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Abstract

We present a method for specifying high level security policies that can be en-
forced by runtime monitoring mechanisms. The method has three main steps:
(1) the user of our method formalizes a set of policy rules using UML sequence
diagrams; (2) the user selects a set of transformation rules from a transforma-
tion library, and applies these using a tool to obtain a low level intermediate
policy (also expressed in UML sequence diagrams); (3) the tool transforms the
intermediate low level policy expressed in UML sequence diagrams into a UML
inspired state machine that governs the behavior of a runtime policy enforce-
ment mechanism. We believe that the method is both easy to use and useful
since it automates much of the policy formalization process.

The method is underpinned by a formal foundation that precisely defines
what it means that a system adheres to a policy expressed as a sequence dia-
gram as well as a state machine. The foundation is furthermore used to show
that the transformation from sequence diagrams to state machines is adherence
preserving under a certain condition.

1 Introduction

Policies are rules governing the choices in the behavior of a system [19]. We
consider the kind of policies that are enforceable by mechanisms that work by
monitoring execution steps of some system which we call the target of the policy.
This kind of mechanism is called an EM (Execution Monitoring) mechanism [16].

The security policy which is enforced by an EM mechanism is often specified
by a state machine that describes exactly those sequences of security relevant
actions that the target is allowed to execute. Such EM mechanisms receive an
input whenever the target is about to execute a security relevant action. If the
state machine of the EM mechanism has an enabled transition on a given input,
the current state is updated according to where the transition lands. If the state
machine has no cnabled transition for a given input, then the target is about
to violate the policy being enforced. It may therefore be terminated by the EM
mechanism.

Security policies are often initially expressed as short natural language state-
ments. Formalizing these statements is, however, time consuming since they
often refer to high level notions such as “opening a connection” or “sending
an SMS" which must ultimately be expressed as sequences of security relevant
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actions of the target. If several policies refer to the same high level notions, or
should be applied to different target platforms, then these must be reformalized
for each new policy and each new target platform.

Clearly, it is desirable to have a method that automates as much of the
formalization process as possible. In particular, the method should:

1. support the formalization of policies at a high level of abstraction;
. offer automatic generation of low level policies from high level policies;

. facilitate automatic enforcement by monitoring of low level policies;

[ - B G ]

. be easy to understand and employ by the users of the method (which we
assume are software developers).

The method we present has three main steps which accommodate the above
requirements:

Step I The user of our method receives a set of policy rules written in natural
language, and formalizes these using UML sequence diagrams.

Step II The user creates transformation rules (expressed in UML sequence
diagrams) or selects them from a transformation library, and applies these
using a tool to obtain an intermediate low level policy (also expressed in
UML sequence diagrams).

Step III The tool transforms the intermediate low level policy expressed in
UML sequence diagrams into state machines that govern the behavior of
an EM mechanism.

There are two main advantages of using this method as opposed to formalizing
low level policies directly using state machines. First, much of the formalization
process is automated due to the transformation from high to low level. This
malkes the formalization process less time consuming. Second, it will be easier to
show that the formalized high level policy corresponds to the natural language
policy it is derived from, than to show this for the low level policy. The reason
for this is that the low level policy is likely to contain implementation specific
details which make the intention of the policy harder to understand.

The choice of UML is motivated by requirement 4. UML is widely used in
the software industry. It should therefore be understandable to many software
developers which are the intended users of our method. UML sequence diagrams
are particularly suitable for policy specification in the sense that they specify
partial behavior (as opposed to complete), i.c., the diagrams characterize ex-
ample runs or snapshots of behavior in a period of time. This is useful when
specifying policies since policies are partial statements that often do not talk
about all aspects of the target's behavior. In addition to this, UML sequence
diagrams allow for the explicit specification of negative behavior, i.e., behavior
that the target is not permitted to engage in. This is useful because the only
kind of policies that can be enforced by EM mechanisms are prohibition policies,
i.e., policies that stipulate what the target is not allowed to do.

The main body if this report gives an example driven presentation of our
method without going into all the technical details. In the appendices, we
present the formal foundation of the method. In particular, the rest of this
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report is structured as follows: In Sect. 2 we describe step I of our method
by introducing a running example and showing how high level security policies
can be expressed with UML sequence diagrams. Sect. 3 describes step II of
our method by showing how a transformation from high level to low level poli-
cies can be specified using UML sequence diagrams. Step III of our method is
deseribed in Sect. 4 which defines a transformation from (low level) sequence
diagram policies to state machine policies that can be enforced by EM mech-
anisms. Sect. 4 discusses related work, and Sect. 5 provides conclusions and
directions of future work. The formal foundation is presented in the appen-
dices. App. A and App. B, present the syntax and the semantics of UML
sequence diagrams and state machines, respectively. We also define adherence,
i.e., what it means for a system to adhere to a sequence diagram or a state ma-
chine. Finally, App. C characterizes the transformation from high to low level
sequence diagrams. App D defines the transformation from low level sequence
diagrams to state machines. In App D, we also show that the transformation is
adherence preserving given that a certain condition is satisfied. All proofs are
given in App. E.

2 Step I: Specifying policies with sequence dia-
grams

In the first step of our method, the user receives a set of policy rules written
in natural language. The user then formalizes these rules using UML sequence
diagrams. In this section, we show how to express two security policies. The
examples are taken from an industrial case study conducted in the EU project
S°MS [17].

As the running example of this report, we consider applications on the Mo-
bile Information Device Profile (MIDP) Java runtime environment for mobile
devices. We assume that the runtime environment is associated with an EM
mechanism that monitors the executions of applications. Each time an applica-
tion makes an API-call to the runtime environment, the EM mechanism receives
that method call as input. If the current state of the state machine that gov-
erns the EM mechanism has no enabled transitions on that input, then the
application is terminated because it has violated the security policy of the EM
mechanism.

2.1 Example — specifying policy 1

The first policy we consider is

The application is not allowed to establish connections to other addresses than
hitp://s8ms.fast.de.

This policy is specified by the UML sequence diagram of Fig. 1.

Sequence diagrams describe communication between system entities which
we will refer to as lifelines. In a diagram, lifelines are represented by vertical
dashed lines. An arrow between two lifelines represents a message being sent
from one lifeline to the other in the direction of the arrow. Sequence diagrams
should be read from top to bottom; a message on a given lifeline should occur
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sd policy1 )
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neq J | |
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Figure 1: High level policy 1

before all messages that appear below it on the same lifeline (unless the mes-
sages are encapsulated by operators). Communication is asynchronous, thus we
distinguish between the occurrence of a message transmission and a message
reception. Both kinds of occurrences are viewed as instantaneous and in the
following called ewvents.

The two lifelines in Fig. 1 are Application representing the target of the policy,
and url, representing an arbitrary address that the target can connect to. The
sending of message connect from the Application to url represents an attempt to
open a connection.

Expressions of the form {bz} (where bz is a boolean expression) are called
constraints. Intuitively, the interaction occurring below the constraint will only
take place if the constraint evaluates to true.

The constraint of Fig. 1 should evaluate to true if and only if url is not equal
to the address “http://s3ms.fast.de” (which according to the policy is the only
address that the application is allowed to establish a connection to).

Interactions that are encapsulated by the neg operator specify negative be-
havior, i.e., behavior which the target is not allowed to engage in. Thus Fig. 1
should be read: Application is not allowed to connect to the arbitrary address url
if url is different from the address “http://s3ms.fast.de".

UML sequence diagrams are partial in the sense that they typically don't
tell the complete story. There are normally other legal and possible behaviors
that are not considered within the described interaction. In particular, sequence
diagrams explicitly describe two kinds of behavior: behavior which is positive
in the sense that it is legal, valid, or desirable, and behavior which is negative
meaning that it is illegal, invalid, or undesirable. The behavior which is not
explicitly described by the diagram is called inconclusive meaning that it is
considered irrelevant for the interaction in question.

We interpret sequence diagrams in terms of positive and negative traces, i.e.,
sequences of events (see App. A). When using sequence diagrams to express
prohibition policies, we are mainly interested in traces that describe negative
behavior. If a system is interpreted as a set of traces, then we say that the
systems adheres to a policy if none of the system’s traces have a negative trace
of a lifeline of the policy as a sub-trace!. Thus we take the position that the
target is allowed to engage in (inconclusive) behavior which is not explicitly
described by a given policy. This is reasonable since we do not want to use

LA trace 5 is a (possibly non-continuous) sub-trace of trace ¢ if s can be obtained from ¢
by removing zero or more events from ¢.
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Figure 2; high level policy 2

policies to express the complete behavior of the target.

