instance, if the two traces (e1, e2) and (e}, e5) describe the execu-
tion of twa different independent state machines, then the parallel composition
of these traces, written || ((e1,ez), (e}, eh)), is given by

{(61, 827(3’113’2)1 (6’11 e,21 €1, 62)3 (Ela 6'1:62&'2)'
(eiaela GIQ: 62): (eip €1, €2, 612)1 (‘311 6111 er2: 62)}

Each trace describes a possible execution of the two state machines that the
traces (e, ea) and (e}, eh) belong to. Because the state machines are indepen-
dent and autonomous, all interleavings of the two traces arc possible executions.

Basic state machines are usually not completely independent because a state
machine that expects an input message from another state machine cannot pro-
coed with execution before the message is received. Hence the execution of one
state machine may be influenced by another. Traces that deseribe communica-
tion in which messages are sent before they are received are called well formed.
We require that all traces in the scmantics of a composite state machine to be
well formed.
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Figure 6: Specification of the server

The semantics of the PM system is the parallel composition of ClientD, Server
(as specified in Fig. 6), and ClientR. A fragment of this semantics is shown below

{10}, {{Pud,ls.pl, Ted.pl, ldb.s, Tdb.o)},
{(Tu.i,ls.p1, Tu.i, 1s.p2, Yed.pl, ldb.s, ldb.o, Ter.p2, ldb.s, 7db.o), ... },... }

Note for instance that the trace (?u.2,1s.p1, Ter.p2, ldb.s, 7db.o) is not well formed
because the input event Tedr.p2 is not preceded by a corresponding output event
in the trace. Note also that the behavior of the user and the data base are not
shown. We assume that the PM system is composed with a user and data base
that generate all possible inputs to the PM system.

6 Step IV: Verify security adherence

In step IV, the user verifies that the specification adheres to the selected security
property. Our method describes what it means for a specification to adhere to
a security property, but leaves the choice of evaluation process to the user. The
cvaluation may be formal, c.g., by theorem proving or by model checking if
feasible, or it may be by other means like testing if the specifications are too
large for full verification. In the following, we argue only informally that our
system specification adheres to the NF property.

In the definition of the NF property given in Sect. 4 (see (3)), we considered
a system given as a trace set. Since we interpret specifications as sets of obliga-
tions, the definition needs to be revisited to take this into account. Instead of
requiring that there is a trace u which prevents the low level user from deducing
that confidential behavior has occurred, we require that there is an obligation ¢
such that all its traces prevent the low level user from deducing that confidential
behavior has occurred. This means that the obligations, as opposed to the in-
dividual traces, provide the unpredictability required by the security property.
This is in line with the intuition behind the use of obligations. Formally, we

have .
NF([P]) Evte [P]:3p € [P]:Vue¢: =Clu) Awr i (4)
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Figure 7: Refined specification of the server

Note that {2, where £ is a set of obligations, collapses {2 into a set of traces.

Again, this definition of the NF property may be cxpressed as an instance of a
security property schema which is defined for specifications that are interpreted
as sets of obligations [33].

The PM system is sceure w.r.t. the NF property because the developer can
never be sure that the researcher has done something regardless of the low level
observations he can make. There are two reasons for this. First it is always pos-
gible for the rosearchers to do nothing. Second, the developers cannot influence
the behavior of the researcher and vice versa because neither the developers nor
the researchers receive input from the server.

To sce this, note that the semantics of ClientR includes the obligation {0}
By composing this obligation in parallel with the obligations of ClientD (which
describe the observations that the developers can make), and Server, we obtain
obligations whose traces do not contain any high level events, i.e., message trans-
mission to or from ClientR. Therefore, for every observation that the developer
can make, he can never be sure that the researchers have done something,

7 Step V: Refine system components

In Step V, the user refines the specification by removing alternative design
choices until all choices are resolved. The security property sclected in step
11 (defined by (Eq. (4))) is preserved under refinerent because it is defined in
a semantic model which distinguishes between potential choices and inherent
choices that should be provided by a system.

Recall that in our running cxample, it was not initially known whether or not
the researcher would use the same communication protocol as the developers for
communicating with the scrver. Assume that it is decided that the rescarcher
clients will use the same protocol as the developer clients. We then refine the
specifications of the previous section by removing all the choice alternatives that
involve protocol 2. Fig. 7 shows the resulting specification for the server. The
same process hias to be carried out for the researcher client.

We now make precisc what is meant by refinement. Intuitively, obligations
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are scen as providing alternative choices which must be provided by an imple-
mentation, whereas cach trace in an obligation provides a design choice that
may be removed under refinement. Formally, a state machine @ is a refinement
of a state machine P, written P ~ @, iff

(voelPl:3 elQl:¢' SNV €[Q]:Fpe[P]: ¢/ Cd) (5)

The reason why NF property is preserved under this notion of refinement is
that it is defined (see (4)) such that obligations (as opposed to traces which are
used in most standard definitions) may be scen as providing the unpredictability
required by the security property. Since choices provided by an obligation cannot
be removed under refinement to an implementable specification, this means
that the required unpredictability is preserved. Note that a specification whose
semantics includes an empty set is not considered implementable. These kinds
of specifications may therefore safely be ignored.

In [33] we show that any security property expressed in the security property
schema is preserved under refinement.

8 Step VI: Event transformation

In this step VI, the specification (call it abstract) obtained in step V is trans-
formed into a concrete one by replacing the events of the abstract specification
by the specification of these events in the event library. At this stage, all de-
sign choices are assumed to be decided. In the following we therefore interpret
a specification in the standard way as a trace set (see App. A for a formal
definition).

An event library is a sct of event specifications. An event specification con-
sists of an event definition and a state machine pattern defining the behavior of
the event. An event definition is a pair consisting of a kind (! or 7) and a signal
pattern of the form si(fp1,..., fp.)} where fp1,..., fp, are formal parameters.
A state machine pattern is a state machine that may contain signal patterns.

In the running example, it is assumed that the event specifications for P1
(which takes care of message transmission) are already specified in the library.
The specifications of these events are shown in Fig. 8. The figure shows two
specifications, one for the receive event (the signal name which is marked by
?) and one for the send event (the signal name which is marked by !). Both
specifications have one formal parameter called msg.

The P1 protocol works as follows. After a message has been transmitted, the
sender starts a timer, and waits for an acknowledgement (i.c., an ack message)
from the recciver. If an acknowledgement is not reccived within a certain time
frame, then a timeout is triggered (the full details of this is not shown), and the
sender retransmits the message. If an acknowledgement has not been received
after the message has been transmitted 10 times, then the sender gives up. Note
that the label to in the output event specification (the topmost specification of
Fig. 8) and the label from (the lowermost specification of Fig. 8) are parameters
that are bound to the transmitter and the receiver of the event being replaced,
respectively. For instance, Fig. 9 shows the result of replacing the events con-
taining P1 in the upper most specification of Fig. 5 by the event specification
of Fig. 8. Here we sce that the to parameter has been bound to Server which is
the recipient of the message.
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We let Ty, be the function that takes a basic state machine P and yields
the state machine Tgx(P) obtained from P by replacing the events occurring in
cach action expression of P by their definition in event library £L. For instance,
if EL is the event library of Fig 8, and ClientD is the topmost specification of
Fig. 5, then Tzr(ClientD) yields the specification shown in Fig. 9.

To ensure that transformations preserve semantic equality, i.e., that two
abstract specifications that are (semauntically) equal are not transformed into
two (semantically) different concrete specifications, we require all variables in
event specifications to be local. To ensure this, we let Ty, rename variables of
the event specification such that no name clashes occur when events are being
replaced by their definitions. For instance, if the topmost specification of Fig. 8
is applied in a context where the variable c is used, then this variable is given a
fresh name which is not used in the context.

In App. B, we show that any cvent transformation Tgr preserve scmantic
equality, i.c.,

[P]1=1Q] = [Tee(P)]=[Trc(@}]

It is also shown that an cvent transformation is entirely characterized by its
behavior on events. Technically, this means that the transformation is homo-
morphic w.r.t. the union and concatenation of trace sets.

The transformation Tz is defined for basic state machines. The transfor-
mation induced by an event library EL which takes a composite state machine
P as input, is simply the function that applies Trr to all basic state machines
that P consists of.

The transformation of a composite state machine may produce concrete
traces that have no abstract eguivalent due to the granularity we get when
events are substituted by state machines. We say that the image of a transfor-
mation Ty, written I'mgy, is the set of all concrete traces that have an abstract
equivalent. In App. B.2, we show that any event transformation TS, for com-
posite state machines preserve semantic equality when restricting attention to
the image, i.c.,

[P1=1Q]) = (ITS.(P)InTmpL) = ([TE(Q]INImEL)

It is also shown that the transformation T€; for composite state machines is
homomorphic w.r.t. union of trace sets when restricting attention to the image.

9 Step VIIL: Verify adherence preservation

In step VII, the user verifies that the transformation performed in step VI is
adherence preserving. Apgain, we do not consider any particular method of
evaluation (c.g., model checking), instead we present the conditions that need
to be evaluated.

We say that a transformation preserves a security property SecP if the
image of every abstract state machine P that is secure w.r.t. SecP is secure
w.r.t. SecP, i.c.,

SecP([P]) = SecP([TeL(P)[NIimeL) (6)
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IP1(msg) ]

Timer.timeout [c >= 10]
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from.msg N Ifrom.ack
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Figure 8: Specification of the P1 cvent

ClientD Se

imer.timeout [c < 0)/c =
Timer.timeout [c >= 10]

Figure 9: Concrete specification of the developer client

We restrict attention to image since we cannot cxploit the fact that the abstract
specification is secure to ensure that concrete traces that do not have any ab-
stract equivalent do not violate security. This means that additional security
analysis may be needed at the concrete level to ensure that those traces that
do not have any abstract cquivalent do not violate security. However, it should
not be necessary to recheck the adherence relationship already established at
the more abstract level.

In App. B.3, we define a general condition under which an event transforma-
tion preserves a given security property. To obtain the specific condition under
which the event library of step VII preserves the NF property, the general condi-
tion must be instantiated by the definition of the NF property. We then obtain
the following condition:

(a) if an abstract trace contains no high level events, then no concrete traces
it is transformed to can contain any high level cvents;

(b) if two abstract traces are low level equivalent, then no the conerete traces
they are transformed to must also be low level equivalent.

Condition (a) is satisfied because the set of high level events is assumed to be
all events that can occur in ClientR, and because event transformations cannot
change the transmitters or receivers of events.
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To check whether condition (b) is satisfied, we may check whether the parallel
composition of all corresponding state machine patterns of event specifications
in EL (i.c., onc send and one receive event) yields the same trace set regardless
of context. In the current example, the event library of Fig. 8 satisfics this
condition. For instance, the parallel composition of the two event specifications
in Fig. 8 when substituted for event ls.pl (in ClientD of Fig .5) and 7cd.pl (in
Server of Fig. 6), is

{(!s.5d, 7cd.5d, lcd.a, 75.a), (!5.5d, !5.5d, Ted.sd, led.a, 7s.a),...}

Since none of the traces in this sct contains a context dependent input event,
all traces arc well formed regardless of the context they appear in.

10 Related work

This report is related to previous worl by the authors [33, 34]. In particular,
the security property schema (referred to in Sect. 4) was introduced in [34, 33].
There it was also shown that all security properties of the schema are preserved
under refinement. The main difference between this report and [33, 34], is
that [33] does not consider transformations at all, and [34] is mostly semantics
hased; specifications are treated as trace sets, or sets of trace sets. Thus state
machines are not considered at all, and a rigorous characterization of syntactic
transformations and their interpretation is not given. The main contribution of
this report is the definition of UML inspired state machines (Scct. 5 and App. A)
and the definition of event transformations (Sect. 8 and App. B).

The state machine notation we usc is inspired by UML. Scveral approaches
have given UML state machines a formal semantics (see ¢.g., [1, 20, 29]). How-
ever, none of the works we are aware of distinguishes between explicit and
potential nondeterminisim.

The semantics of state machines that we propose is based on STAIRS [12],
and our notion of refinement corresponds to so-called limited refinement in
STAIRS. The main difference between our work and STAIRS is that STAIRS
gives a semantics for UML sequence diagrams, whereas we consider state ma-
chines. Another difference is that the STAIRS denotational semantics with data
[32] describes traces that will never be produced during execution because the
values of the data states are allowed to change at any time between assign-
ments. In cur denotational semantics, we do not allow this. In this sense, our
denotational semantics is more similar to the operational semantics of STAIRS
[24].

Our work is related to two somewhat distinct areas of research: model-driven
security (MDS) and information flow security. Already published approaches to
MDS include [2, 3, 5, 8, 10, 14, 22, 37]. Although interesling, they differ from our
work in that they are in most cascs of a rather informal nature; the semantics
of the languages used (at abstract or/and concrete levels) are not sufficiently
precise to allow for rigorous reasoning at more than one level of abstraction.
Morcover, some of the approaches ([2, 3, 8, 22]) consider transformation of se-
curity requirements only, and not transformation of system specifications. These
approaches allow adherence checking only at the lowest level of abstraction. Fur-
thermore, others ([3, 8, 10, 37]) do not clearly characterize what it means for
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a system to adhere to a security requirement. Instead, security is described in
terms of a security mechanism.