Turning back to the example, an application is said to adhere to the policy
of Fig. 1 if nonc of its traces contain the transmission of the message connect to
an address which is different from http://s3ms.fast.de.

2.2 Example — specifying policy 2

The second natural language policy is

The application is not allowed to send more than N SMS messages (where N is
a natural number).

This policy is specified by the sequence diagram of Fig. 2. Again, the life-
lines of the diagram are Application representing the policy target, and url, this
time representing an arbitrary recipient address of an SMS message.

Boxes with rounded edges contain assignments of variables to values. In
Fig. 2, the variable s is initialized to zero, and incremented by one cach time the
application sends an SMS. The loop operator is used to express the iteration of
the interaction of its operand.

The alt-operator is used to express alternative interaction scenarios. In
Fig. 2, there are two alternatives. The first alternative is applicable if the vari-
able s is less than or equal to N (representing an arbitrary number). In this case,
the application is allowed to send an SMS, and the variable s is incremented by
one. The second alternative is applicable when s is greater than N. In this case,
the application is not allowed to send an SMS as specified by the neg-operator.

An application adheres to the policy of Fig. 2 if none of its traces contain
more than N occurrences of the message sendSMS.
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3 Step II: Specifying transformations with se-
quence diagrams

In the second step of our method, the user creates new transformation rules or
selects them from a transformation library. The users then employs a tool which
automatically applies the transformation rules to the high level policy such that
an intermediate low level policy is produced. In the following, we show how a
transformation to the low level can be defined using UML sequence diagrams.
An advantage of using sequence diagrams for this purpose is that the writer
of the transformation rules can express the low level policy behavior using the
same language that is used for writing high level policies. This will also make
it easier for the user of our method to understand or modify the transformation
rules in the transformation library if that should become necessary.

A transformation rule is specified by a pair of two diagram patierns (dia-
grams that may contain meta variables), one left hand side pattern, and one
right hand side pattern. When a transformation rule is applied to a diagram
d, all fragments of d that match the left hand side pattern of the rule are re-
placed by the right hand side pattern. Meta variables are bound according to
the matching. A diagram pattern dp matches a diagram d if the meta variables
of dp can be replaced such that the resulting diagram is syntactically equivalent
to d.

In the following we illustrate the use of transformation rules by continuing
the example of the previous section.

3.1 Example — specifying a transformation for policy 1

The policies described in the previous section are not enforceable since the
behavior of the target is not expressed in terms of API-calls that can be made
to the MIDP runtime environment. Recall the policy of Fig. 1. It has a single
message connect which represents an attempt to open a connection. In order
to make the policy enforceable, we need to express this behavior in terms of
API-calls that can be made to the runtime environment.

Fig. 3 illustrates a transformation rule which describes how the connect mes-
sage is transformed into the API-calls which can be made in order to establish
a connection via the MIDP runtime environment. The diagram on the left in
Fig. 3 represents the left hand side pattern of the rule, and the diagram on the
right represents the right hand side pattern of the rule. In the diagram, all meta
variables are underlined.

Fig. 4 shows the result of applying the rule of Fig. 3 to the policy of Fig. 1.
Here we see that the message connect has been replaced by the relevant API-calls
of the runtime environment.

Clearly, the high level policy of Fig. 1 allows for an easier comparison to the
natural language description than the low level policy of Fig. 4. Moreover, if the
high level policy of Fig. 1 should be applied to a different runtime environment
than MIDP, say .NET, then a similar transformation rule can be written or
selected from a transformation library without changing the high level policy.

Notice that each message of Fig. 4 contains one or more variables that are
not explicitly assigned to any value it the diagram. We call these parameter
variables, and distinguish these from normal variables by writing them in bold-
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Figure 3: Transformation rule

face. Parameter variables are bound to an arbitrary value upon the occurrence
of the message they are contained in. Parameter variables differ from normal
variables that have not been assigned to a value in that parameter variables
contained in a loop are bound to new arbitrary values for each iteration of the
loop.

The introduction of parameter variables constitutes an extension of the UML
2.1 sequence diagram standard. This extension is necessary in order to express
policies for execution mechanisms that monitor method calls where the actual
arguments of the method call are not known until the method call is intercepted.
Without parameter variables, one would in many cases be forced to specify all
possible actual arguments that a method call can have. This is clearly not
feasible.

4 Step III: Transforming sequence diagrams to
state machines

In the third step of our method, the low level intermediate sequence diagram
obtained from step II is automatically transformed into a set of state machines
(one for each lifeline of the diagram) that govern the behavior of an EM mech-
anism. The state machines explicitly describe the (positive) behavior which is
allowed by a system. Everything which is not described by the state machines
is (negative) behavior which is not allowed. Therefore, the state machines do
not have a notion of inconclusive behavior as sequence diagrams do.

The semantics of a state machine is a set of traces describing positive behav-
ior. A system adheres to a set of state machines S if each trace described by the
system is also described by a state machine in § (when the trace is restricted to
the alphabet of the state machine). We define adherence like this because this
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Figure 4: Low level policy 1

notion of adherence is used by existing EM mechanisms (see e.g. [8, 16]) that
are governed by state machines,

The transformation of step III should convert a sequence diagram into a set
of state machine such that an arbitrary system adheres to the state machine set
if and only if the system adheres to the sequence diagram, i.e., the transforma-
tion should be adherence preserving. As one would except, the transformation
converts positive and negative behavior of the sequence diagram into positive
and negative behavior of the state machines, respectively. However, the incon-
clusive behavior of the sequence diagram is converted to positive behavior of
the state machines. This is because, by definition of adherence for sequence
diagrams, a system is allowed to engage in the (inconclusive) behavior which is
not described by the sequence diagram.

The only kind of policies that can be enforced by EM mechanisms are so-
called prohibition policies, i.e., policies that describe what a system is not al-
lowed to do. Sequence diagrams are suitable for specifying these kinds of poli-
cies because they have a construct for specifying explicit negative behavior. For
this reason, the sequence diagram policies are often more readable than the
corresponding state machine policies since the state machine policies can only
explicitly describe behavior which is allowed by an application. In the follow-
ing examples, we clarify this point and explain how the transformation from
sequence diagrams to state machines works.

4.1 Example — transforming policy 2 to a state machine

Although our method is intended to transform low level intermediate sequence
diagram policies to state machines, we will use the sequence diagram of Fig. 2
to illustrate the transformation process as this diagram better highlights the
transformation phases than the low level intermediate policy of Fig. 4.
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Figure 5: Projection system of policy 2

In general, the transformation from a sequence diagram yields one state
machine for each lifeline of the diagram. However, in the current example,
the target of the policy is the lifeline Application. Thus we only consider the
transformation of this lifeline.

The transformation from a sequence diagram d with one lifeline to a state
machine has two phases. In phase 1, the sequence diagram d is transformed into
a state machine SM whose trace semantics equals the negative trace set of d.
In phase 2, SM is inverted into the state machine SM’ whose semantics is the
set of all traces that do not have a trace of SM as a sub-trace.

In the following we explain the two phases by transforming a diagram de-
scribing lifeline Application in Fig. 2 into a state machine.

4,1.1 Phasel

First, in phase 1, we transform the sequence diagram describing the lifeline
Application into a state machine whose trace semantics equals the negative traces
of the diagram. To achieve this, we make use of the operational semantics of
sequence diagrams which is based on [13, 12] and described in App. A.

The operational semantics makes use of a so-called projection system for
finding enabled events and constructs in a diagram. The projection system
is a labeled transition system (LTS) whose states are diagrams, and whose
transitions are labeled by events, constraints, assignments, and so-called silent
events that indicate which kind of operation has been executed. If the labeled
transition system has a transition from a diagram d to a diagram d’ that is
labeled by, say, event e, then we understand that cvent e is enabled in diagram
d, and that d' is obtained by removing e from d.

To transform a diagram describing Application into a state machine describing
its negative traces, we first construct the projection system whose states arc
exactly those that can be reached from the diagram. The result is illustrated in
Fig.5 (note that the labels 71, Tioop, and 7.y are silent events that correspond
to the sequence diagram constructs alt, loop, and neg, respectively). Then, the
projection system is transformed into a state machine describing the negative
traces of the diagram. The states of this state machine are of the form (Q,mo)
where @ is a set of states of the projection system and mo is a mode which is
used to differentiate between positive and negative traces. There are two kinds
of modes: pos (for positive) or neg (for negative). A state with mode neg leads
to a final state that accepts negative traces. Thus we require that all final states
have mode neg.

When converting the projection system into a state machine, we remove all
silent events and concatenate constraints with succeeding events and assign-
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stm Application / [s <= N}/ url.sendSMS;s = s +1
[

{{1}.pos)

Figure 6: State machine describing negative traces for Application

ments with preceding events. In addition, the silent event 7., is used to find
negative executions. That is, any execution that involves a 7,0, represents a
negative execution that lead to states having mode neg.

The result of converting the projection system of Fig. 5 into a basic state
machine is illustrated in Fig. 6. Here the black filled circle represents an initial
state, the boxes with rounded edges represent simple states, and the black filled
circle encapsulated by another circle represents a final state. Transitions of
state machines are labeled by action ezpressions of the form nm.si[bz]/ef. Here
nm.si (where si denotes a signal and nm denotes the name of the state machine
the signal is received from) is called an input event, [bz] (where br is a boolean
expression) is called a guard, and ef is called an effect. An effect is a sequence
of assignments and /or an output event.

The graphical notation used for specifying state machines is inspired by the
UML statechart diagram notion. See App. B for more details.

The alphabet of a state machine is a set of events. When we transform a
sequence diagram to a state machine, the alphabet of the state machine is the
set of all evenis that occur in the sequence diagram,

In App.D.1.1, we formalize the transformation of phase 1. We also prove that
this transformation is correct in the sense the state machine deseribes exactly
the negative traces of the sequence diagram it is transformed from.

4,1.2 Phase 2

In phase 2, we “invert” the state machine of Fig. 6 into the state machine whose
semantics is the set of all traces that do not have a trace of the state machine
of Fig. 6 as a sub-trace. In general, the inversion SM’ of a state machine SM
has the power-set of the states in SM as its states® the alphabet of SAM as its
alphabet, all its states as its final states, and its transitions are those that are
constructed by the following rule

act

o if Q is a state of SM’, then SM’ has a transition @ — @ U @' where
Q' represents the set of non-final states of SA that are targeted by an
outgoing transition of a state in ¢ whose action expression contains the
same event as act.

1Each state of SM’ also needs to keep track of the transitions already visited in SM to
reach that state. We postpone the discussion of this technical deteil to App. D
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Figure 7: State machine describing positive and inconclusive traces for Appli-
cation
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Figure 8: Composition of three sequence diagram policies

Note that the rule is slightly simplified as a lengthy presentation of all the
technical details of the rule is given in App. D.1.2. In the appendix, we also
show that the transformation of phase 2 correctly inverts policies that may be
seen as compositions of (sub)policies with disjoint sets of variables. The state
machine policy of Fig. 6, can not be seen as a composition of more than one
policy. Therefore the condition of disjoint variables is trivially satisfied for this
state machine.

Returning back to our running example, Fig. 7 shows the inversion of the
state machine of Fig. 6. Since all states in the state machine of Fig. 7 are final,
we have omitted to specify the final states.

We have that every trace that contain less than or equal to N occurrences
of the sendSMS message are accepted by the state machine of Fig. 7. Indeed,
this was the intended meaning of the policy.

In App.D.2, we show that the composition of the transformations of phase
1 and phase 2 is adherence preserving when the condition under which the
transformation of phase 2 yields a correct inversion is satisfied.

4.2 Example — why the negation construct is useful

As noted in the beginning of this section, the sequence diagram construct for
specifying explicit negative behavior is useful when specifying policies that can
be enforced by EM mechanisms. In this section, we illustrate this with an
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stm A
iB.b 5
B.d 6
1B.f 7

Figure 10: State machine describing the positive and inconclusive traces of
lifeline A

example.

Consider the policy shown in Fig. 8. It may be seen as a composition of three
policies. The upper most policy states that after the lifeline A has transmitted
a, it is not allowed to transmit b. The two other policies are similar except that
the messages are different.

To transform a diagram describing the lifeline A into a state machine, we
first (in phase 1) construct the state machine that describes the negative traces
of the diagram. The resulting state machine is shown in Fig. 9. Then, we invert
the state machine of Fig. 9 to obtain the state machine of Fig. 10.

Clearly, it is more difficult to understand the meaning of the state machine
policy of Fig. 10 than the sequence diagram policy of Fig. 8. The reason for this
is that the state machine policy have to describe all behavior which is allowed.
However, the process of inverting a state machine may lead an increase in the
number of states and transitions. This shows why it is useful to have a construct
for specifying negative behavior.

5 Related work

Previous work that address the transformation of policies or security require-
ments are [1, 2, 3, 4, 6, 7, 11, 14, 15, 21]. All these differ clearly from ours
in that the policy specifications, transformations, and enforcement mechanisms
are different from the ones considered in this report.
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Bai and Varadharajan [1] consider authorization policies, Satoh and Yam-
aguchi [15) consider security policics for Web Services, Patz et. al. [14] consider
policies in the form of logical conditions, and Beigi et.al. [4] focuses on trans-
formation techniques rather than any particular kind policies. The remaining
citations ([2, 3, 6, 7, 11, 21]) all address policies in the form of access-control
requirements.

Of the citations above, [3] gives the most comprehensive account of policy
transformation. In particular it shows how platform independent role based
access control requirements can be expressed in UML diagrams, and how these
requirements can be transformed to platform specific access control require-
ments,

The transformation of sequence diagrams (or a similar language) to state
machines has been previously addressed in [5, 9, 22|. However, these do not
consider policies, nor do they offer a way of changing the granularity of interac-
tions during transformation.

The only paper that we are aware of that considers UML secquence diagrams
for policy specification is [20]. However, in that paper, transformations from
high- to low level policies or transformation to state machines is not considered.
The paper argues that sequence diagrams must be extended with customized
expressions for deontic modalities to support policy specification. While this is
true in general, this is not needed for the kind of prohibition policies that can
be enforced by EM mechanisms.

6 Conclusions

We claim that it is desirable to automate as much as possible of the process of
formalizing sccurity policies. To this end we have presented a method which
(1) supports the formalization of policies at a high level of abstraction, (2) of-
fers automatic generation of low level policies from high level policies, and (3)
facilitates automatic enforcement by monitoring of low level policies. Enforce-
ment mechanisms for the kind of policies considered in this report have been
developed in the $°MS EU project[17]. Thus the method fulfills the first three
requirements that were presented in the Sect. 1. Empirical investigation of
whether the method satisfies the fourth requirement, namely that it should be
easy to understand by software developers, is beyond the scope of this report.
However, we have used UML as a policy language, and using UML for specify-
ing policies, we believe, is not much harder than using UML to specify software
systems (in particular, since we focus on exccution monitoring and do not have
to take other modalitics than prohibition into consideration).

In the appendices, we provide a formal foundation for our method. In par-
ticular, we define the semantics of sequence diagrams and state machines, and
we precisely define what it means that a system adheres to a sequence diagram
policy as well as a state machine policy. We also formalize the transformation
from high to low level sequence diagrams, and the transformation from sequence
diagrams to state machines. Finally, we prove that the transformation from se-
quence diagram policies to state machine policies is adherence preserving under
a certain condition. All examples of this report satisfies this condition.

Previous work in the literature has addressed policy transformation, but
differ clearly from ours in that the policy specifications, transformations, and
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enforcement mechanisms are different.
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A UML sequence diagrams

In this section, we first present the syntax (Sect. A.1) and semantics (Sect. A.2)
of UML sequence diagrams. Then, in Sect. A.3, we define what it means for a
system to adhere to a sequence diagram policy.

A.1 Syntax

We use the following syntactic categories to define the textual representation of
sequence diagrams:

arz € AExp arithmetic expressions
bz € BExp boolean expressions
sz € SExp string expressions

We let Exp denote the set of all arithmetic, boolean, and string expressions,
and we let ex range over this set. We denote the empty expression by . We let
Val denote the set of all values, i.e., numerals, strings, and booleans (t or £) and
we let Var denote the set of all variables. Qbviously, we have that Val C Exp
and Var C Exp.

Every sequence diagram is built by composing atoms or sub-diagrams. The
atoms of a sequence diagram are the events, constraints, and the assignments.
These constructs are presented in Sect. A.1.1, while the syntax of sequence
diagrams in general is presented in Sect. A.1.2. Finally, in Sect. A.1.3, we
present syntax constraints for sequence diagrams.