Information flow security was originally introduced [35] as a generalization
of the so-called non-interference property [11] from deterministic to nondeter-
ministic systems. Since then, a number of different information flow properties
(see c.g., |27, 30, 38]), as well general information flow frameworks (see e.g.,
[4, 25, 28, 31, 38]), have been proposed in various semantic models. The sccu-
rity schema considered in this report (App. B.3) is inspired by the framework of
[25]. One of the main differences between the frameworks is that the distinction
of potential and explicit choice is not made in [25].

Preservation of secure information flow properties under refinement was first
considered in [16]. There it was shown that information flow properties are not
in general preserved under a notion of refinement based on inverse trace set
inclusion. It has later been observed (sce e.g., [13, 17, 18, 31]) that the problem
occurs in approaches that do not take the distinction of patential and explicit
nondeterminism into account. All of the above citations consider a less gencral
notion of refinement than we do.

We are not aware of any work which consider preservation of information
flow properties under a syntactic notion of transformation.

11 Conclusions and future work

We have presented a method for model-driven information flow security. The
method has 7 main steps that accommodate the integration of security into
design artifacts above the code level. In particular, the method supports (1)
specification of systems at different levels of abstraction; (2) rigorous adherence
verification at different levels of abstraction; (3) adherence preserving refinement
and transformation.

The method is based on UML inspired state machines that we have extended
with a construct for specifying potential choice. These state machines, as well
as event transformations from abstract to concrete state machines have been
given formal syntax and semantics. We have shown that the event transforma-
tions satisfy properties that simplify the conditions under which adherence is
preserved.

This report is related to previous work of the authors [34, 33]. However, statc
machines were not considered in [34, 33], and a formal definition of syntactic
transformations and their interpretation was not given. The main contribution
of this report is the definition of UML inspired state machines (Sect. 5 and
App. A) and the definition of event transformations (Sect. 8 and App. B).

Many approaches to model-driven security exist, but all of them are of a
rather informal nature. This makes it difficult to precisely define the meaning
of adherence or preservation of adherence under refinement and transformation.

We are not aware of any work that address the preservation of information
flow security properties under a syntactic notion of transformation.

In future work, we would like to develop syntactic type checking rules which
can be used by a tool to automatically check preservation of adherence under
transformations.
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A State machines

In this section, we present the syntax and the semantics of our UML inspired
state machines.
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Figure 10: Example of a basic state machine

A.1 Syntax

A state machine is either basic in the sense that it does not consist of other state
machines or composite in the sense that it does consist of other state machines.
We first present the syntax of basic state machines, then we define the syntax
of composite state machines.

A.1.1 Basic state machines

In this section, we first present the graphical syntax of basic UML inspired state
machines. Then we define a textual syntax.
We make use of the following syntactic categories:

ar € AExp arithmetic expressions
br € BExp boolean expressions
sz € SExp string expressions

Here az, bz, and sz are syntactic variables of the three syntactic categories,
respectively.

We let Exp denote the set of all arithmetic, boolean, and string expressions,
and we let ex range over this set. Moreover, we assume that the following sets
are given:

x,y € Var variables
n € Num numerals
st € B8tr strings

We let Val denote the set of all values, i.c., numerals, strings, and booleans (t
or £).

As illustrated in Fig. 10, the constructs which are used for specifying state
machines are initial state, simple state, accepiing state, transition, action ex-
pression, and potential choice.

The state machine illustrated in Fig. 10 specifics a button that whenever
pressed, displays the number of times it has been pressed to a user. The number
is displayed by sending the signal display(num) or displayHez(num) (where
nurn represents the number of times the button has been pressed) to the user.
It is intended that display(num) is used for displaying the number in base
10, and that displayHex(num) is used for displaying the number in basc 16
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(hexadecimal). Whether the button sends the signal display(num) or the signal
display Hez(num) should be interpreted as a design choice as specified by the
potential choice construct (alt) attached to the branching transitions.

A state describes a period of time during the life of component. The threc
kinds of states, initial state, simple state, and accepting state, are graphically
represented by a black circle, a box with rounded edges, and a black circle
encapsulated by another circle, respectively.

A tramsition ropresents a move from one state to another. Transitions are
labeled by action expressions of the form

nm.silbz]/ef

Here the expression nm.si, where nm is a state machine name and s1 is a signal,
is called a trigger. The expression [bx] where bz is a boolean expression is called
a guard, and ef is called an effect. Intuitively, the action should be understood
as follows: when signal si is received from a state machine with name nm and
the boolean cxpression bz evaluates to true, then the effect ef is exccuted.
An effect is either an assignment or an output expression of the form nm.si
representing the transmission of signal si to the state machine with name nm.

An assignment is a pair (z, ex) consisting of a variable = and an expression
ex. The set of all assignments is defined by

Assign = Var x Exp

In diagrams, assignments are written # = ez instead of (z,ex).

We let ActExp denote the set of all action expressions and we let actz range
over this set. Triggers, guards, and effects are all optional parts of an action
expression. We sometimes indicate the absence of these parts by €, or we omit
to write them all together. For instance, the expressions e[bz]/ef and [bx]/ef
are valid and equal action expressions without any trigger.

We let Nm denote the set of all state machine names and we let nm range
over this set. We represent names by strings, thus we have Nm C Str. A signal
is a tuple (st,exy,...,eT,) where st denotes the signal name, and exy,...,eTx
are the parameters of the signal. We usually write st(ex1, exa, ..., Ty,) instead
of (st,exy,eTs, ..., e3,). Formally, the set of all signals is defined

SI=Str x Exp®

The potential choice construct (graphically represented by an alt) may be at-
tached to branching transitions in a state machine specification to specify alter-
native design choices.

The graphical notation used for specifying state machines is essentially a
subsel of the UML statecharl notation. However, there are two diflerences:

e We allow the sender of an input signal to be specified on the transition
labels. UML does not have any particular construct for specifying this.

e The potential choice construct is not part of the UML statechart notation.

In theory, the former difference could have been avoided by letting the name
of the sender of an input signal be part of the name of the signal. However,
by definition of event transforimations, we would then have to specify one event



A STATE MACHINES 22

definition for each possible sender or receiver of a signal. This would be im-
practical. To see this, consider for instance the example of Sect. 8, where the
state machine of Fig. 9 is obtained by replacing all signals whose name is 1 in
Fig. 5 according to the event definition of Fig. 8. Since the name of the sender
or receiver of signals is not part of the signal name, we only have to specify two
event definitions: one for the transmission of Pl and one for the reception of
P1. However, if the sender or receiver names had been part of the signal name,
then we would have to specify one event definition for each possible sender or
receiver. This is clearly not a practical solution.

Note that we do not consider our manner of specifying transmission of signals
in state machines a deviation from the UML standard. The reason for this is
that the standard does not impose any particular restriction on the kind of
effects that can be specified or the language they are specified in.

Having defined the graphical syntax of basic state machines, we now move
on to define the textual syntax of basic state machines.

Definition A.1 (Basic state machine expression) The set of all basic stete
machine expressions P is defined by the following grammar

P u= act|P*|P.P|P+P|P|P

The base cases implies that any action (act) is a basic state machine expression.
Any other state machine expression is constructed from the basic ones through
the application of the operators for iteration (P*), sequential composition (P.P),
standard choice (P + P), and potential choice (P|P).

To define the semantics more conveniently, we do not represent actions ex-
actly as they are represented in the graphical diagrams. Instead, we define the
set of all actions Act by

Act ZIEU {¢} x BExp U {c} x OEU {c} x AssignU {¢} ()

where IE and OE denote the set of all input events and output events, respec-
tively. We require that every action must contain at most one event, i.e.,

(i€, be, 08c,ae) € Act = (ie, =€V oe, =€) (8)

Here we have used ie, to denote an ¢ or an input event, i.e., ie, € IEU{¢}. The
same convention is used for boolean expressions, cutput events, and assignments.
The sets of all input events and output events are defined by
IE= {7} xM OE={} xM
where M denotes the set of all messages. An event of the form (l,m) is an
output cvent representing a transmission of message m, whereas an event of the
form (7,m) is an input event representing a reception of m. We let E denote
the set of all events, i.e.,
ef
E=IEUOE

Messages are of the form (nmy, nm,., si), where nm, is the name of the transmit-
ter state machine of the message, nm, is the name of the receiver state machine
of the message, and si is the signal of the message. The set of all messages is
thus defined by

def

M =Nm x Nm x SI
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Figure 11: Example of a composite state machine

We require that the transmitters of output events and receivers of input events
in a basic state machine must have the same name. To make this precise, we
define the name of an event by the function nm € E — Nm as follows

nm((!, (nmy, nmy, 1)) = nmy

nm‘((?s (nmh niir, 57‘))) 2 nMmy

We let B, denote the set of all events with name nm, i.c.,

Enm = {(;‘ eE | nm(e) = nm} (9)
We let nm € P — NmuU {1} be the function that yiclds the name of a state
machine expression. The function is defined such that nm(P) = nm if all
events in the actions of P are members of E,p,, for some name nm. Otherwise
nm(P) = L.

A basic state machine expression (when we ignore the potential choice) is
essentially a regular expression. It is well know that the language of regular ex-
pressions is equal to the language defined by a finite state machine [19]. Several
procedures exist for deriving a regular expression from a finite state machine
(sce, e.g., |7, 19, 21]). Although state machine expressions have two kinds of
choices (instead of just one as in regular expressions), similar techniques could
be used to convert a graphical state machine into a textual state machine expres-
sion. Of course, we have to translate action expressions of graphical diagrams
to actions of textual state machine expressions, but this is trivial.

As an example, the state machine of Fig, 10 is represented by the following
state machine expression

(e,6,¢,num = 0) . ((User, Button, pushButton), e, ¢, nurn = num + 1).
((e, €, (Button, User, display(num)), e)|(e, ¢, (Button, U ser, display Hex(num)))*

A.1.2 Composite state machines

A composite state machine is a state machine that consists of onc or more
(hasic) state machines. There are two constructs for specifying composite state
machines: connector and basic state machine reference. The connector is used
to indicate that the basic state machines it is connected to may communicate
with cach other. Connectors are graphically drawn as lines. The basic state
machine reference construct is a reference to the basic state machine whose
name equals the name of the reference.

An example of a composite state machine is shown in Fig. 11. The composite
state machine consists of two basic state machines (User and Button) and one
connector indicating that U ser and Button may communicate with each other.
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The notation we use for specifying composite state machines is a subsct of
the UML composite structure notation.

We are now ready to define the textual syntax of composite state machine
cxpressions.

Definition A.2 (Composite state machine expression) The sef of all syn-
tactically correct composite state machine expressions P is defined by the fol-

lowing syntaz
Pu=P ||| P

where Py, ..., P, are basic state machine expressions with single distinct names
ie, nm(P;) # L for alli € {1,...,n}, and nm(F;) # nm(P;) if ¢ # § for all
1,7 €{1,....n}.

A.2 Semantics of state machines without potential choice

In this section, we define the semantics of state machines that do not contain
the potential choice construct.

A.2.1 Basic state machines

In this section, we define the semantics of basic state machine expressions.
Roughly speaking, the semantics of a state machine is the set of sequences
obtained by recording all input and output events produced in each possible
exccution of the state machine. To obtain only those sequences that can be pro-
duced during execution, we need a way of evaluating expressions, and a way of
storing the variables that are assigned to values during execution. The following
auxiliary functions are needed to define this more precisely. The definitions of
these functions are inspired by [23)].

We let var € Exp — P(Var) be the function that yields the sct of all
variables in an expression. An expression ex € Exp is closed if var(ez) = 0.
We let CExp denote the set of closed expressions, defined as:

CExp = {ex € Exp |var(ez) = 0}

We assume the existence of a function eval(.) € CExp — Val that cvaluates
any closed expression to a value. In the obvious way, we lift eval to signals
containing closed expressions as arguments and to events that contain such
signals. In addition, we lift: eval to actions as follows

eval((ie., bz, oe.,¢€)) = (eval(ie,), eval(bz,), eval(o
eval({ie,, bz, oe., (z, ex))) = (eval(ie.), eval(bz,), eval(o

€e),€)
ec), (z, ecval(ex)))
Let ¢ € Var — Exp be a (total) mapping from variables to expressions. We
denote such a mapping o = {1 + exy, 22 — exs, ...} for distinet z1,22,--- €
Var and for ezy,ezs, -+ € Exp. If exy, exa, - - € Val we call it & data state.
We let ¥ denote the set of all mappings and T denote the set of all data states.
We let o[z — ex] be the mapping o except that it maps z to ez, ie.,
{z: — ez1,20 — exa, ...}z ex] = {z1—ery,...,xs—ex,... }
where = = z; for some 7 € {1,...,n}



A STATE MACHINES 25

We generalize iz — ez| to o[o’] in the following way:
al{zi — ex1,..., 20 — ez, }] d="a[m1 — ex1) - [2n — €Tx)

We let o(z) denote the expression that & maps to. The mapping is lifted to
expressions such that o(ez) yields the expression obtained fromn ex by simulta-
neously substituting the variables of ez with the expressions that these variables
map to in 0. We lift o to signals and cvents in the same way, and to actions as
follows
o((iee, bz, 0c, €)) 2 (o(ie,),a(br,), a(oec),€)

a((iee, bz, oe., (z, 1)) £ (o(iee),o(bze), a(oee), (z,0(exz)))
To define the semantics of a basic state machine, i.e., the sequences of events
that can be produced during execution, it is necessary to record the change in
data state. We define an intermediate semantics for this purpose. The interme-
diate scmantics is defined in terms of sequences of so-called action-state triples.
Action-state triples are of the form

{act,o,0")

where ¢ denotes the so-called pre-state before act is exccuted, and ¢’ denotes
the post-state after act has been exccuted, e.g., if act contains an assignment
(z,ex), then ¢’ is the state o cxcept that @ maps to ex.