A.1.1 Events, constraints, and assignments

The atoms of a sequence diagram are the events, constraints, and the assign-
ments. An event is a pair (k,m) of a kind k and a message m. An event of
the form (!, m) represents a transmission of message m, whereas an event of the
form (7, m) represents a reception of m. We let E denote the set of all events:

EZ{,7}xM (1)

where M denotes the set of all messages.
On events, we define a kind function k.- € E — {!,?} and a message function
m..€ E — M:
E(k,om) =2k m(k,m)=Em (2)

Messages are of the form ({4, I, si) where [; represents the transmitter lifeline of
the message, [, represents the receiver lifeline of the message, and s¢ represents
the signal of the message. We let L denote the set of all lifelines, and SI denote
the set of all signals. The set M of all messages is then defined by

def

M=LxLxSI (3)

On messages, we define a transmitter function ir.. € M — L and a receiver
function re._.€ M — L:

tr(le, 1y, si) =y re.(ly, ., s1) =1, (4)
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We let the transmitter and receiver functions also range over events, {r.,re.- €
E—L:
tr.(k,m) SEtrm re(k,m) Zrem (5)

We define a lifeline function I.. € E — L that returns the lifeline of an event and
a function [~!._ € E — L that returns the inverse lifeline of an event (i.e., the
receiver of its message if its kind is transmit and the transmitter of its message
if its kind is receive):

def def

le = tre ifke=! [7le = tre ifke=7 (6)
re.e if ke=? re.e if k.e=!
A signal is a tuple (nm, ez, ...,ez,) where nm denotes the signal name, and
ery,...,er, arethe parameters of the signal. We usually write nm(ezy,...,eon)
instead of (nm, exy,...,ez,). Formally, the set of all signals is defined
SI=Nm x Exp” (7)

where A* yields the set of all sequences over the elements in the set A.

A signal may contain special so-called parameter variables that are bound
to values upon the occurrence of the signal. Parameter variables are similar to
free normal variables (normal variables that have not explicitly been assigned
to a value). However, they differ in that parameter variables contained in a loop
will be assigned to new values for each iteration of the loop.

A parameter variable is a pair (vn, i) consisting of variable name vn and an
index ¢ (this is a natural number). When a sequence diagram is executed, the
index of a parameter variable contained in a loop will be incremented by one for
each iteration of the loop. This is to ensure that the parameter variable is given
a new value when the loop is iterated. Hence, the index of a parameter variable
is only used for bookkeeping purposes during execution, and it will never be
explicitly specified in a graphical diagram.

In a graphical sequence diagram, parameter variables are distinguished from
normal variables by writing the parameter variables in boldface. The index of a
parameter variable in a graphical sequence diagram is always initially assumed
to be zero.

The sct of all parameter variables PVar is defined

PVar £VN x N (8)

where VN is the set of all variable names and N is the set of all natural numbers.

We assume that
PVar C Var (9)

A constraint is an expression of the form
constr(bz, [)

where bz is a boolean expression and [ is a lifeline. Intuitively, interactions
occurring after a constraint in a diagram will only take place if and only if the
boolean expression of the constraint cvaluates to true. We denote the set of all
constraints by C and we let ¢ range over this set.

An assignment is an expression of the form

assign(z, ex, 1)
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where z is a normal variable, i.e, z € Var \ PVar, ez is an expression, and [ is
a lifeline. Intuitively, the assignment represents the binding of expression ez to
variable z on lifeline . We let A denote the set of all assignments and we let a
range over this set.

We define the function I._ € AU C — L which yields the lifeline of an
assignment or constraint as follows

l.constr(bax, 1) =1 Lassign(z, ez, 1) =1 (10)

We denote by E’, Ot, and AI, the set of all events, constraints, and assignments
with lifeline I, respectively, i.e.,

E'%{ccE|le=1} C'={ceClle=l} AlZ{acAlla=1} (11)

A.1.2 Diagrams

In the previous section, we presented the atomic constructs of a sequence dia-
gram. In this section, we present the syntax of sequence diagrams in general.

Definition 1 (Sequence diagram) Let e, bz, I, z, and ex denote events,
boolean ezpressions, lifelines, variables, and expressions, respectively. The set
of all syntactically correct sequence diagram expressions D is defined by the
following grammar:

d u= skip|e|constr(bzr,l)|assign(z, ex,l) | refuse (d) | loop{0..*} (d) |
dy seqdy | dy alt dg | dy parda

The base cases implies that any event (e), skip, constraint (constr(bz,l)), or
assignment (assign(z,ez,!)) is a sequence diagram. Any other sequence dia-
gram is constructed from the basic ones through the application of operators
for negation (refuse(d)), iteration (loop{0..*) (d)), weak sequencing (d, seqds),
choice (d; altdz), and parallel execution {d; pardz).

We define some functions over the syntax of diagrams. We let the function
eca.. € D — P(E U CU A) return all events, constraints, and assignments
present in a diagram. The function is defined as follows

st

. def
eca.skip =
&

eca.(op(d)) 2 ecad for op € {refuse, loap{0..*) }
eca.(d; opda) ¥ eca.dy Ueca.ds forop€ {seq, alt, par}

eca.q 2 {a) forae EUCUA
’ (12)

Note that we henceforth let o denote an arbitrary event, constraint, or assign-
ment, i.e., a e EUCUA.
The function {I.. € D — P(L) returns all lifelines of a diagram:

ud= |J {la} (13)

aceca.d
We denote by D', the set of all diagrams with only one lifeline 1, i.e.,

D'EZ{deD|ld={i}} (14)
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The function msg.. € D ~ P(M) returns all the messages of a diagram:

msg.d = U {m.e} (15)

e€(eca.dNE)

The projection operator 7_(-) € L x D — D that projects a diagram to a lifeline
is defined

def

m(a) = a ifla=1

(@) = skip ifla#l

1 (skip) = skip (16)
m(opd) = op(m(d)) for op € {refuse,loop(0..*} }

m(d opda) = m(dy) opm(da) for op € {seq, alt, par}

We let var € (Exp UM) — P(Var) be the function that yields the variables in
an expression or the variables in the arguments of a signal of a message. We lift
the function to diagrams as follows
def
'U(.H'(d) = Umernsg.n’ Uar(m) u Uconstr(bm,l)Eccu.dHC Ua'r(bm)u (17)
Uassign(:,cz‘l)e.:ca.dnA({T} u var(em})

A.1.3 Syntax constraints

We impose some restrictions on the set of syntactically correct sequence dia-
grams D. We describe four rules which are taken from [12]. First, we assert
that a given event should syntactically occur only once in a diagram. Second, if
both transmitter and the receiver lifelines of a message are present in a diagram,
then both the transmit event and the receive event of that message must be in
the diagram. Third, if both the transmit event and the receive event of a mes-
sage arc present in a diagram, then they have to be inside the same argument
of the same high level operator. The constraint means that in the graphical
notion, messages are not allowed to cross the frame of a high level operator or
the dividing line between the arguments of a high level operator. Fourth, the
operator refuse is not allowed to be empty, i.e., to contain only the skip diagram.

The four rules described above are formally defined in [12]. These rules en-
sure that the operational semantics is sound and complete with the denotational
semantics of sequence diagrams as defined in [12]. In this report, we define nine
additional rules and we say that a diagram d is well formed if it satisfies these:

SD1 The variables of the lifelines of d are disjoint.
SD2 All parameter variables of d have index 0.

SD3 If m is a message in d, then the arguments of the signal of m must be
distinct parameter variables only.

SD4 The first atomic construct of each lifeline in d must be an assignment (not
a constraint or an cvent).

SD5 All parameter variables that occur inside a loop in d do not occur outside
that loop.

SD6 All loops in d must contain at least one event.
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SD7 No two events in d contain the same parameter variables.

SD8 For each lifeline in d, each constraint ¢ must be followed by an event e
(not an assignment or a constraint). In addition, the parameter variables
of ¢ must be a subset of the parameter variables of e.

SD9 For cach lifeline in d, the parameter variables of an assignment must be
a subset of parameter variables of each event that proceeds it on the
lifeline. If the assignment has no proceeding events on the lifeline, then
the assignment cannot contain parameter variables.

SD10 All variables in d (except for the parameter variables) must explicitly be
assigned to a value before they are used.

The purpose of the syntax constraints is to ensure that the sequence diagram
can be correctly transformed into a state machine.

Note that any graphical sequence diagram can be described by a textual
diagram that satisfies conditions SD1 - SD4.

To obtain a diagram that satisfies SD1 and SD2 we have to rename variables
on each lifeline and set the index of all parameter variables to zero. To obtain
a diagram that satisfies condition SD3 we convert arguments (that are not
parameter variables) of the signal of an event into constraints proceeding the
event. For instance, the diagram

(I, (thtram‘gg(em))}

— which does not satisfy SD3 because ez might not be a parameter variable —
can be converted into the diagram

constr(pr=ez, ;) seq (I, {l¢, -, msg(pz))) for some pz € PVar

which does satisfy SD3. Here pr=ez is a boolean expression that yiclds true if
and only if pz is equal to ex.

If a sequence diagram d does not satisfy condition SD4, then a dummy
assignment can be added to start of each lifeline in d that assigns some value to
a variable that is not used in d.

A.2 Semantics

In this section, we define the operational semantics of UML sequence diagrams
based on the semantics defined in [12]. The operational semantics tells us how
a sequence diagram is executed step by step. It is defined as the combination of
two labeled transition systems, called the ezecution systemm and the projection
system.

These two systems work together in such a way that for each step in the
execution, the projection system updates the exccution system by selecting an
enabled event to execute and returning the state of the diagram after the exe-
cution of the event.

A.2,1 The projection system

The projection system is used for finding enabled events at each step of ex-
ecution. The projection system (as well as the execution system) is formally
described by a labeled transition system (LTS).
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Definition 2 (Labeled transition system (LTS)) A labeled transition sys-
tem over the set of labels LE is a pair (Q,R) consisting of

o a (possibly infinite) set Q of states;

o a ternary relation of R C (@ x LE x Q), known as a transition relation.

We usually write g LA g € (Q,R) if (g,le,q') € R, or just q L g if (Q,R)
is clear from the context. If s = (ley,les, ... leq}, we write g L ¢ forg iy

lea len . i

q — gg - —=+ q'. For the empty sequence (), we write g 2, g ifq=1¢q'.

To define the projection system, we make usc of a notion of structural con-
gruence which defines simple rules under which sequence diagrams should be
regarded as equivalent.

Definition 3 (Structural congruence) Structural congruence over sequence
diagrams, written =, is the congruence over D determined by the following
equations:

1. dseqskip = d, skipseqd = d
2. dparskip = d, skippard = d
3. skipaltskip = skip

4. loop(0..*) (skip) = skip

The projection system is an LTS whose states are pairs TI{L,d) consisting of a
set of lifelines L and a diagram d. If the projection system has a transition from
T(L,d) to TI(L,d’) that is labeled by, say event e, then we understand that e
is cnabled in diagram d, and that d' is obtained from d by removing event e.
Whenever the high level construct alt, refuse, or loop is enabled in a diagram,
the projection system will produce a so-called silent event that indicates the
kind of construct that has been executed. For instance, cach state of the form
TI(L, refuse (d)) has a transition to II(L,d) that is labeled by the silent event
frefuse-

!The set of lifelines L that appears in the states of the projection system is
used to define the transition rules of the weak sequencing operator seq. The weak
sequencing operator defines a partial order on the events in a diagram; cvents
are ordered on each lifeline and ordered by causality, but all other ordering of
events is arbitrary. Because of this, there may be enabled events in both the
left and the right argument of a seq if there are lifelines present in the right
argument of the operator that are not present in the left argument. The set of
lifelines L is used to keep track of which lifelines are shared by the arguments
of seq, and which lifelines only occur in the right argument (but not the left) of
seq.
The following definition of the projection system is based on (12].

Definition 4 (Projection system) The projection system is an LTS over
ar € {Trcfu.-;cr'ralt; Tloop} UEUCUA

whose states are
m{_,.)eP(L)yx D

and whose transitions are exactly those that can be derived by the following rules
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b —iflael ) i ULANL A0
(L, a) = TI(L, skip) TI(L, refuse (d)) —* TI(L, d)

— if l.(dyaltda) N L 0 forie {1,2

TI(L,d; altds) 22 TI(L, ;) VR (152
T(ll.dy N L,dy) 25 TI{l.dy N L, d})
TI(L,d) seqda) =~ TI(L, d} seqda)

(483 ?
TI(L\ ll.dy,d2) ? H(L\”'dl’dz))ifl,\li_dl oy
II(L,d; seqda) —— TI(L, dy seq df)

(L, dy) 25 TI(L, d})
(L, dg) 25 TI(L, d)
N(ildy O Lydy) =5 O(dy N Lydy)  T(ldy N Lydy) 25 T(il.dy N L, db)
TI(L, d; pards) —= TI(L,d pardz) (L, d; pardg) == II(L, d; pardj)

= iflildNL#D
TI( L, loop{0..*) (d)) —= TI(L, skip alt (d seq loop(0..*) (d}))
For more explanation of the rules of the projection system, the reader is referred
to [12].

The projection system of Def. 4 is based on [12] where parameter variables
are not taken into consideration. Recall that each parameter variable is bound
to a new value upon the occurrence of the event it is contained in. This has the
consequence that parameter variables occurring inside a loop are bound to new
values for each iteration of the loop. Thus to modify the projection system of
Def. 4 to take this into account, we only need to modify the rule for loop(0..*)
(the last rule of Def. 4). To simulate the fact that parameter variables are
bound to new values in each iteration of the loop, we let the projection system
rename all parameter variables by incrementing their index for each iteration of
the loop. Formally, we make use of the function ipv(.) € PVar — PVar that
increments the index of a parameter variable by one, i.e.,

iflldyNL+#D

ifd] Edg a.nd di Ed’g

ipv((vn, i) = (vn,i+ 1)

The function is lifted to diagrams such that ipv(d) yields the diagram obtained
from d by incrementing all its parameter variables by one. The revised projection
system is now given by the following definition.

Definition 5 (Revised projection system) The revised projection system that
handles parameter variables is the LTS over

ar € {Trt:_fusu: Tulty T.!uup} JUEUCUA
whose states are
II'(.,.) e P(L) x D

and whose transitions are exactly those that can be derived by the rules of Def. 4
ezcept for rule for loop{0..*) which is redefined as follows:

— if AN L 0
(L, loop{0..¥) (d)) —= II'(L, skip alt (d seq loop{0..*} (ipu(d))))
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A.2.2 Evaluation and data states

In order to define the operational semantics of sequence diagrams, we need to
describe how the data states change throughout execution. In this section, we
present some auxiliary functions that are nceded for this purpose.

An expression ez € Exp is closed if var(ez) = §. We let CExp denate the
set of closed expressions, defined as:

CExp = {ez € Exp|var(ez) = 0}

We assume the existence of a function eval € CExp — ValU{L} that cvaluates
any closed expression to its value. If an expression ex is not well formed or other-
wise cannot be evaluated (c.g., because of division by zero), then eval(ez) = L.
The evaluation function is lifted to signals, messages, and events such that
eval(si), eval(m), eval(e) evaluate all expressions of signal si, message m, and
event e, respectively. For example, we have that

eval(msg(l + 2,4 — 1)) = msg(eval(l + 2), eval(4 — 1)) = msg(3,3)

If an expression ez in signal si is not well formed, ie., eval(ez) = L, then
eval(si) = L. If e is an event (k,m) and si the signal of m, then we also have
that eval(m) = L and eval(e) = L.

Let ¢ € Var — Exp be a mapping from variables to expressions. We
denote such a mapping ¢ = {z; — ex;,T2 — €Za,...,Ty — ezn} for distinct
Z1,%2,...,Ty € Var and for ez1, ez, ..., ez, € Exp. lfezy,ers,...,e20 € Val
we call it a data state. We let ¥ denote the set of all mappings and X denote the
set of all data states. We use the same convention for the set of all events E, and
denote by E, the set of all events whose signals have only values as arguments.

The empty mapping is denoted by . Dorn(s) denotes the domain of g, i.c.,

DOTJ’L({.’L‘l = €T, T3 v €L2,...4Ln 7 E.’L'-n}) g{mlr:"-:?)"'rmﬂ}

We let ofx — ex] denote the mapping o except that it maps z to ez, i.e,

{1 — ex1,...,Tn — ez, [z — ex] E [z ex1,...,Tn — €Ty, T — eI}
ifesm foralie{l,...,n}
{z1 ey, ..y B2 €T,y Tn ezn}
if - = z; for some i € {1,...,n}

We generalize oz — ez] to o{o’] in the following way:
o[{z1 — ez, .., Tn = ezn}] Foly o ez) o [Tn o ez

The mapping is lifted to expressions such that o(ex) yields the expression ob-
tained from ez by simultancously substituting the variables of ex with the
expressions that these variables map to in o. For example, we have that
{y— 1,z = 2}(y+ z) = 1+ 2. We furthermore lift ¢ to signals, messages,
and events such that o(si), @(m), and o(e) yields the signal, message, and
event obtained from si, m, and e, respectively, by substituting the variables of
their expressions according to o.
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A.2.3 Execution system and trace semantics for sequence diagrams

The execution system of the operational semantics tells us how to execute a
sequence diagram in a step by step manner. Unlike the projection system, the
execution system keeps track of the communication medium and data states in
addition to the diagram state. Thus a state of the execution system is a triple
consisting of a communication medium, diagram, and data state:

def

AXSEBxDx Iy

Here £+ denotes the set of total data states, i.e., the set of all data states o
satisfying
Dom(g) = Var

We assume a communication model where each message has its own channel
from the transmitter to the receiver, something that allows for message overtak-
ing. The communication medium keeps track of messages that are sent between
lifelines of a diagram, i.c., the messages of transmission events are put into the
communication medium, while the messages of receive events are removed from
the communication medium.