To define the intermediate semantics, we make use of the concatenation
operator —~ If s and t are sequences, then s~ yiclds the sequence obtained by
concatenating ¢ and t. We lift the concatenation operator to sequence sets such
that & ~ @ yields the set obtained by concatenating all sequences of & with
all sequences of @', Also, we denote by ®*, the set of sequences obtained by
concatenating ® n times. In particular, ®° is defined by {{}}. For example, we
have that ®° yields ® concatenated five times, i.e.,

PP =D~~~ ~DH—~D
We are now ready to define the intermediate semantics of state machines.

Definition A.3 (Intermediate semantics of basic state machines) The
intermediate semantics of a basic state machine expression P, written 1P,
is defined

&

{{eval(o{(ie., bz, 0cc, €)),0,0)) |o € £}
{{eval(o((ie., bz, 0., (%, €x)))}, 0,
oz — eval(c(ex))])) |o € £)

( (fec, bz, 08¢, €) )
ﬂ (‘.':CE, b:re, OCe, (:E! ECL') D

i
&

(1PQ) £ (P)~(Q)
(P+Q) = (PhU(Q)
(P = Usen((PD)

The intermediate semantics is defined in a modular way in the sense that the
meaning of an expression is not affected by the context it appears in. This
is achicved by letting actions be evaluated under all possible data states. A
consequence of this is that the intermediate semantics describes action scquences
that will never be produced during execution. There are two reasons for this:
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(a) The sequences of the intermediate semantics may contain actions whose
guards arc cvaluated to false. During exccution, however, these actions
will never occur.

(b) Because the pre-state of a triple is not required to be equal to the post-
state of the triple preceding it, values of the data states may implicitly
change at any time between assignments, while this would never occur
during execution.

If a sequence s of action-state triples does not exhibit problems (a) and (b),
we say that it is well formed, and write wfi(s) to indicate this. Formally, well
formed sequences of action-state triples are inductively defined by the following
rules

wft(())  wft({((iee, t, 0ec, ae),0,0")))
wft(s~ {{ect,0,6"))) wft{{{act’, o', "))
wft(s~ ((act,o,0'), (act’, ¢’ ,rr”))}
We let A denote the set of all well formed action-state triple sequences, i.e.,

AZ{se (Act x & x £)" |wft(s)} (10)

We are only interested in the input-output behavior of state machines. To
make this precise we let io € (Act x £ x T)* — E” be the function that takes a
sequence § of action-state triples and produces the sequence of cvents obtained
from s by removing all data stats, assignments, and guards of s. The io function
is formally defined by the following rules;

io(()) = ()
w((((ierbmuE,ac),a,a’))"t) = (ie)~io(t) (1)
io({((¢, bxe, 0e,0.),0,0")) ~t) = (o) ~io(t)

(e, BEne 0y on ey ~E) £ dole)

io(

We lift {o to sets of action-state triple sequences such that io(®) yields the set
of sequences obtained by applying io to each sequence in . For example, we
have that

'&ﬂ({((((?, m): br, ¢, ("El em))'l g1, Ufl}a ((E~ b:c', (ri 171'.), ﬁ)= 02, Ué))}) =
{((?,m), (L, m")}
Definition A.4 (Semantics of basic state machines) The semantics of a
basic state machine expression P, writien [ P], is defined

[P] Zio({P)N.A)

A.2.2 Composite state machines

We assume that basic state machines are autonomous, and therefore exccuted
in parallel. Semantically, parallel composition is defined by interleaving traces.

A tracet is an interleaving of the traces sy, . . ., 8y, written inf((sy, ..., 8n), t),
iff 81,...,8, are sub-sequences of £, i.e,

= inl((sl,.. . — B )

3
T ) Y Y (PR TS LT OO WS 3
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We arc only interested in interleavings that are well formed in the sense that they
describe communication in which messages are sent before they are received. We
write wft(s) if trace s is well formed. The predicate is formally defined by the
rules:

- wft(s—i) . - wft(s i)
) wft{s~(e>-t)‘f6605 wfts~((Lm)) ~t~((7,m)})

We let 7 denote the set of all well formed traces, i.c.,

T Z{s e B" |wft(s)}

We define the parallel composition operator as the set of all well formed inter-
leavings of its arguments, i.e.,

| (515 v80) S{t € Tlinl((s1,-.-, 8n), 1)} (12)

The operator is lifted to trace sets as follows

“ (‘--[)Is'-'s‘:[)n)d'LI U “ (Si!"'!s’l) (13)

81ED .. 8n €EDn

Definition A.5 (Semantics of composite state machines) The semantics
of a composite state machine expression P = (P | ... || Pu), written [P], is

defined by
(P12 1 (A [PD

A.3 Semantics of state machines with potential choice

The semantics of a state machine expression with potential choice is a set of trace
sets called obligations. Intuitively, the traces of an obligation arc equivalent in
the sense that an implementation is only required to produce one of them. Thus,
each trace of an obligation represents underspecification, i.e., a potential choice.
However, an implementation is required to produce at least one trace in each
obligation. Thus obligations represent explicit choices that have to be prescnt
in an implementation.

To define the semantics formally, we lift the concatenation operator ~to sets
of obligations as follows

Q- E{p~d' |pcQng e}

We denote by O, the set. of obligations £ concalenated n times. We define 0o

by {{(}}-

We define the inner union of lwo sets of obligations, written Qw €', by
QWUQE(dUd |pe AP e}
As we did in the previous section, we first define the intermediate semantics.

Definition A.6 (Intermediate semantics of basic state machines) The
intermediate semantics of a basic state machine P with potential choice, written

| P, is defined
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i (Tec, bae, 0ee, €)) = {{{eval(c((ie,, bz, vec,€)),0,0)) |0 € f}}
(| (iee, bz, oe,, (z,ex)) {{({eval(e((ie, bz, oe., (z, E;L;)_)}), a,
glz — evel(a(ex))])) o € £}}

(El]

(PQ) = (P)~(Q)
IP+Q) = (P)U(Q)
(PlQ) = (P)u(Q)
1) = Usenll PDY

We are now ready to define the semantics of state machine expressions with
potential choices.

Definition A.7 (Semantics of basic state machines) The semantics of a
basic state machine expression P with potential choice, written [ P], is defined
by

[P1={io(gnA) |6 € (P}

The semantics of a composite state machine expression is the parallel composi-
tion of the (basic) state machine expressions it consists of.

Deflnition A.8 (Semantics of compaosite state machines) The semantics
of the composite state machine ezpression P = (P || +-+ || Pu) with potential
choice, written [ P ], is defined

[P]= U {Il (31,..., )}

¢IE|IP!. ]:---x@nﬁupn!

B Event transformations

In this section, we give a formal characterization of event transformations and
show that these transformations satisfy some desirable properties. In Sect. B.1,
we consider transformation of basic state machines, whereas in Seet. B.2, trans-
formation of composite state machines is considered.

B.1 Basic state machines

In this section, we give a formal characterization of the transformation which is
induced by an event library. The transformation is defined for state machines
without potential choices.

An event library is a set of event specifications. An event specification is
a pair (e?, PP) consisting of an event definition e? and a state machine pat-
tern PP defining the behavior of the event. An event definition is of the form
(k,5i%) where % is a kind (! or ?), and si® is a signal definition of the form
st(fpi,..., fpn) where fp1,..., fpn are formal parameters. We let FP denote
the set of all formal parameters. The set of all signal definitions SI and cvent
definitions BY arc defined by

SI“ Zstr x FP*  E!Z{1,7} x 514

A state machine pattern PP is a state machine expression that may contain
formal parameters. To make this more precise, we define the notion of expression
pattern, event pattern, and action pattern.
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An expression pattern ex? is an expression that may contain formal pa-
rameters. We let Exp? denote the sct of all expression patterns, and BExp”
denote the set of all boolean expression patterns. Note that Exp C Exp®” and
BExp C BExp”.

An event pattern eP is an event whose transmitter and receiver may contain
special formal parameters and whose signals may contain expression patterns.
The sct of all expression patterns E? is defined by

EP % (1,7} x (Nm U {to}) x (Nm U {from}) x (FP U (Str x (ExP”)")))

where to and from are special formal parameters, i.c., to, from € FP.
We let IE” and OEP denote the set of all input event patterns and output
event patterns, respectively. These sets are defined by

IE" & {(k,mP) € EP |k =?})  OEP={(k,m") € EP |k =!}
The set of all action patterns Act? is defined by
Act? £ (IE” U {¢}) x (BExp® U {e}) x (OE” U {¢}) x ((Var x Exp”} U {e})
We are now ready to define state machine patterns precisely.

Definition B.1 (State machine pattern) The set of all state machine pat-
terns PP is defined by the following grammar

PP = qet? | (PP)* | PP.PP| PP + P?
where act? € Act?.
The notion of an event library is made precise by the following definition.

Definition B.2 (Event library) The set of all event libraries EL is given by
EL ZE? x P?

For every event library EL in EL, we require the signal definitions in EL to be
unigue in the following sense

((k, st(fprs- - oo F2))s L)y (ko st(fPY, - fPR)), PR) € EL = j#k

In addition, we require that each event specification ((k, (si®, P?))) in EL must

satisfy
ffp(PP) C ffp(si®)

where the function ffp yields the set of all formal parameters in a signal defi-
nition or a state machine patiern.

When a transformation induced by an event library FL is applied to a state
machine P, all events in P for which therc is a matching event definition in
EL, are replaced by their specification in EL. An event (k, (nmy, nm,., 5t))
matches an event definition (k, si) if there is a substitution sub that replaces
formal parameters by expressions such that si = sub(si%). More precisely, a
substitution sub € FP — Exp is a function that replaces formal paramcters by
expressions. We let Sub denote the set of all substitutions. Any substitution
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sub is lifted to expression patterns such that sub(ez?) yields the expression
obtained from ez? by replacing each formal parameter fp in ex? by sub(fp).
If ez? contains no formal parameters, then sub(ez?) = exP. Substitutions are
further lifted to event patterns and assignment patterns as follows

sub((k, (nm?, nm?, silez?, ..., ex?)))) = (k,(sub(nm?), sub(nm?),
si(sublexl), ..., sublext))))

(k, (sub(nm?), sub(nm?P), sub(fp)))
(2, sub(ez?))

sub{(k, (nmf,nm?, fp)))
sub{(x, ex?))

& e
I£ 1%

and to state machine patterns as follows

sub((k, (ieP, bxP, 0e?,aP))) £ (k, (sub(ieP), sub(ba?), sublocP), sub(a?)))

sub{ P?.P?) 2 sub(PP). sub(Pf’)
sub(PY + PL) Z sub(P?) + sub(PY)
sub((PP)") 2 sub(PP)

Note that ief denotes an input event pattern or an e, i.e., be? € IEP U {¢}.
The same convention is also used for boolean expression patterns, output event
patterns, and assignment patterns.

We let te_(.) € EL — (E — P) be the function that replaces events by their
definition in an event library. Formally, the function is defined by

def

tepr((k, (nme, nimy, 81))) = subl{io — nmy, from — nn,}|(PP)
if there are ((k, si?), PP) € EL (14)
and sub € Sub such that sub(si?) = si

Note that the special formal parameters o and from are bound to the trans-
mitter and the receiver of messages, respectively. As we did in App. A.2, we lct
sub[fp — ex] denote the mapping sub except that fp maps to ez.

The function tact () € EL — (Act — P) that substitutes events in actions
by their specification in an event library is defined as follows

tactgr((ie, bz, €, a.)) = (e, bxe, €, €).tepr(ie). (e, €, €, a;)

if ie € Dom(tegr)
(e,bze,€,¢).tepr(oe).(e,€,6,ac)
if oe € Dom(tegr) (15)
tactpr((iec, bae, oee,a)) = (iee, bz, oe,, ac)
iee € Dom(tepy) and
oe, & Dom(tepy,)

dei

tactgL((e, bz, , 0e,a.))

We let T'gr be the function that takes a basic state machine P and yiclds the
state machine T (F) obtained from P by replacing the events occurring in
cach action of P by their definition in EL. We let Te; rename variables of
the event specification such that no name clashes occur when events are being
replaced by their definitions. To make this precise, we make use of a renaming
function rnm{_.,-) € P x EL — EL. That is, rnm(P, EL) yields the cvent
library obtained from EL by renaming all its variables such that the following
condition is satisfied

var(rnm(P, EL)) Nvar(P) =0
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where the function var is lifted to event libraries and state machines such that
var(EL') yiclds the set of all variables occurring in the state machine patterns
of EL', and sub(P) yields the sct of all variables occurring in F.

The event transformation Tgy, that applies tactgy, to all actions of a basic
state machine is given by the following definition.