It is only necessary to keep track of the communication between those life-
lines that are present in a sequence diagram; messages received from the envi-
ronment (i.c., from lifelines not present in a diagram) are always assumed to be
enabled.

The states of the communication medium are of the form (M, L) where M is
a set of messages and L is a set of lifelines under consideration, i.e., the lifelines
that are not part of the environment. The set of all communication medium
states B is defined by

B ZP(M) x P(L) (18)

We define two functions for manipulating the communication medium: edd, rm €
B x M — B. The function add(s,m) adds the message m to the communica-
tion medium 3, while rm(3, m) removes the message m from the communication
medium £. We also define the predicate ready € B x M — Bool that for & com-
munication medium £ and a message m yields true if £ is in a state where it
can deliver m, and false otherwise. Formally, we have

def

add((M, L), m)
rm((M, L), m)
ready((M, L), m)

(MU {m},L)
(M {m}, L) (19)
trmg¢ Lvme M

IIE 1l
1.9

B
2,

I

We are now ready to define the execution system for sequence diagrams.

Definition 6 (Execution system) The ezecution system is an LTS whose

states are N
BxDxXp

whose labels are
{'Trcﬁme: Talts Tloop, Tassign; t, f, J—} UE

and whose transitions are ezactly those that can be derived from the following
rules

'(ll.d,d) 5 I (lL.d, ")
[8,d,0] T (8,d', 0]

fOT‘ TE {Trefuse‘ Tioops Tﬂ“—}
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m(id, d) L 1 (id, d')

Lewsle), (add(B, eval(a(m))), d',o]

(8,4, 0]

d, d) 2 ' (.d, d')

(?7,m’)

(8,d, 0] — [rm(B,m"),d’, 0]

!

if ready(8, m’) A eval(a(m)) = m

'(1L.d, d) 228, 11y g, )

[3,d,a] LU (8, d', o]z —+ eval(o(ex))]]

I(iL.d, d) S202emD, yprp d, o)

[,ﬁ,d, ‘7] [ﬁ,d’,a‘]

Sce (12] for more details on the rules of the execution system.

The trace semantics of a sequence diagram is a pair consisting of a positive
trace set and a negative trace set. The traces of a diagram d are obtained by
recording the events occurring on the transitions of the execution system when
executing d until it is reduced to a skip (which means that the diagram cannot
be further executed).

To distinguish negative from positive traces, we make usc of the silent cvent
Trefuse- That is, if a transition labeled by Trefuse is taken during execution,
then this means that a negative trace is being recorded. Otherwise the trace is
positive.

eval{o{bz))
_—

Definition 7 (Irace semantics) The trace semantics of d, written [d], is
then defined by

[d] % ({slecB|
38€B:30,6' € X :
[(@![{:‘C‘E)?dl O-] = [ﬁ,SkiP,GJ] A Sl{Tmfu,e,f.,L} — ()}1
GleeB |
38eB: 30,0’ €L
((@,i.d),d, o] = [0, skip,a'] A Sl{fmfn.,,f,_L} € {T:-u1|su}+})

Note that the projection function | takes a set A and a sequence s and yields
the sequence s|4 obtained from s by removing all elements not in A. Note
also that A+ denotes the set of sequences of A with at least one element, i.e.,
AT ZA\(()

A.3 Policy adherence for sequence diagrams

In this scction, we define what it means for a system to adhere to a policy
expressed by a sequence diagram.

A system (interpreted as a set of traces of events) adheres to a sequence
diagram policy if none of the traces of the system has a negative trace of a
lifeline in the sequence diagram as a sub-trace. A tracc s = {€1,-..,€n) i5 2
sub-trace of ¢, written s <, iff

si~{e) ™~ sn{en) “Snp1 =t (20)
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Figure 11: Example of a state machine

for some s1,...,8,+1 € E”. See [18] for a more precise definition.
We first formally define adherence for diagrams consisting of a single lifeline.

Definition 8 (Policy adherence of single lifeline sequence diagrams) Let
d be a single lifeline diagram, i.e., d € D' for some lifeline |, and let ® denote the
traces of a system. Then the system adheres o the policy d, written d —4, P,
if

(s € Hygg AL E ®B|g) = —(st) for [d] = (Hpos, Hney)

Note that the projection operator _|_ is lifted to sets of sequences such that
|4 yields the set obtained from ® by projecting each sequence of @ to A, i.e.,
Pla = {s|a|s € D}.

Adherence for general sequence diagrams (i.e., sequence diagrams that may
contain more than one lifeline) is captured by the following definition.

Definition 9 (Policy adherence of sequence diagrams) Letd be a sequence
diagram, i.e., d € D and let & denote the traces of a system. Then the system
adheres to the policy d, written d — .4 ®, iff

mi{d) —ga © foralllelld

B State machines

In this section, we define the syntax and the semantics of UML inspired state
machines. We also define what it means for a system to adhere to a policy
expressed as a state machine.

B.1 Syntax

As illustrated in Fig. 11, the constructs which are used for specifying state ma-
chines are initial state, simple state, final state, transition, and action ezpression.

A state describes a period of time during the life of a state machine. The
three kinds of states, initial state, simple states, and final states, are graphically
represented by a black circle, a box with rounded edges, and a black circle
encapsulated by another circle, respectively.
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A transition represents a move from one state to another. In the graphical
diagrams, transitions are labeled by action ezpressions of the form

nm.si|bz]/ef

Here the expression nm.si where nm is a state machine name and s is a signal
is called an event trigger. The expression |bz] where bz is a boolean expression
is called a guard, and ef is called an effect. Intuitively, the action should be
understood as follows: when signal si is received from a state machine with
name nm and the boolean expression bz evaluates to true, then the effect ef is
executed. An effect is a sequence of assignments and/or an output expression of
the form nm.si representing the transmission of signal si to the state machine
with name nm.

We will henceforth consider action expressions that contain at most one
event. In our formal representation of state machines, we will therefore use
action expressions of the form (e, bz, sa) where e is an input or output event, bz
is a boolean expression (the guard) and sa is a sequence of assignments of the
form ((z1,ex1),-..,(zn, exs)). Formally, the set of all action expressions w.r.t,
to the set of events E is defined by

Actg = (E U {¢}) x BExp x (Var x Exp)"

Note that the event is optional in an action. An action without an event is of
the form (e, bz, sa). We will henceforth use e, to denote an arbitrary event or
an empty expression, i.e., e, denotes a member of E U {¢}

The alphabet of a state machine is a set of events containing signals whose
arguments are distinct parameter variables. We require that all events in the
alphabet are distinct when two events e and e’ are considered equal if they have
the same name and the same number of arguments.

To make this more precise, we let E,, denote the set of all events whose
signals contain distinct parameter variables only, i.e.,

Y(k, (nmy, nm,, st{ery,...,ez,))) € B:
Aexry € PVarA-..Aex, € PVar
AV, e {L,...,n}: (21)
i#j = ex; #ex;
& (k, (nmy, nmy, st(ez, ..., exq,))) € Bpy

Note that the formula is written in a style suggested by Lamport [10]. Here,
the arguments of a conjunction may be written as an aligned list where A is the
first symbol before each argument. A similar convention is used for disjunctions.
Also, indentation is sometimes used instead of parentheses.

We write e = ¢’ if events e and e’ have the same kind, transmitter, and re-
ceiver and their signals have the same name and the same numbers of arguments,
ie.,

(k, (nmy,nm., st(exy, ..., ez;))) = (&, (nm],nm.., st'(ex], ..., ex}))) (22)
Sk=KAnmi=nmiAnm,=nm.Ast=st'Aj=k

We are now ready to define the syntax of state machines precisely.

Definition 10 (State machines) 4 state machine is a tuple (€, Q,R,q1,F)
consisting of
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o an alphabet € C By, where e,e' € £ = (e =¢');
e a set of states Q;
e g transition relation R C Q x Actg x Q;

e an initial state q; € Q;

a set of final states F C Q
The set of all state machines is denoted by SM.

We define the functions for obtaining the alphabet, states, transitions, initial
state, and final states of a state machine:

alph((€,Q,R,q1,F)) &
states((é', Q:Ru q.h}:)) =
trans((€,Q,R,q1,F)) =
T'T”'t((gl Qle ar, -7:)) :=::

final((€,Q,R,q1,F)) =

NE Jo™

B.1.1 Syntax constraints

We impose one restriction on the set of syntactically correct action expressions
Actg; the parameter variables of the guard and the assignment sequence must
be a subset of the parameter variables of the event (if the event is present in
the action):

(e,bz,sa) € Actg = (pvar(bz) U pvar(sa)) C pvar(e) (23)

where pvar yields the set of all parameter variables in an expression, assignment
sequence, or an event.

We define four syntax rules for state machines, and we say that a state
machine SM is well formed if it satisfies these rules:

SM1 The initial state of SM has zero ingoing transitions.

SM2 The initial state of SAM has exactly one outgoing transition, and the
action expression of this transition does not contain an event or a guard.

SM3 Each transition of SM (except the initial transition) is labeled by an
action expression that contains an event.

SM4 All variables (except parameter variables) in SM must be explicitly as-
signed to a value before they are used.

B.2 Semantics

In this section, we define the semantics of state machines. First we define
the execution graph of a state machine, then we define the traces obtained by
exccuting a state machine.

The execution graph of a state machine SM is an LTS whose states are
pairs [q, o] where g is a state of SM and o is a data state. The transitions of
the execution graph are defined in terms of the transitions of SM. That is, if
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SM has a transition from g to g’ that is labcled by (e, bz, sa) and the signal
of e has no arguments, then the execution graph has a transition from [g, 0] to
[g,¢’] that is labeled by e provided that the guard bz is evaluated to true under
state o. Here, the data state ¢’ is equal to o except that the variables of sa are
assigned to new valucs as specified by sa. To make this precise, we define the
function as2ds € & x (Var x Exp)® — I which takes a data state o and an
assignment sequence sa and yields a new updated data state. Formally,

def

as2ds(o, () = g

as2ds(a, (z,ex) — sa) as2ds(o[z — eval(o(ez))], sa) (24)

&

If the signal of event e contains arguments, i.e., parameter variables, then these
variables are bound the new arbitrary values. In this case, the guard br and
the event e are evaluated under some data state o[o”’] where ¢” is an arbitrary
mapping whose domain equals the parameter variables of e.

Definition 11 (Execution graph of state machines) The ezecution graph
of state machine SM = (£,Q,R,qr, F), written EG(SM), is the LTS over
{e} UE whose states are

Q x Ir
and whose transitions are ezactly those that can be derived from the following
rule

{ee bz, aa)
g———q'€ER

{0} D 01 4 52ds(ole]50)]
The trace semantics of a state machine is the set of sequences obtained by
recording the events occurring in each path from the initial state to a final state

of the state machine.

if eval(c[d'](bz)) = t A Dom(s') = puar(e,)

Definition 12 (Trace semantics of state machines) The trace semantics
of a state machine SM = (€, Q,R, qr, F), written [SM], is defined by

[SM] £ {slgeE | _
3¢’ € F:3o,0' € Bp:
lar,0] = [¢',0'] € EG(SM)}

B.3 Policy adherence for state machines

In this section, we define what it means for a system to adhere to a policy
expressed as a state machine. We also define what it means for a system to
adhere to a set of state machines.

Intuitively, a system S adheres to a state machine policy SM if all execution
traces of S (when restricted to the alphabet of SM) are described by SM. This
is formally captured by the following definition.

Definition 13 (Policy adherence for a state machine) Let SM be a state
machine defining a policy and let ® denote the traces of a system. Then the
system adheres to SM, written SM — 4, @, iff

‘I’lg - [[SMH
where E = {e € E|¢ € alph(SM)Ae=c¢'}.
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Adherence for a set of state machines is precisely captured by the following
definition.

Definition 14 (Policy adherence for a set of state machines) Let SMS
be a set of state machines and let ® denote the traces of a system. Then the
system adheres to SMS, written SMS —4,, B, iff

SM —,, ® for all SM € SMS

C Specifying transformations using sequence di-
agrams

In this section, we show how transformations can be expressed in terms of
sequence diagrams.

C.1 Transformation specifications

A transformation specification is a set of mapping rules. A mapping rule is a
pair (dp,dp’) consisting of a left hand side sequence diagram patiern dp and a
right hand side sequence diagram pattern dp’. A sequence diagram pattern is
a sequence diagram whose atoms (events, constraints, and assignments) may
contain mete variables.

We let MVar denote the set of all meta variables and we let mv range over
this set. Events that may contain meta variables are called event patterns. The
set EP of all event patterns is defined

EP £K x ((LUMVar) x (L UMVar) x (SIP UM Var))
Here SIP denotes the set of all signal patterns. This sct is defined by
SIP £ (NMU MVar) x (ExpP)"

where ExpP is an expression that may contain meta variables (in addition to
normal variables and parameter variables).
A constraint pattern is an expression of the form

constr(bzp, )

where bzp is a boolean expression that may contain meta variables. We let CP
denote all constraint patterns.
An assignment pattern is an expression of the form

assign(z, exp, )
where exp is an expression that may contain meta variables. We let AP denote
the set of all assignment patterns.

Definition 15 (Sequence diagram pattern) The set of sequence diagrem
patterns DP is defined by the following syntaz

dp = mu|ep|ep|ap|refuse (dp)|loop{0..*) (dp) |
dpy seq dpa | dpy alt dps | dpy par dpa
A sequence diagram pattern is either a meta variable (muv), an event pattern
(ep), a constraint pattern (¢p), an assignment pattern (ap), or the composition
of one or more diagram patterns.
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C.2 Transformation

In this section, we define the function induced by a transformation specifica-
tion. Intuitively, when a transformation specification ¢s is applied to a sequence
diagram d, all fragments of d that match a left hand side pattern of a mapping
rule in is are replaced by the right hand side pattern of the mapping rule.

Matching is defined in terms of a substitution sub € MVar — (D U Exp)
that replaces meta variables by diagrams or expressions. Any substitution subis
lifted to diagram patterns such that sub(dp) yields the diagram obtained from dp
by simultancously replacing all meta variables in dp by diagrams or expressions
according to sub. The set of all substitution is denoted by Sub.

A diagram pattern dp matches a diagram d if there is a substitution sub
such that

sub(dp) = d

We say that the domain of a mapping rule (dp,dp’), written Dom({dp, dp')), is
the set of all diagrams that can be matched by its left hand side pattern, i.c.,
Dom({(dp,dp’)) = {d € D|Isub € Sub: sub(dp) = d}

To ensurc that transformation specifications induce functional transformations,
we require that the mapping rules of a transformation specification must have
disjoint domains, i.e., each transformation specification ¢s must satisfy the fol-

lowing constraint

Y(dpy,dp}) € ts: V(dpa,dps) € ts:

Definition 16 (Function induced by a transformation specification) The
function T, € D — D induced by transformation specification ts is defined as
follows

if sub(dp) = d for some (dp,dp’) € ts and sub € Sub
then Tis(d) = sub(dp’)

else if d = d; opdy for some dy,dz € D and op € { seq, alt, par}
then TLE(d) = T;_g(dl) DpTgs(dg)

else if d = op(d;) for some d; € D and op € {loop(0..*} ,refuse }
then Tts(d) = Dp(Tgs(d))

else
Tts(d) =d

D From sequence diagrams to state machines

In this section, we define the transformation from sequence diagrams to state
machines. In general, the transformation of a sequence diagram yields a set of
state machines, i.c., one state machine for each lifeline in the sequence diagram.

The main requirement to the transformation is that is should be adherence
preserving.
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Definition 17 (Adherence preservation) Let T € D — P(SM) be a trans-
formation from sequence diagrams to sets of state machines. Then T is adher-
ence preserving if for every system with traces ® and sequence diagram policy
d, the system adheres to d if and only if it adheres to T(d), i.e.,

d =rdag O > T(d) =50y ©

We first, in Sect. D.1, define the transformation from a sequence diagram with
only one lifeline to a state machine. Then, in Sect. D.2, we define the transfor-
mation from (general) sequence diagrams to state machine sets. We show that
this transformation is adherence preserving for policies that are composed of
sub-policies with disjoint sets of variables.