Definition B.3 (Basic event transformation) The event iransformation
T(.) € EL — (P — P) for basic state machines is defined by

TerL(P) gT:-nm(P,EL](P)

where T'(_) € EL — (P — P) is defined by

Ty (act) = tactprs(act)
der ;
Tpu(PQ) 7 T (P) T (Q)
o (P+Q) 2 Ty (P)+ Ty (Q)
Ty (P) = Tgp(P)

Definition B.4 (Semantics of basic event transformations) The seman-
tics of a transformation Tgr, written [TeL]. is defined by

{(IPLITec(PYD| P € Dom(TEL)}

Here Dom(Tgy) yiclds the domain of the function Tey.

The renaming of variables in event libraries ensures that cvent specifications
are side effect free. This has the consequence that event transformations preserve
semantic cquality and are therefore functional.

Theorem B.1 The relation [Te ] is o function.

The following lemmas tells us that the semantics of an event transformation is
entirely characterized by its behavior on events. This property is useful when
defining conditions under which event transformations are sceurity prescrving,

Lemma B.1 If EL is an cvent library, and P and @ be basic state machines
whose variables are disjoint from those in EL, then [TEL'] is homomorphic
w.r.t. union, i.c.,

[Te, KIPIUIQD = [Te HIPD VI T NIRD

Lemma B.2 If EL is an event library, and P and Q be basic state machines
whose variables are disjoint from those in EL, then [T, ] i homomorphic
w.r.t. concatenation, i.e.,

[T M PD~ [T JAQD = [T I PI~1QD

B.2 Composite state machines

The transformation induced by an event library EL which takes a composite
statc machine P as input, written TG, , is simply the function that applies TgL,
to all basic state machines that P consists of.
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Definition B.5 (Composite event transformations) The composite trans-
formation T€(.) € EL — (P — PY) induced by an event library is defined

TGP - 1 B) ST (P) | || T (Pa)
where EL' =rnm(P, || --- || Pn, EL).
The semantics of TgL is defined exactly in the same way as for Tgy.

Definition B.6 (Semantics of composite event transformations) The se-
mantics of the transformation T'G;, written [ TS, ], is the relation defined by

{IPLITELP)D|P € Dom(TEy)}

A transformation T%, may in general transform non well formed traces resulting
from parallel composition at the abstract level into well formed traces at the
concrete level. We say that the image of 2 transformation TE Ly written Imgr,
is the set of all concrete traces that have an abstract equivalent, i.c., the set
of all concrete traces that correspond to well formed abstract traces. Formally,
I'mgy, is the least sct satisfying the following condition

Nieqr,....n}(8i € (Bnm,)" Asi € [TeL [({si)A || (s1,...,80) #0 = (16)
H (Si, ey “":1) ClImgL

for all {nm,y,...,nm,} C Nm.
The semantics of transformation Tg 7, restricted to its image, written Tgy,
is defined

Ter {([PLITGL(P)]I N ImEL)| P € Dom(TE.)} (17)

Theorem B.2 The relation [T%; ] is a function when restricted to its image,
ie.,
[PI1=1Q) = [TE(P)]NImpy = [TE(Q)] N Imer

Lemma B.3 The semantics of the event transformation for composite state
machines induced by an event library EL is homomorphic w.r.i. the union
aperator on trace sets when resiricted to its image, i.e.,

Te ([PIVIQD = Tee([ PV Te([Q])

B.3 Adherence preservation under event transformations

In this section, we present general conditions under which security properties
are preserved under event transformations. We then show how these general
conditions can be instantiated into specific conditions for particular security
properties.

We recall from [34, 33], that a security property SecP is a conjunction of
basic security predicates BSP.y,(®) of the form

Vs,tE‘D:s;tﬁﬂuEd’:sluN[t (18)

for the restriction relation r, the high level relation fj, and the low-level equiva-
lence relation [ on traces (i.e., t,h, [ C E* x E*). Note that if ¢ is a relation, we

write s = t for (s,¢) € ¢, and s ~c ¢ for (s,t) € ¢ if ¢ is an cquivalence relation.
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We will henceforth use the following definition of the low level equivalence
relation |
s~ t e sl =t (19)

for a set of low level events L.

A transformation is sccure w.r.t. a security property SecP if the image of
an abstract specification P is secure w.r.t. SecP if P is secure w.r.t. SecP.
We restrict attention to the image since we cannot exploit the fact that the
abstract specification is secure to ensure that concrete traces that do not have
any abstract equivalent do not violate security. This means that additional
security analysis is nceded at the concrete level to ensure that these traces that
do not have any abstract equivalent do not violate sccurity.

Definition B.7 (Security preservation) Let EL be an cvent library and SecP
be a security property. Then transformation TS, induced by EL preserves se-
curity property SecP for specification P iff

SecP([P]) => SecP(Ter([P]))

The following theorem presents general conditions under which a basic sccurity
predicate is preserved by a transformation.

Theorem B.3 Let v be a restriction, B be a high level relation, and TG, be
the transformation induced by event library EL. Then TgL preserves BSPyy for
specification P if the following conditions are satisfied for all s,t,u € [P],s'€e

Te({sh).t' € Te({t})

§ 5Lt = st (20)
sHtna b umt = Bu’ETEL({n}):s'E—'»u’ ~ t (21)

Note that we have exploited Lemma B.3 in the definition of the conditions since
the property ensures that the transformation Ty, is defined for singleton sets.
Obviously, a transformation preserves a security property SecP if the conditions
are satisfied for all basic security predicates that SecP consists of.

Corollary B.1 Let SecP be a security property, i.c., o conjunction of basic
security predicates. Then SecP is preserved under a transformation TS, if
cach basic security predicate of SecP satisfies the conditions (20) and (21 ) of
Theorem B.3.

The conditions of Theorem B.3 may be used to derive specific conditions that
can be used to check that a transformation preserves a given security property.
The procedure for deriving such conditions for an arbitrary security property
SecP and event library EL is as follows. For each basic security predicate B8Py
that SecP consists of

e define two conditions € and € and show that C; implies (20) and C7
implies (21) for the transformation Ty, of basic state machines induced

by EL;



B EVENT TRANSFORMATIONS 34

e define two conditions Cs and C} and show that C; A Cz implies (20) and
C% A C% implies (21) for the composite transformation T, induced by
EL.

In the following we illustrate the procedure for the non-inference property [30].

Definition B.8 The security property non-inference, writien NF, consists of
the basic security predicate BSPyy whose restriction v and high level relation b
are defined

st & true
I
s2t & thh=)

According to the procedure, we must first define two conditions C; and CY
and show that Cy implics (20) and C} implies (21), respectively. By definition
of v, any transformation will trivially satisfy condition (20). Thus we need
only consider the latter condition (21). We first instantiate (21) for the basic
security predicate defining the NF property. We get for all traces ¢ and u, and
all ' € TEL({ﬁ})

L= W eTe({u)):v|lg=0Au =t (22)

u|H ='-<)/\u|f, =1

To define a condition € that implies (22) for basic transformations, we first
examine the case in which [Tz ] is applied to single events. We can do so
because [Tgr || is homomorphic w.r.t. union and concatenation of trace sets
(by Lemma B.1 and Lemma B.2). It is casy to sce that any transformation
that transforms a non high level event into a sct of traces that contain a high
level event will fail to satisfy condition (22). Hence, we define a condition that
ensures that this never occurs:

e¢H = Vse[TeLl({e}D):slu =0 (23)

The same consideration holds for low level events; if a non low level event is
transformed into a set of traces that contain a low level event, then condition
(22) is broken. Therefore we must require

egL = Vse[Te]({e}):s]L =1 (24)

When the set L of low level events, and the set H of high level events are defined
as all events that may occur in particular state machines, then conditions (23)
and (24} are trivially satisfied because event transformations cannot change
the transmitters or rececivers of events. By cxploiting Lemma B.2, it follows by
induction over the length of traces « and ¢ that any transformation on basic state
machines satisfying conditions (23) and (24) will satisfy the condition (22).

The final step of the procedure is to define a condition C% and to show
that this condition together with (23) and (24) implies (22) for transformations
of composite state machines. To obtain €} we observe that the first part of
condition (22) (uw'|g = {}) is ensured by (23). However, this is not the case for
the second part (u'|r, = t’|2) which requires low level equality to be preserved.
This condition can be rephrased as

Ter({tle}) = Ten({thle (25)

for all traces t.
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The reason why condition (25) may not be satisfied is that low level obser-
vations on the abstract level may be transformed into several conerete low level
observations that may be part of traces that are not well formed. To sce this,
consider the upper most composite state machine of Fig. 12. Let the set of low
level events L be the set of events that occur in state machine Py, and the sef
H of high level events be {7d,?f}. The semantics of A is

(4] =l ({(la)}, {{?a, '), {7a, 1d)}, { (e}, (?d)}) = {{'a, 7a,c, ?c), (a, ?a, \d, ?d) }

The specification is secure w.r.t. the NF-property because when the low level
user obscrves {la) (this is the only observation the low level user can make), he
will not know whether the high level event 7d will occur.

Now let EL be an cvent library defined such that 7', (A) = C where C is the
lower most specification of Fig. 12. Specification C has the following semantics

(¢l =l ({¢a1,lar), {lan, taz)}, {(?as, Pa1, e}, (a1, Paz, ! f), (Taz, Taq, ley,
(Taz, 7a2, ')}, {(7e), 21)D) = {{la1, a1, Ta1, Ta1, le, 7e), (laz, lag, 7az, Tas, | f, 7 )}

The specification C is not secure w.r.t. the NF property because the low level
user will know that the high level event ?f occurs when the observation (lag, las)
is made. The problem is that the low level observation !a has been transformed
into the two observations (lag,lay) and (lag,las). But the trace in which both
obscrvation (laz,'ag) and cvent le (instead of the high level event |f) occurs is
not well formed, and therefore not part of the concrete specification.

The check that condition (25) is satisfied for a state machine P, we may
for instance, check that the traces obtained by transforming two corresponding
events of the event library are not affected by the context they appear in, i.e.,

((tym), (7, m) € DomftepL) At € [PIA((,m),(7m)) ot) =
((s' € Teo({((t, m), (7,m)})) & (' € TeL({t}) : 8" 2t'))

where s © ¢ means that s is a sub-trace of ¢, i.c., a trace s = {e1,...¢5) is a
sub-trace of t iff
si~{e1) = " 8n () TS =t
for some §p,...,5,41 € E.
The conditions (23), (24), and (25) implies that (22) holds. By Theorem B.3
and definition of NF, this means that any transformation satisfying (23), (24),
and (25) will preserve the NF property.
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C Syntactic categories

Figure 12: Example

Set* Meaning
P(A) = {X|XCA} The power sct of A.
A" The set of all finite sequences over the
set A.
ar € AExp Arithinetic expressions
br € BExp Boolean expressions
sz € SExp String expressions
ez € Exp = AExp U Expressions
BExp U
SExp
Val = Exp The set of all values.
z,y € Var C Exp The set of all variables.
a € Assign = Var x Exp The set of all assignments.
nm € Nm The set of all names.
st € SI The set of all signals.
m e M = NmxNmx The set of all messages.
SI
ic € IE 2 (Y xM The sct of all input cvents.
oe € OE = {I} xM The sct of all output events.
ceE = IEUOE The set of all events.
act € Act = IE U {e} x The set of all actions.
BExpU{e} x
OE U {e} x
AssignU {e}
PeP Set of all basic state machine expres-
sions.
PePp® Set of all composite state machine ex-

pressions.

* By the notation ¢ € A we understand that 4 is ranged over by a.
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D Proofs

D.1 Auxiliary definitions

In this section, we make some definitions that are needed in the proofs.

Definition D.1 We let the function |.| € P — P(Act”) yield the set of action
sequences described by a basic state machine without potential choice. This
function is defined by

jact] £ {(act)}

PQI £ |PI~[Q)
P+Ql 2 [PlulQl
P 2 UsenCIPlY

Definition D.2 We let the functions preState(_), postState(.) € (Act x ¥ x
L)t — T yield the first and the last state in a non-empty sequence of action-
state triples, respectively. These functions are defined by

preState({(act,o,a'))~as) = o

postState(as— ((act,0,0")}) = o

In addition, we let the functions preState(_, ), postState(.)- € (Act x Tx f)"‘ X
P(Var) — X be defined by

preState(as, V) = preState(as) \ (V x Val)
postState(as, V) = postState(as)\ (V x Val)

Definition D.3 We let pr(_) be the function that yields the prefiz closure of a
set of sequences. The function is defined by

pr(A) E{s|te AnsCt}
where C, the prefic predicate, is defined by

sCteduis~u=t

D.2 Basic transformations

Theorem B.1 The relation [Tgy ] is a function.

Proof of Theorem B.1
AssuME: 1. [P] = [ Q] for some P,Q € P
2. EL € EL
Prove: [Ter(P)]=[Te.(Q)]
(1)1. AssuME: 1.1 EL; =rnm(P,EL) and EL; = rnm(Q,EL) for EL,,EL; €
EL

Prove: [T, (P)] =[TkL.(Q)]
(2)1. AssumEi: 2.1 8 € [Ty, (P)]
PROVE: ' € [T%g.,(Q)]
(8)1. Choose as} € (T, (P)) N A such that io{as}) = &'
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Proor: By assumption 2.1 and definition of [ ] (Def. A.4).

(3)2. Choosc (acty.1,.-.,act1;) € |[P|land as} ; € (Tg,, (actia)),...,as] ; €

(T'5L, (acti;) ] such that as} = as} ;~: - ~asy;
Proor: By (3)1 and Lemma T.B.1.1.

{3)3. Choose as; € A and asy, € {acti1],...,a81,; € {acty ;) such that
asy = asy,;—---—asy; andVi € {1,...,J} : preState(as; ;, var(EL,)) =
preState(as] ;,var(EL1)) A postState(asy ;, var{EL)) =
postState(as) ;,var(EL,))

PRroor: By assumptions 1.1 and 2, {3}1, (3)2, and Lemma T.B.1.2.

(3)4. io(asy) € [P]

Proor: By (3)2, {3)3, definition of (-) (Def. A.3), definition of [.]
(Def. A.4), and definition of var and rnen (App. B.1).

{3)5. Choose asz € (@) N .4 such that io(asa) = io(as)

Proor: By (3)4, assumption 1 and definition of [.] (Def. A.4).

{3)6. Choose (acto.1,...,actar) € |@Q| and asz; € (actay),...,as2% €
{acta.x ) such that asy = asp )~ —~asap

PROOFT: By (3)5, definition of || (Def. D.1) and definition of | _) (Def. A.3).

(3)7. Choose asy € (T'gp,(acta1))~--- =Ty, {actar)) such that as; €

A and io(ash) = io(as})
Proor: By assumption 1 and 1.1, (3)1, (3)2, (3)3, {3)4, (3)5, {3)6, and
Lemma T.B.1.3.
(3)8. as} € (T, (@) N4
ProoF: By (3)6, (3)7, and definition of (_|) (Def. A.3) and definition of
Tl (Def. B.3).
(3)9. Q.ED.
Proor: By {3)1, (3)7, (3)8 and definition of (Def. A.4).
(2)2. AssumE: 1.1 8" € [Ty, (Q)]
Prove: s € [Ty, (P)]
PRrOOF:By (2)1 and symmetry of =.
(2)3. Q.E.D.
Proor:By (2)1 and (2)2.
(1)2. Q.E.D.
Proor:By (1)1 and definition of Tez (Def.B.3).

Lemma T.B.1.1 If
e as’ € (T'g (P)D
then

o lacty,... ,acty) € |P|: Jasy € (T (act1)]) : - : Fas), € (T (act,)) :
as' =as}{~--as)

Proof of Lemma T.B.1.1
AssuME: 1. EL€ ELand PP
Prove: as' € (T (P)) = (Hacty,..., acty) € |P|: Jas) € (T (act)) :
-+t Jas), € (T (ucta)) : as' = as{~- - as),)
(1)1. CAsSE: 1.1 P = act
(2)1. AssuME: 2.1 as’ € [Tz (act))
Prove: 3I(acty,...,act,) € |act| : Sas} € (T (ecty)) : -+ : Jas), €
(Te(acts)) : as’ = ash~---asl,
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{3)1. Choosc {act;} € |act|
PRrooF: By definition of || (Def. D.1).
(3)2. as’ € (T'gi(act;))
Proor: By (3)1 and assumption 2.1.
(3)3. Q.E.D.
PRrooF: By {3)1 and (3)2.
(2)2. Q.E.D.
Proor: By (2)1 and logical implication.
(1)2. CASE: 1.1 P = P,.Ps

1.2 as’ € d]TEL(P;)D => (El(actl, ,actn) € |P1| : Jas} €
(T (acty)]) < -+ : ast, € (Tgp(actn)) : as’ = asi—~---asy,)
1.3 as’ € UTEL(Pg)D => ( {acty, . .,act,; € |P2| : Jas} €
(Thp(acti)) :---: Jash € (Tpplactn)) : as’ = asy—---asy)

(2)1. AssuMmE: 2.1 as' € uTjEL(P,.Pg)[]
Prove: 3Jacty,...,act,) € |P.P2| : Jasi € (Tgplact)) @ -
Jas!, € (T (acty)) @ as’ = as] —~---as),
(3)1. Choose as} € (Tz, (P1)) and ash € (T (P2)) such that as’
as) ~ash
Proor: By assumption 2.1, definition of Tz, (Def. B.3), and definition
of (-} (Def. A.3).
(3)2. Choose (act.1,...,actyj) € |Py|and as), € (Tgy(actia)),. .. as1; €
(T (acty ;)] such that as} = as} ; ~---~as};
Proor: By (3)1 and assumption 1.2.
(3)3. Choose {acty.1,...,act2i) € |P2| and ash | € (T (acta1)),...,as0,; €
(T (acto.k) ) such that ash = ash, ~-+-—ash,
Proor: By (3)1 and assumption 1.3.
(3)4. {actyy,...,acty j,actay,. .. actag) € [Py
Proor: By (3)2, (3)3 and definition of || (Def. D.1).
(3)5. QED.
ProoF: By {(3)1 - (3)4.
(2)2. QE.D.
Proor: By {2)1 and logical implication.
(1)3. CasE: 1.1 P=P + P
1.2 as’ € (]T};L(Pl)[) = (Jacty,...,acty} € |P| : 3ns] €
(T (act)) : -+« : Jas), € (Tgylacty)) : as’' = asy -+ as),)
{
Ll

I

1.3 a¢' € (]TEL(Pz)D = (EI acty,...,act,) € |Pe| : Jas) €
quE‘L(aCtl}[} 3&8,‘ € GT
(2)1. AssuME: 2.1 as’ € t]T’EL(Pl + P))
Prove: 3acty,...,acty) € |Py + Ps| : 3as} € (Tgplact)) : - :
Jas!, € (Tpp(acts)) : as’ = as) ~ - -as;
(3)1. Choose i € {1,2} such that as’ € (T'g. (P))
Proor: By assumption 2.1 and definition of T, (Def. B.3), and defini-
tion of { ) (Def. A.3).
{3)2. Choose (acty,...,act,) € |P;| and a31 € (T lact)), - .as;, €
(T'z.(act,)) such that as’ = as] ~- -ash
Proor: By (3)1 and assumption 1.2 or assumption 1.3.
{3)3. (acty,...,acty) € | P+ Py
Proor: By {3)2 and || (Def. D.1).
(3)4. QE.D.
Proor: By (3)1 - (3)3.

act,)) : as’ = as|~--as;,)
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(2)2. Q.E.D.
Proor: By (2)1 and logical implication.
(1)4. Case: 1.1 P =P}
1.2 @’ € (T (P1)) == (actr,...,acty) € |Py| : Jas] €

(T (ucty)) s -+ Jas), € (T (acty)) : as’ = as}—-+-as),)
{2)1. AssuME: 2.1 as’ € (T (P))
Prove: 3Iacty,...,act,) € |P7|: Jasy € (T (acty)) : -+ : Jas), €

(Ts(acty)) s as’ = as) ~---as),
(3)1. Choose j € N\ {0} such that as’ € (T .(F)
Proor: By assumption 2.1 and definition of T, (Def. B.3), and defini-
tion of || (Def. A.3).
(3)2. CasE: 3.15=1
{4)1. as’ € (Tl (P1))
Proor: By (3}1, and assumption 3.1.
{4)2. Choose {acty,...,act,) € |Pi| and as{ € (T (act1)),...,as), €
| Tz (acty)) such that as’ = asi—~---—as,
Proor: By {4}1 and assumption 1.2.
{(4)3. {acty,...,acty) € [P
Proor: By (4)2 and definition of || (Def. D.1).
(4)4. Q.E.D.
Proor: By (4)2 and (4)3.
(3)3. CAsE: 3.1 j=j4"+1
32 Vi < j'as’ € (T (P))E = Jacty,...,acts) €
|P1)i: Jasy € (Tlgp(act)) < -+ Jas!, € (T (actn)) : as’ =
as) —~---ash
{4)1. Choose aas} € (T'5 (P1)) and aash € (T (P1)) such that
as’ = aas] ~aash
Proor: By {3)1, assumption 3.1,definition of T, (Def. B.3), and
definition of () (Def. A.3).
{4)2. Choose {acty1,...,acty,,) € [P and as| ; € (T (actri)), ... a8\, €
(T (actym)) such that aas) = as |~ - ~as],,
Proor: By (4}1 and assumption 3.2.
(4}3. Choose {acta.1,...,acts,) € |Pi| and ash, € (T (acta 1)), ... a8h, €
(T (ecta )] such that cash = ash; ~ - ~as) ,
Proor: By (4)1 and assumption 1.2.
(4)4 (aCti.h il 7“Ct1.nt: ﬂ*CtZI: LAgH] a‘:t?.n) € |P1'|
Proor: By (4)2, (4)3 and definition of || (Def. D.1).

(4)5. Q.E.D.
ProoF: By (4)2 - (4)4.
(3)1. Q.E.D.
Proor: By (3)2 and (3)3.
(2)2. Q.ED.
ProoF: By (2}1 and logical implication.
(1)5. Q.E.D.

Proor: By (1)1 - {1}4 and definition of P (Def. A.1).

Lemma T.B.1.2 If
o var(EL) N (var(act;) U -+ Uvar(act,)) = B
e as' € A
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o as! € Tz (act1)), ... a8 € (Tgp(actn))

e as' =as|— - as),

e Jus € A: Jas; € (acty]) : -+ : Jas, € (act,) 1 as =as; ~ - "asp A
(vi € {1,...,n} : preState(as;,var(EL)) = preState(as],var(EL)) A
postState(as;, var{EL)) = postState(as;, var{EL)))

Proof of Lemma T.B.,1.2 The proof is by induction on the length of the
action sequence (acty,...,acty). In the proof we make use of the following

definition which high-lights the induction.

Ind((acty, ..., actn), EL) g
Vas' € A:Vas) € (T (acty)) -+ : Vas), € (T {acts)) -
as’ = as| ~---~as),
= das € A:
Jdas; € (acty ) : +--3asy € (act, ) :

AGsS =as; "+ 08n

AViE{1,...,n}:
A preState(as;, var(EL)) = preState(as}, var(EL))
A postState(as;, var( EL)) = postState(as;, var(EL))

Also, if s is a sequence, we denote by pref(s, j), the prefix of s of length j. If j
is greater than the length of s, then pref(s, j) = s.
The proof is given by the following.
AssUME: 1. war{EL) N (var(act;) U - -- U var(act,)) = @ for EL € EL and
acty,...,act, € Actandn > 1
Prove: Ind({acty,...,acty), EL)

(1}1. Case: 1.1n=1
(2)1. AsSUME: 2.1as' € A
2.2 asy € (T (act1))
2.3 as’ = as)
ProVE: Jas € A:Jas; € (act ) : as = asiApreState(as:, var(EL)) =
preState(as), var(EL))ApostState(us,, var(EL)) = postState(as),var(EL)))
(3)1. Cast: 3.1 acty = (¢,bz. € a.) for bz, € BExp U {¢} and a, €
Assignu {e}
(4)1. Choose as € (act; ) such that as = as’
(5)1. (Tl (act:)) = (tacter(act:)) = (act: )
PROOF: By assumption 3.1, definition of Tz, (Def. B.3), and defini-
tion of tactzr (Eq. (15)), definition of tepr (Eq.14), and definition
of E (App. A.1.1).
(5)2. Q.E.D.
PROOF: By assumption 2.2, assumption 2.3, and (5)1.
(4)2. as € A
Proor: By (4)1 and assumption 2.1.
(4)3. preState(as, var(EL)) = preState(as’, var(EL)) and postState(as, var(EL)) =
postState(as’,var{EL))
Proecr: By (4)1.
{4)4. Q.E.D.
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Proor: By (4)1, {4)2, and (4)3.
(3¥2. Case: 3.1 act; = (ie, bz, ¢, a.) for ie € IE, bz, € BExp U {¢}, and
a. € AssignU {c}
(4)1. CAsE: 4.1 ie € Dom(tegL)
{5)1. Choose aas] € {(e, bz, € €)), ansh € (tepr(ic)), and aash €
(e, e,€,a.) ) such that as| = aas| ~aasl ~aas)
Proor: By assumption 2.2, assumption 3.1, assumption 4.1, and
definition of T, (Def. B.3), and (-|) (Def. A.3).
{5}2. Choose as € ((ie, bz, ¢, a.) ) such that preState(as, var(EL)) =
preState(aas), var(EL)) and postState(as, var(E L)) = postState(aas), var(EL))
ProoF: By assumption 1 and (5)1, definition of (.} (Def .A.3),
definition of tegy, (Eq. 14), and definition of var(EL) (Section B.1).
(5)3. as € A
Proor: By assumptions 2.1, 2.2, and 2.3, and (5)1, {5)2, and defi-
nition of A (Eq. 10).
(5)4. Q.E.D.
Proor: By (5)2, assumption 3.1, and (5)3.
{4)2. Casg: 4.1 ie ¢ Dom(tegr)
(5)1. Choose as € (act; ) such that as = as’
(6)1. (Txi(act))]) = (tactgr(acty)) = (acty )
ProoF: By assumption 3.1, assumption 4.1, definition of T
(Def. B.3), definition of tactgr, (Eq. (15)), definition of tegy, (Eq. 14),
and definition of E (App. A.1.1).
(6)2. Q.E.D.
Proor: By assumption 2.2, assumption 2.3, and (G}1.
{5)2. as € A
Proor: By (5}1 and assumption 2.1.
(5)3. preState(as, var(EL)) = preState(as’, var(EL)) and
postState{as,var(EL)) = postState(as’)var(EL)
Proor: By (5)2.
(5)4. Q.ED.
Proor: By (5)1, (5)2, and {5)3.
(4)3. Q.ED.
Proor: By (4)1 and {4)2.
{3)3. Case: 3.1 aet; = (¢, bz, 0e,a,) for oe € OE, bz, € BExp U {¢}, and
a. € AssignU {e}
PRooF: Proof is the same as for (3)2.
(3)4. Q.E.D.
Proor: By (3)1 - (3}3 and definition of Act (Eq. (7)) and (Eq. (8)).
(2)2. Q.E.D.
Proor: By (2)1 and logical implication.
(1)2. CAsE: 1.i1n=n'+1
1.2Vj e N\ {0}:j <n' = Ind(pref((acty,..., acty),j), EL)
{2)1. AssuME: 2.1 as' € A
2.2as) € (Tl (acti) ) A - - Aas!, € (T, (acts))
2.3 as’' =as)~---~as,

Prove: 3Jas € A : Jas; € {act(]) : +++ : Jas, € (actn) : as =
as;~---~asy A{¥i € {1,...,n} : preState(as;, var(EL)) =
preState(as), var(EL))ApostState(as;, var(EL)) = postState(as;, var(EL)))

(3)1. Choose aas’ € A such that as’ = aas’ ~as),
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PRrOOF: By assumption 2.1, assumption 2.3, and definition of A (Eq. (10)).

{3)2. Choose aas € A and asy € (acty]),...,a8,—1 € (actn_1] such that
aas =as;—---—asp-1 and i € {1,...,n—1} : preState{as;, var(EL)) =
preState(ast, var(EL))ApostState(as;, var(EL)) = postState(as}, var(E L))

Proor: By (3)1 and assumptions 1.1, 1.2, 2.2, and 2.3.

(3)3. Choose as,, € (act, ) such that aas~as, € A, preState(as,, var(FEL)) =
postState(aas,var(EL)), preState(as,, var(EL)) = preState(as;,, var(EL)),
and postState(as,,var{EL)) = postState(as),, var(EL))

{(4)1. Choose as, € (act, ) such that
preState(asy,, var(EL)) = postState(aas, var(EL))
Proor: By (3)2 and definition of (-] (Def. A.3).
(4)2. preState{asy,var(EL)) = preState(as], var{EL))
(5)1. postState(aas,var(EL)) = postState(as)_;,var(EL))
Proor: By (3)2 and definition of postState(., ) (Def. D.2).
(5)2. postState(as!,_,,var(EL)) = preState(as;,, EL)
PRroOF: By assumptions 2.1 - 2.3 and definition of A (Eq. (10)).
{3)3. Q.E.D.
ProoF: By {4)1, {5)1, and (5)2.
(4)3. postState(asn, var(EL)) = postState(asy,, var(EL))
(5)1. CAsE: 3.1 act,, = (¢,bz,,€,a,) for bz, € BExpU {¢} and a, €
Assign U {¢}
(6)1. as), € {act. ) = (Tp(act,))
PROOF: By assumption 2.2, assumption 3.1, and definition of T
(Def. B.3).
(6)2. Q.E.D.
PRroor: By assumption 1, (4)1, {4)2, {6)1, and definition of {.)
(Def. A.3).
(5)2. CasE: 3.1 actp, = (ie, bz, €, a.) for ie € IE, br, € BExp U {c},
and a, € AssignU {e}
(6)1. CasE: 4.1 ie € Dom(tegy)
(7)1. Choose aas) € { (e, bx.,c,¢€)]), aash € (tegs(ie)), and aasy €
((c, €, € a.}) such that as), = aas| ~aash —~aasy
PRrooF: By assumption 2.2, assumption 3.1, assumption 4.1,
and definition of 75, (Def. B.3).

(7)2. postState(as,,var(EL)) = postState(aasy,var(EL))
Proor: By assumption 1, assumption 3.1, {(4)1, (4)2, (7)1, and
definition of {_)) (Def. A.3).

(7)3. Q.E.D.

ProoF: By (7)1 and {7)2.
(6)2. CasE: 4.1 ie ¢ Dom(teg)

(1. ash, € (acty | = | Tz {actn))

Proor: By assumption 2.2, assumption 3.1, and definition of
T'., (Def. B.3).

(7)2. Q.E.D.

PRrOOF: By assumption 1, {4)1, (4)2, {7)1, and definition of {_)
(Def. A.3).
(6)3. Q.E.D.

Proor: By (6)1 and (6)2.

(5)3. CaSE: 3.1 act,, = (¢, bz, o€, a;) for oc € OE, bz, € BExpU{¢},
and a, € AssignU {e}
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ProoOF: Proof is the same as for (5)2.
(5)4. Q.ED.
Proor: By (5)1 - (5)3 and definition of Act (Eq. (7)) and (Eq. (8)).
(4)4. aas—as, € A
ProoF: By assumption 2.1 - 2.3, (3)2, {4}1, {4)2, assumption 1, defi-
nition of T, (Def. B.3), and definition of A (Def. 10).
(4)5. Q.E.D.
Proor: By (4)1 - (4)4.
(3)4. Q.E.D.
Proor: By (3)1, {3)2 and {3)3.
(2)2. Q.E.D.
Proor: By (2)1 and logical implication.
(1)3. Q.E.D.
Proor: By (1)1 and (1)2.

Lemma T.B.1.3 If

o EL; = rnm(P,EL) and ELy; = ram(Q,EL) for some P, € P and
EL EL,, EL, € EL

o (actyy,...,act; ;) € pr{|P|)

o asi € (T, (actia)) A+ Aasy; € (T, (acty ;)
¢ as) € Aand as) =asy; - "asy

e asy) € (actia)A - Aasyj € (acty ;)

e Vie {l,...,7}: (preState(as, ;,var(EL,)) = preState(as] ;, var(EL1)))A
(postState(asy i, var(ELy)) = postState(as! ;, var(E£Ly)))

o as; € pr({P))N.Aand as; = as; )~ ~asy
e ass € pr(|Q)) N A and io(as2) = io(as;)
o lactay,...,acta ) € pr(|Q])
e ass; € (actza)),...,as2p € (acta)
® asp =ass, " aSak
then
o Jasy € (Ty,(actar)) — -~ (T, (actai)) @ ast € A Aio(asy) =

io(as})

Proof of Lemma T.B.1.3 The proof is by induction on the sum j and
k. In the proof, we make use of the following definition which high-lights the
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induction.

def

ITI-L)!(P,Q,EL]_,ELQ,TL) =
Vi, ke N\ {0}:
Y(acty.1,.-.,acty ;) € pr(|P|) :
Vasyy € (T'py, (acti1)) ¢ -+ Vasy ; € (T'g, (actyy)) :
Vasyy € (actiy]) i Vasyy € (acti ;)
Y{acta.1,...,acta ) € pr(|Q|) :

Yaso,1 € (actay):---:Vasay € (actak):
Yas) € A:Vas; € pr({P))N.A:Vass € pr((@)) NA:
Aj+k=n

Aas) =asi; - asy;
Aasy = asy, 7T as
Aasg = asay T aS2k
Ado(as)) = io(asa)
AVie{l,...,5}:
A preState(asy i, var(EL,)) = preState(as) ;,var(ELy))
A postState(asy ;, var(EL;)) = postState(as) ;,var(EL;))
= Zash € (T'zp,(actz1))~ -~ (Txp,(actay)) :
Aash € A
Aio(ash) = io(as))

AsSUME: 1. FLy = ram(P, EL) and ELy = ram(Q, EL) for some P,Q € P
and EL,EL,,FL, € EL
2.n>2 forsomen € N

PrROVE: Ind(P,Q,ELy,ELy,n)

(1)1. CasE: 1.1 n=2
(2)1. AssUME: 2.1 j=1and k=1 for j,k € N\ {0}

2.2 (acty) € pr{|P|)
2.3 a3} € {Ty, (act1))
2.4 a3} € A
2.5 as; € (acty )
2.6 (preState(as,,var(ELy)) = preState{as;, var(EL1))}) A
(postState(as), var{EL,)) = postState(as], var(EL;)))
27as; € pr((P))NA
2.8 ass € pr((@)) N A and io(ass) = io(as;)
2.9 (actz) € pr(|Ql)
2.10 asq € (acta]

Prove: 3ash € (T, (acts)) : ash € A Ado(asy) = io(as])
(3)1. CasE: 3.1 act; = (e,bx.,¢,a.) for bz, € BExp U {¢} and a, €
Assign U {c}
(4)1. CasE: 4.1 acta = (¢,bxl,¢,al) for bz, € BExp U {¢} and a{ €
Assign U {e}
(5)1. Choose ash € (T, (actz)) such that asy = ass
(6)1. (T'gy,(act2)] = (tactpr,(actz)) = (actz)
Proor: By definition of T';;, (Def. B.3), definition of tactgy
(Eq. (15)), and assumption 4.1.
(6)2. Q.E.D.
Proor: By (6)1 and assumption 2.10.
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(5)2. ash € A
Proor: By (5)1 and assumnption 2.8.
{5)3. iolash) = io(as})
(6)1. do(asy) = ()
Proor: By (5)1, assumption 2.10, assumption 4.1, definition of
{) (Def. A.3) and definition of io (Eq. (11)).
(6)2. o(ast) = ()
Proor: By assumption 2.3, assumption 3.1, definition of T,
(Def. B.3), definition of ( ) {Def. A.3) and definition of i (Eq. (11)).
(6)3. Q.E.D.
PRrRoOOF: By (6)1 and (G)2.
{5)4. Q.E.D.
Proor: By (5)1 - (5)3.
{4}2. CASE: 4.1 acta = (ie',bz!,¢,a!) for ie’ € IEU {¢}, bz, € BExp U
{¢}, and a. € AssignU {¢}
PRroor: Case assumption 4.1 contradicts assumption 2.8 since assump-
tion 4.1 implies that io(ass) # io(as;) by definition of (- (Def. A.3)
and definition of 1o (Eq. (11)}). Hence, assumption 4.1 cannot hold.
(4)3. CasE: 4.1 acta = (g, bz, 0¢’, a}) for oe' € OEU{e}, bz € BExpU
{e}, and a,» € AssignU {e}
ProoF: Case assumption 4.1 contradicts assumption 2.8 since assump-
tion 4.1 implies that {o(ass) # fo(as;) by definition of (- (Def. A.3)
and definition of 10 (Eq. (11)). Hence, assumption 4.1 cannot hold.
(4)4. Q.E.D.
PRrRoorF: By {4)1 - (4)3 and definition of Act (Eq. 7) and (Eq. 8).
(3)2. Case: 3.1 acty = (ie, bz, ¢,a.) for ie € IEU {¢}, bz, € BExp U {e},
and a. € Assignu {c}
{4)1. CAsE: 4.1 actz = (g, bzl €, al)
PRrooF: Case assumption 4.1 contradicts assumption 2.8 since assump-
tion 4.1 implies that io(ase) # io(as;) by definition of (.| (Def. A.3)
and definition of ¢o (Eq. (11)). Henee, assumption 4.1 cannot hold.
(4)2. Case: 4.1 acty = (ie’, bzl ¢,a) for ie’ € IEU {e}, bzl € BExp U
{€}, and a! € Assign U {¢}
(5)1. Case: 5.1 ic € Dom(tegr,) and ie’ € Dom(tegr.)
{6)1. Jass € {(e, bzl e €)tepr,(ie').(e,e,¢,a)) ) : ash € Anio(as)) =
i0(ash)
(D)1 Zash € (e, bat, e, ) ~ (temrq(ie’)) ~ ((e e e al)) : ash €
A N io(as)) = io(ash)
{8)1. Choose as} ; € {(e,bxe,€,€)), as] o € (tegpr,(ie)), and
as] 3 € ((e ¢ ¢,a.}) such that as] = as| | ~as| ,~as) 4
(91 (T, (act1)) = (tactpr, (acty)) = ((¢, bz, ¢, €).tepr, (ie).(6, €. €, ac) )
Proor: By definition of T, (Def. B.3), assumption 3.1,
assumption 5.1, and definition of tactpy (Eq. (15)).
(92. ((e, bz, €).tepy, (ie).(e, e, €,a0) ) = { (€, bz, €,€) )~ (tegys, (ie) )
((c.e,c,a0))
Proor: By definition of (.} (Def. A.3).
(9)3. Q.E.D.
Proor: By (9)1, (9)2, and assumption 2.3.
(8)2. Choose variable renaming functions vry,vrs € Var —

Var such that vry (EL) = ELs and vra(EL) = EL; when
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ury and vrg are lifted to event libraries.
PRroOOT: By assumption 1.

(8)3. Choose ash ; € ( (¢, bzl, ¢, ¢))) such that preState(ass ;, ver(ELs)) =
preState(asy, var(ELg)) and preState(ass )(vra(z)) =
preState(ast ;) (vry(z)) for all z € var(EL)

ProoF: By assumptions 1, 2.9, and 4.1, and (8)1, (8)2, def-
inition of {_) (Def. A.3), preState(-,-), and preState(.,.)
(Def. D.2).

(B)d. ash, € A
Proor: By (8)3 and assumption 2.8, and definition of A
(Eq. (10)).

(8)5. io(as] ;) = io(asy,;) = (}

PRrooF: By (8)1, (8)3 and definition of (-) (Def. A.3) and io
(Eq. (11)).
(8)6. Choosc ash, € (tepr,(ie')] such that preState(ash,) =
postState(ash ;)
PRoOOF: By (8)3, assuruption 5.1, definition of (.} (Def. A.3),
and definition of preState(_, ) and postState(-,-) (Def. D.2).

{8)7. asha € A
Proor: By assumption 2.4, assumption 2.6, (8)1, (8)3, (8)6,
and definition of A (Eq. (10)).

(8)8. io(ash 5) = io(as 3)

PROOF: By assumption 2.6, assumption 2.8, (8)1, (8)3, (8)6,
and definition of ie (Eq. (11)).
(8)9. Choose ash 5 € ((e,¢€,¢,al)) such that preState(ass 3) =
postState(ash 4)
Proor: By definition of {.) (Def. A.3), and definition of
preState() and postState() (Def. D.2).

(8)10. asp 3 € A
ProOF: By (8)9 and definition of A (Eq. (10)).

(8)11. io{ash 4) = io(as] 3)

PROOF: By (8)1, (8)9, definition of {-) (Def. A.3), and defi-
nition of io (Eq. (11)).

(8Y12. Choose ash € A such that ash = ash ; ~ash o ~ashy
PROOF: By (8)4, (8)6, (8)7, (8)9, (8)10, and definition of A
(Eq. (10)).

{8)13. io(as)) = io(ash)

PRrooF: By (8)1, {8)5, (8)8, {8)11, (8)12, and dcfinition of io
(Eq. (11}).
(8)14. Q.E.D.
Proor: By (8)3, (8)6, (8)9, {(8}12 and (8)13.
(2. Q.ED.
Proor: By (7)1 and definition (-] (Def. A.3).
(6)2. Q.E.D.
PROOF: By assumption 5.1, {6)1, and definition of T, (Def. B.3).
(5)2. CAsE: 5.1 ie ¢ Dom(tegy,) and ie’ ¢ Dom(tepr,)
{6)1. Choose ash € (Tgy,(actz)) such that asy = asz
(1. (T, (acta)]) = (tactpr,(actz) ) = (acta]
PROOF: By assumption 4.1, assumption 5.1, and definition of
Ty, (Def. B.3), definition {-) (Def. A.3), and definition of
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tactpy, (Eq. (158)).
(1Y2. Q.E.D.
Proor: By (7)1 and assumption 2.10.
{6)2. asp € A
PRroOF: By (6)1 and assumption 2.8.
{6)3. asy = as)
(D1, (T, (act1)) = (tacter, (act:)) = (acty )
Proor: By assumption 3.1, assumption 5.1, and definition of
Ty, (Def. B.3), definition (_) (Def. A.3), and definition of
tactpr, (Eq. (15)).
{7y2. Q.E.D.
Proor: By (7)1, assumptions 2.3 and 2.5.
(6Y4. io(ash) = io(as])
Proor: By (6}1, (62, and assumption 2.8.
(6)5. Q.E.D.
Proor: By {6}1, {6)2, and (6)4.
{6}3. Q.E.D.
Proor: By {5)1 and (5)2.
(4)3. CaSE: 4.1 acts = (e, bzl, 0¢’,a’) for oe' € OEU{¢}, bzl € BExpU
{e}, and a, € Assign U {¢}
Proor: Case assumption 4.1 contradicts assumption 2.8 since assump-
tion 4.1 implies that io{ass) # io(as;) by definition of (_) (Def. A.3)
and definition of 1o (Eq. (11)). Hence, assumption 4.1 cannot hold.
{4)4. Q.E.D.
ProorF: By (4)1, {4)2, {4}3 and definition of Act (Eq. 7} and (Eq. 8).
(3)3. Case: 3.1 act; = (¢, bz, 0e,a.) for oc € OEU{¢}, bz, € BExpU{e},
and a, € AssignU {¢}
PRrOOF: Proof is the same as for (3)2.
(3)4. QE.D.
Proor: By {3)1, (3)2, (3)3 and definition of Act (Eq. 7) and (Eq. 8).
(2)2. Q.E.D.
Proor: By (2)1 and logical implication ( = ).
(1)2. Case: 1.1n=n"+4+1forn' €N
12VieN:iz22Ai<n' = Ind(P,Q,ELy, EL»,q)
(2)1. AssuMmE: 2.1 j+k=nfor j, ke N\ {0}
2.2 (actl‘l, W ay Gﬂtl,j) 2 ])?'('P')
2.3 asy; € (Tgp,(acti1)) A---Aas| ; € (T, (acti ;)
2.4 as] € A and as] =as);~- - ~as|
2.5 asy € (acti ) A---Aasy; € (act ;)
2.6Vie{l,...,7}: (preState(as,.;,var(EL,)) = preState(as] ;,var(EL; }))A
(postState(as, i, var(E L)) = postSiate(as) ;, var(EL1)))
2.7as1 € pr((P)) N A and as; = asy~- - —asyy
2.8 ass € pr({@)) N A such that io(ass) = io{as;)
2.9 (actsy,...,acta) € Q|
2.10 asaq € (acta DA -+~ Aasay € (acta )
2.11 asg =asa—~+++asa g
Prove: dasy € (T, (acton)) —~ -~ (Tgp,(actar)) : ash € AN
io(ash) = io(as})
{3)1. CasE: 3.1 acty; = (¢,bxc.¢,a.) for bxr, € BExp U {¢} and a, €
Assign U {¢}
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(4)1. Choose aas) € A such that as] = aas; ~as; ;
ProoF: By assumption 2.4 and definition of A (Eq. (10}).

(4)2. Choose aas; € pr({P)) N A such that as; = aas; ~asy;
Proor: By assumption 2.7, definition of A (Eq. (10)), and definition
of pr(-) (Def. D.3).

(4)3. io(aas:) = io(ass)
Proor: By (4)2, assumptions 2.5, 2.8 and 3.1, and definition of {.)
{Decf. A.3) and definition of ie (Eq. (11)).

(4. Q.E.D.

PRrOOF: By assumptions 1.1, 1.2, 2.1, 2.2, 2.3, 2.5, 2.6, and 2.8 -

2.11, and (41, {4)2, and {4)3 since this implies that the antecedent

of Ind(P,Q, EL,, ELy,n') is satisfied for j — 1 and k.

{3)2. Case: 3.1 acty; = (ie, bz, ¢,a,) for ie € IE, bz, € BExpU {c}, and
a. € Assign U {e}
(4)1. CASE: 4.1 acta = (e, bzl,e,a}) for bz, € BExp U {¢} and a, €
Assign U {¢}

{5)1. Choose aasa € pr({Q)) N A such that asp = aass ~asz
PROOF: By assumptions 2.8 and 2.11, and definition of A (Eq. (10)),
and definition of pr(.) (Def. D.3).

{5)2. io(as;) = io(aass)

Proor: By (5)1, assumptions 4.1 and 2.8, and definition of (.|
(Def. A.3) and definition of io (Eq. (11)).
(5)3. Choose aash € (T'gp,(actza))~ -~ (Tgp,(actzk-1)) : avsy €
A Ado(aash) = io(as])
Proor: By assumptions 1.1, 1.2, 2.1 - 2.7, 2.9 - 2.11, and (5)1 and
{5)2 since this implics that the antccedent of Ind(P,Q,ELy, ELz,n')
is satisfied for j and £ — 1.
(5)4. Choose ash , € (T;y,(acizi)) N A such that io(as; ;) = () and
preState(ash ) = postState(aasy)
PROOF: By (5)3, assumption 4.1, assumption 1, assumption 2.8 -
2.11, definition of T, (Def. B.3), and definition of {-) (Def. A.3).

{5)5. aash—ash, € A and io(aash ~ash ) = io(as})
PrOOF: By (5)3, (5)4, definition of A (Eq. (10}), and definition of
io (Eq. (11)).

{5)6. Q.E.D.
Proor: By (5)3, (5)4, and (5)5.

(4)2. CASE: 4.1 actoy = (i€, bal, €, ay) for i’ € IE, bzl € BExp U {e},
and af € AssignU {e}

(5)1. Choose aas} € A such that as} = aas) ~as) ;
PRrOOF: By assumption 2.4 and definition of A (Eq. (10)).

(5)2. Choose aas; € pr({P)) N A such that as; = aas; ~as,;
PRroor: By assumption 2.7, definition of A (Eq. (10)), and definition
of pr() (Def. D.3).

{(5)3. Choose aasz € pr({@)) N A such that as» = aasz ~asa
PROOF: By assumptions 2.8 and 2.11, and definition of A (Eg. (10)),
and definition of pr() (Def. D.3).

(5)4. io(aas,) = io(auss)

PROOF: By (5)2, (5)3, assumptions 2.8, 3.1, and 4.1, and dcfinition
of io (Eq. (11)).
(5)5. Choose aash € (T'zp,(acta1) )~ -~ (Tgp, (acta.r-1))NA such
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that io{aas|) = io(aash)
Proor: By assumptions 1.1, 1.2, 2.1, 2.2, 2.3, 2.5, 2.6, 2.9, 2.10, 2.11,
and (5)1 - {5)4 since this implies that the antecedent of Ind(P, @, ELy, ELs, n'—
1) is satisfied for j — 1 and k — 1.
(8)6. Choose asy . € (T, (acta ) )NAsuch that io(as) ;) = io(as] ;)
and postState(aash) = preState(as) )
{6}1. CAsE: 5.1 ie € Dom(tegr,) and ie’ € Dom(tegr,)
(T)L. 3ash . € ((e, bz, ¢, €)tepr,(ie’).(e,€,€,al) JNANTo(as, ) =
io(as) ;) A postState(aasy) = preState(as; ;)
{81, Jash ;. € ((e,bxl,e,e) )~ {terr.(Fe) )~ ({€ e 6, al) pAA
io(asy ) = io(usy ;) A postState(aasy) = preState(ass ;)

(9)1. Choose aas) | € ((e, bz, €,€)), aasi, € (tegr, (ie)].
and aas] s € ((e,€,€,a.)) such that as) ; = cas}; —
aas) , ~aas| 4

(101 (T, (acty ;) ) = (tacter, (acty ;) ) = {(c,bze, €, €).tegr, (ie).(e, €, €,a.) )
Proor: By definition of T, (Def. B.3), assumption
3.1, assumption 5.1, and definition of tactgr (Eq. (15)).
{10)2. ((e,bzc.€,€).tegr, (ie).(e, 6, 6,ac) ) = ( (€, bze,€,€) ) —
ltens, (ie) )~ 1(6, ¢, €, a.) )
PRrooF: By definition of (- (Def. A.3).
(10)3. Q.E.D.
Proor: By (10}1, (10)2, and assumption 2.3.

{9)2. Choose variable renaming functions vry,vrs € Var —
Var such that vr;(EL) = ELg and vro{EL) = ELa
when vry; and vre are lifted to event libraries.

PRrooF: By assumption 1.

{9)3. Choose aash; € {(c,bz),¢,¢)|] such that preState(aasy ;) =
postState(aash) and preState(aash ) (vra(z)) = preState{cas) |)(vri(z})
for all x € var(EL)

Proor: By assumptions 1, 2.9, and 4.1, and (5}5, {9)1,
definition of (.) (Def. A.3), and definition of preState()
(Def. D.2).

(9)4. aash; € A

Proor: By (9}3, assumption 2.8, assumption 2.10, assump-
tion 4.1, and definition of A (Eq. (10)).

(9)5. io(aas| ) =io(aash ;)

Proor: By (9)1, {9)3 and definition of (-) (Def. A.3) and
io (Eq. (11)).

(9)6. Choosc aash 5 € (tegr,(ie’)|) such that preState(aash ;) =
postState(aash ;)

Proor: By {9)3, assumption 5.1, definition of (- (Def. A.3),

and definition of preState() and postState() (Def. D.2).
{9)7. aash, € A

PRrRoOOF: By assumption 2.4, assumption 2.6, (9)1, (9)3,

(9)6, and definition of A (Eq. (10)).

{9)8. io(aash ,) = io(aas] ;)

Proor: By assumption 2.6, assumption 2.8, (9)1, (9)3,
(9)6, and definition of io (Eq. (11)).

(9)9. Choosc aash 5 € ((e,¢,¢,al) ) such that preState(aass 4) =

postState(aass ;)
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Proor: By definition of () (Def. A.3), and definition of
preState() and postState() (Def. D.2).
(9)10. aashy € A
Proor: By (9)9 and definition of A (Eq. (10)).
(911, io(aasy ) = io(aas] s)
Proor: By (9)1, (9)9, definition of (-} (Def. A.3), and
definition of 4o (Eq. (11)).
(9)12. Choose aash € A such that casy = aash; ~aeash, ~
aash 4
ProorF: By (9)4, (9)6, {9)7, (9)9, (910, and definition of
A (Eq. (10)).
(9)13. io(as] ;) = io(aasy)
Proor: By (9)1, {9)5, (9)8, (9)11, (9)13, and definition of
io (Eq. (11)).
(0)14. Q.E.D.
Proor: By (912, (9)13.
(8)2. Q.E.D.
PRrRoOF: By {8)1 and definition () (Def. A.3).
(7)2. Q.E.D.
PRrooF: By assumption 5.1, {7)1, and definition of T, , (Def. B.3).
(6Y2. CASE: ic ¢ Dom(tegr,) and ie’ ¢ Dom(tegr.) i
(7)1. Choose ash ;, € (T'zp,(actar)) such that asj , = asak
(8. (Tlgy,(actar)) = (tactpr,(actar)) = (acts.r)
Proor: By assumption 4.1, assumption 5.1, and definition of
T’ 1, (Del. B.3), and definition of tactgy, (Eq. (15)).
(8)2. Q.E.D.
Proor: By (8)1 and assumption 2.10.
(7)2. ash, €A
PRrooF: By (7)1 and assumption 2.8.
(7)3. asyj = G.S’Lj
(&)1, (T'gp, (act1;)) = (tacter, (acty ;) ) = (acts;)
PROOF: By assumption 3.1, assumption 5.1, and definition of
T'zr, (Def. B.3), and definition of tactgr, (Eq. (15)).
(8)2. Q.E.D.
PROOF: By (8)1, assumptions 2.3, 2.5, and 2.6.
(T4, iolasy ) = io(as] ;)
Proor: By (7)1, (7)3, and assumption 2.8.
{7a. Q.E.D.
Proor: By (7)1, (7)2, and (7)4.
(6)3. CasE: ie ¢ Dom(tesyr,) and ie' € Dom(tesr,)
Proor: Case assumption 4.1 contradicts assumption 2.8 since as-
sumiption 4.1 implies that io(ess) # io(as,) by assumption 1, def-
inition of rnm (App.B.1), definition of io (Eq. (11)) and definition
of tegr, (Eq. 14). Hence, the case assumption cannot hold.
(6)4. CASE: ie € Dom(tegr,) and ie’ ¢ Dom(tegr.,)
Proor: Case assumption 4.1 contradicts assumption 2.8 since as-
sumption 4.1 implies that io{ass) # io(as:) by assumption 1, def-
inition of rnm (App.B.1), definition of ie (Eq. (11)) and definition
of tegy, (Eq. 14). Hence, the case assumption cannot hold.
(6)5. Q.E.D.
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Proor: By (6)1 and {(6)2, (63, and (6)4.
(5)7. Q.E.D.
Proor: By (5)5 and (5)6.
(4)3. CasE: 4.1 actar = (g, bz, 0e',a}) for 0e’ € OE, bz € BExpU{e},
and a! € Assign U {¢}
Proor: Case assumption 4.1 contradicts assumption 2.8 since assump-
tion 4.1 implies that io(ass) # 70(as;) by definition of (_) (Def. A.3)
and definition of io (Eq. (11)). Hence, assumption 4.1 cannot hold.
(4)4. Q.E.D.
PROOF: By (41, {4)2, {4)3 and definition of Act (Eq. (7)) and (Eq. (8)).
{3)3. Case: 3.1 acty; = (e, bz, 0e,a,) for e € OE, bz, € BExp U {e},
and a. € AssignU {e}
PRroOF: Proof is the same as for (3)2.
(3)4. Q.E.D.
Proor: By (3)1, (3)2, (3)3 and definition of Act (Eq. (7)) and (Eq. (8)).
(2)2. Q.E.D.
PRrooF: By {2}1 and logical implication { = ).
(1)3. Q.E.D.
PRrROOF: By (1)2 and (1)2.

Lemma B.1 If EL is an event library, and P; and P, be basic state machines

whose variables are digjoint from those in FL, then [T%; ] is homomorphic
w.r.t. union, i.e.,

[(Te AP IVIRD = [Te A DUITE I R])

Proof of Lemnma B.1.1

[T )£+ 2]
(T NP JUIPD)

Lemma B.1.2 [P+Q]=[P]u[Q]

[Tee(P) + T (P)] = [Teil 1)+T L(P)]
HT‘;;L(P1+P2)1] = [T 1) o (P2) ] Def. B.3
[Ther(Pr+Pe)] = [TgL(P BUHTEL (Pa}] Lemma B.1.2

[T [([P DU, [ P2]) Dk, B
[T WA DUITE NI P2]) Lemma B.1.2

Proof of Lemma B.1.2

[P+Q] = [P+Q]

[P+Q] = “(lP+Q)N.A) Def. A4
[P+Q] = io(({P)U(Q])NA) Def, A.3
[P+Q] = w((GPDﬂA)U((]QDﬂAJ)

[P+Q] = do(({P)nA))uio({{Q)NA)) By (11)
[P+@Q] = [PIulQ] Def. A4

Lemma B.2 If EL is an event library, and P and @ be basic state machines
whose variables are disjoint from those in EL, then [T%; ]{) is homomorphic
w.r.t. concatenation, i.e.,

[Te MIPD~[TE NIQD = [T IIPI~[QD
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Proof of Lemma B.2

AssuME: 1. var(EL) N (var(@) Uvar(P)) =0

ProvE: [Tr J([PD)~[Te QD = [Te NIPI~[QD

(1)1. Choose Q' € Q such that [Q] = [Q'], and [PQ'] =[P]~[Q']

PROOF;: Assume that all variables in @ are assigned to a value before they
arc used in a guard. Then execution of @ will be the same even if we choose
an arbitrary initial data state. Therefore we must have that [P.Q] = [P]~
[@] However, if @ has unassigned variables in guards, then executing P
before executing @ might affect the execution of Q. Therefore it may be
the case that [P.Q] # [P] ~ [@] However, we can always renamc the
variahles of @ to obtain the state machine @’ such that [@Q] = [@'] and
var{P) Nuar(Q’) # 0. In this case, executing P before Q' will not affect the
execution of Q'. Therefore [P.Q'] =[P]~[Q'].
(2. [T KIPD [T 1@ D = [T, IPI~1Q'D)

Proor:
[TeL(P) T Q)] = [Th(P)Te(Q)]
[Te (PQ)] = [Tg,(P)TE(Q)] Def. B.3
[T (PQ)] = [[T’::L(P]] [{T L(Q}]] (1)1
[TE I(IPQD) = [Te H[P e )([Q']) Def. B4
[Te IAP]I-IQD = [[T’ELB([]PH e J([Q']) (1)1 and ass. 1
(1)3. Q.E.D.

Proor: By (1}2 and Theorem B.1

D.3 Composite transformations

Theorem B.2 The relation [T, ] is a function when restricted to the image
of TEL! i.C.,

[P]1=1Q] = [TEL(P)INnImpr =[TE.(@)] N Imps
Proof of Theorem B.2
AssUME: L. [P || - | Pl=0a: -l @
Prove: [TGy(Pi Il - | Pl Tmes = 176,(@1 | -+ | @)1 Imzy
(151, AssumE: L1 € [TE (P || -~ || P)InTmes
Prove: & € [TE.(@1 1l -~ || @u)INnTImesL
(2)1. Choose EL; € EL such that ELy = rnm(Py || «-- || Pu, EL)

Proor: By definition of rnm (sec App. B.1).
(2)2. Choose s} € [Ty, [P ])s.-180 € [Ty, J{[ Pn]) such that s* £
(s),...,sh)NImgy,
PRroor: By assumption 1.1 and definition of [ -] (Def. A.5), and definition
of T, (Def. B.5).
(2)3. Choose s; € [Pi],...,84 € [ Pu]suchthat 87 € [T, 1({s1}),.... 5,
[Tz, I({sn})
Proor: By (2}1, (2)2, Theorem B.1 (which ensures that [Tz, [(-) is a
function) and Lemma B.1(which ensures that [T, [(-) is defined for sin-
gleton sets).
(2)4. Choose s € [P || -+ || Pn] such that s €| (51,...,5n)
ProoF: By (2)2, (2)3, definition of [ -] (Def. A.5) and definition of Impgy,

(Eq. (16)).

m
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5. s€[Qu [l - || Qul
Proor: By (2)4 and assumption 1.

{26. t1 € [Q1],... tn € [@a] such that s €] (t1,-..,tn)
Proor: By (2)3, (2)4, (2)5, definition of [ ]| (Def. A.5), and definition of
composite state machine expressions Defl. A.2.

{237 ti=s; forallie {1,...,n}
Proor: By definition of a composite state machine, cach basic state ma-
chine it consists of must have different names. Therefore [Q; JN[Q@;] # 0
for all 4,7 € {1,...,n} such that i # j. By definition of parallel compo-
sition, there is one and only one trace #; in each basic state machine Q;

(for i € {1,...,n}) such that s € {¢1,...,%,). The same holds for the basic
state machines P;, therefore we have that s; must be equal to #;.
{2)8. Choose ELs € EL such that ELy =rnm(Qy || --- || @n, EL)

Proor: By definition of rnm (see App. B.1).
(2)9. &' €l ([TeL {1} - [T I{sa D) N Imes
Proor: By (2)2, (2)3, (2)8, Theorem B.1 (which cnsures that [Ty [(-) is
a function).
(2)10. Q.E.D.
Proor: By (2)2, {2)3, (2)6, (2)7, (2)9, and definition of | ]| (Def. A.5).
(1)2. Q.E.D.
Proor: By {1)1 and symmetry of =.

Lemma B.3 The semantics of the event transformation for composite state
machines induced by an event library EL is homomorphic w.r.t. the union
operator when restricted to its image, i.e.,

Tec([PIVIQD =Tee([ PN U TeL((Q])
when var(EL) Nvar(P) Nvar(Q) =0
Proof of Lemma B.3 Assume var({EL)Nvar(P)Nver(Q) = i, then we have

Usetrivientée(s) = (Userri8e() Y UserortEL(s)

'fL“L(ﬂP]]LJﬂQ]]) fEL(ﬂPﬂ)UTEL(ﬂQﬂ) By Lemma B.3.1

Lemma B.3.1 Let the function ¢§; € E* — P(E*) be defined by

t20(8) = | [T 1slRam, 1) I TEL]{S]E M, })

for all s € T and Nm = {nmy,...,m,}.
Then the semantics of the transformation Tgy(P) is entirely characterized
by t€, if var(EL) Nvar(P) =0, i.e.,

Tec([PD = | 500s)

se€[P]

Proof of Lemma B.3.1
ProvE: Tri([P]) = Usepryteels)

def

LET: P=P || -+ || Pa
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()]
(1}

{1)1. AssuME: 1.1 var(EL) Nvar(P) =0
1.2 € Tei([P])
PROVE: ¢’ € t§;(s) for some s € [ P]
(2)1. Choosc sy € [P ]y.-., 84 € [P ] suchthat s’ €| ([TrL1({s1 1) [T I({sn )N
Img;g,
Proor: By assumption 1.1, assumption 1.2, definition of [ ] (Def. A.3),
and definition of Tz () (Eq. (17)).
{(2)2. Choose s € [ P] such that s €]| (s1,...,8n)
PRrROOF: By (2)1, definition of P, definition of [ -] (Def. A.5) and definition
of Img, (Eq. (16)).

(2)3. 81 =5[Bn,s: 190 = 8|B,,, for some nmy,...,nmy, € Nm
PRrooF: By (2)1, definition of P and definition of P (Def. A.2).
(2)4. Q.E.D.

PROOF: By (2)1, {2)2, {2)3 and definition of t&; .
(1)2. AssuMme: 1.1 var(EL) Nvar(P) =10
1.2 &' € t&,.(s) for arbitrary s € [ P]
Prove: s' € Ter([P])
(2)1. Choose s; € [P1],...,84 € [Pn] and nmy,...,nm, € Nm such that
81 = SlEnml yeeeydn = SlEnm"
ProOF: By assumption 1.1, assumption 1.2, definition of [_] (Def. A.5),
and definition of B, (Eq. (9)).
@2, 5" €ll ([T 1o D, o [T [ })
Proor: By assumption 1.1, assumption 1.2, {2)1, and definition of tgL.
(2)3. Q.E.D.
Proor: By (2)1, (2)2, definition of [ | (Def. A.5), and definition of [ TS, ()
(Def. B.5).
{1)3. Q.E.D.
Proor: By (1)1 and {1)2.

D.4 Adherence preservation under event transformations

Theorem B.3 Lot v be a restriction, and f be a high-level relation, and
ﬂTg 1. ] be the transformation induced by event library EL. Then TE 1, breserves
BsPyy for specification P if the following conditions are satisfied for all 5,t,u€

[P],¢ € Tro({sh)t' € Teel{t})
5t = st (26)
sHtAs Dunt = Hu"ETEL({M}):s'Lu’N; t! (27)

Proof of Theorem B.3
ASSUME: 1. Vs,t € [P],¢' € Tep({s}),t' € Tuo({t})) :8' =t = s>t
2. Vs, t,u € [P, s' € Ter{{s}),t' € Ten({t]):
Si'rt/\sluw[t = Bu'EfEL({it}):s’Lu’ ~p b
PROVE: Bspe([P]) = Bsewy(Tec([P])
(1)1. AssuMmE: 1.1 Bsp([P])
125 5 ¢ for ¢',t" € Ter([P])
Prove: Ju' € Tpr([P]): s Bt gt
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(2)1. Choose s,t € [ P] such that s 5 ¢, s' € Tgr({s}), and t' € Ter({t})
Proor: By assumption 1, assumption 1.2, and Lemma. B.3.

(2)2. Choose u € [ P] such that s LI
PRrRooF: By assumption 1.1, {2)1 and definition of Bsp,;, {(Eq. (18)).

{2)3. Choose v’ € Tpr({u}) such that s’ Bt g !
Proor: By (2)1, {2)2, and assumption 2.

(2)4. o' € Ter([ P])
Proor: By (2)2, {(2)3, and Lemma. B.3.

(2)5. QE.D.
Proor: By (2)3 and {2)4.

{1)2. Q.E.D.
Proor: By (1)1 and definition of Bspy, (Eq. (18)).