D.1 From single lifeline diagrams to state machines

The transformation from a single lifeline diagram d to a state machine has two
phases. In phase 1, the sequence diagram d is transformed into a state machine
SM whaose trace semantics equals the negative trace set of [d]. In phase 2, SM
is inverted into the state machine SM’ whose semantics is the set of all traces
that do not have a trace of SM as a sub-trace.

Definition 18 (Single lifeline sequence diagram to basic state machine)
The transformation d2p € D — SM from single lifeline diagrams to state ma-

chines is defined by
d2p o ph2 o phl

where phl and ph2 represent phase 1 and 2 (as defined below).

D.1.1 Phase 1

In phase 1, the sequence diagram d is transformed into a state machine SM
that describes the negative traces of d. The state machine SM corresponds
to the projection system induced by d. That is, if the projection system has
a transition I1(l.d,d) 5 11(ll.d,d’), then SM has a transition ¢ = ¢’ where
g and q' correspond to [I({ll.d,d) and II(ll.d,d"), respectively. However, some
transitions of the projection system are truncated. In particular,

e all silent events are removed, e.g., if [I(Il.d, d) =2 TI(Il.d,d") = TI(IL.d,d"),
then SM has a transition g =» ¢";

e constraints are concatenated with succeeding events and assignments con-
catenated with preceding events, e.g., if II(ll.d, d) Sonelriondl, Ti{iL.d,dy) =
1 ) PEEEREY oty i o) then S hes s transitiony EIRAEERN),
q3.

To define this precisely, we introduce the notion of experiment relation.

Definition 19 (Experiment relations) The relations =, =, and = for any
ac(EUCUA) and s € (EUCU A)* are defined as follows

1. ¢ = ¢' means that there is a sequence of zero or more transitions from q
{T1.1Tn

to q' that are labeled by silent events, i.e., g ! q form,...,Th €

{Tnlla Trefuses Tloop};
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2. q3 ¢ means that ¢ = q1 — g2 = ¢’ for some states q1 and go;
3. if s = (a1,09,...,0n), then ¢ = ¢ means that ¢ => q1 => gz~ => ¢'.

To obtain correct action expressions for transitions, we define the function
c2g € C* — BExp for converting a sequence of constraints into a guard and the
function a2ef € A* — (Var x Exp)" for converting a sequence of sequence dia-
gram assignments into a sequence of state machine assignments. More precisely,
these functions are defined as follows

d

conj(bzy,...,bx,)
((181,6:51), sk g (zﬂl 6.‘1':“))
(25)

where conj € BExp® — BExp yields the conjunction of a sequence of boolean
expressions. For the empty sequence, conj yields true, i.e., conj(()) = t. We
use the function conj instead of expressing the conjunction directly because we
have not defined the notation for boolean cxpressions in BExp since this is not
important in this report.

To distinguish negative from positive traces, we make use of the Trefuse
silent event. That is, any execution that involves a Trejuse represents a negative
behavior. Otherwise the execution represents positive behavior.

c2g((constr{bzy,1), ..., constr(bas,1}})
a2ef((assign(zy,ex1,l),. .. assign(zn, eTn, 1))

&
£y

Definition 20 (Positive and negative experiment relations) The relations
2 s and Spey for any s € (EUCU A)* are defined as follows

Trefuse

1. q ey ¢ means that q = q go = ¢' for some states g1 and g2
and some traces t and u such that s =t—~u

2. q =p0s ' means that g 2 ¢ and not ¢ Sneq '

Since the goal of phase 1 is to construct a state machine SM that describes the
negative traces of a sequence diagram, each final state of SM should accept a
negative trace. To distinguish these final states from those that accept positive
traces, we let cach state of $M have one of two modes: pos and neg. If a state
has mode pos, then this means that a positive trace is being recorded when this
state is entered. If a state has mode neg, then a negative trace is being recorded
when the state is entered.

Even though we shall restrict attention to well formed sequence diagrams, we
cannot in general let the alphabet of the state machine be equal to the set of all
events in the sequence diagram, because this set may not satisty the requirement
that all events in the alphabet must be distinct up to argument renaming (see
Def. 10). To ensure that a correct alphabet is constructed, we make use of the
function 3 € PVar — PVar that renames parameter variables. We lift the
function to signals with parameter variables as arguments as follows:

def

W(st(pvr, puz, ..., pon)) = st(w(pur), v(pvz), . .., ¥(pvn))

To ensure that the renaming function does not change the meaning of a signal,
we require that 1 does not rename two distinet parameter variables of a signal
into the same parameter variable, i.e., we require

Vi,j € {1,...,n}: (26)
((st(pv1, .. PUn)) = st(pv, ..., pvh) Apui # puj) = pvi 7 py;
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trefuse ._LD assign{i=0 l) [, |assign(i=0,) =D
. \
@—((11ne0) ali=0 ({4} neg)
o

ali=Z0;j=

0;. ,r]_
@
O —{(11neq)) === {Ehneg) ) —@)

Figure 12: State machines W and W' are obtained by transformation without
and with condition Last, respectively.

We lift 1 to expressions, events, and actions in the obvious way. Furthermore,
we lift ¥ to event sets and transition sets as follows:

WE) £ (Y(e)€ Eplec E)
wR) £ (g2 g2 ¢ e R}

def

We are now ready to define the transformation of phase 1.

Definition 21 (Phase 1) The transformation phl € D — SM which takes
a single lifeline sequence diagram d and yields a state machine describing the
negative traces of d is defined by

phl(d) = ((eca.d N E), @, ¥(R), ({d}, pos), {(Q, neg) € Q|skip € Q})

where
Q = P(D) x {pos,neg}

1 € PVar — PVar renames parameter variables such that

Ve,e' € Y(ecadNE): ~(e =€)
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and transition relation R is defined by the following formula

let Last(d') Y Vv3ece (EUC):3d" € D : II(lL.d,d') = TI(IL.d,d")
vd' = skip
{d"eD|

d' € Q ATI(l.d,d') 2> mo TI(IL.d,d") A Last(d")}

def

SHQ, t,mo)

in Vice C*:VececndNE :Via € A™:
V(@,mo) € Q: ¥mo' € {pos,neg}
A St({d},ta,mo’) # 0

< ({d},pos) Lostal, (St({d},ta,mo’),mo’) € R

A St(Q,te~(e) ~ta,pos) # B

& (@, mo) Leicylicl le (mli, (St(Q, ic—~{e) ~ta,pos),mo) E R
A St(@, tc—{e) ~ta,neg) # 0

< (2, mo) SeictiQehaiel ), (St(Q,tc— (e) ~ta,neg),neg) € R

The predicate Last (in Def. 21) ensures that the longest possible sequence of
assignments is selected. For instance, the condition ensures that the following
sequence diagram

refuse (a seq assign(i = 0, 1) seqassign(j = 0,1))

is transformed into the state machine W' in Fig. 12, and not the state machine
W of Fig. 12. Note that the projection system consisting of those states that
can be reached from the sequence diagram is illustrated at the top of Fig. 12.

Each state of the state machine constructed in phase 1 consists of a sct
of diagrams @ rather than a single diagram which is used by the projection
system. This is to reduce nondeterminism in the constructed state machine. To
see how this works, consider the LTS labeled A illustrated on the left hand side
of Fig. 13. If we convert this into a state machine by removing silent events
without merging states, we would obtain the state machine B shown in the
middle of Fig. 13 (note that we have omitted to specify the modes of states
in the figure). Clearly, this state machine is nondeterministic. However, if we
merge states 3 and 4, we obtain the state machine C (on the right hand side of
Fig. 13) which is deterministic.

Lemma 1 Let d be a well formed single lifeline sequence diegram, then the state
machine phl({d) describes the negative traces of d, i.e.,

[phl(d)] = Hpeg for [d] = (Hpos, Hneg)

D.1.2 Phase 2

In phase 2, the state machine obtained from phase 1 is inverted into a state
machine SM' whose semantics is the set of all traces that do not have a trace
of SM as a sub-trace. This notion of inversion is captured by the following
definition.

Definition 22 (Inversion) State machine SM' is an inversion of state ma-
chine SM, written inv(SM, SM"), iff

alph(SM) = alph{(SM')
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Figure 13: Machines A and B are nondeterministic while C is deterministic.

and for all s € {e € E| 3¢’ € alph(SM):e=¢'}"
Vte[SM]:-(tws)) = se€[SM']

To explain how the transformation of phase 2 works, we first define the trans-
formation for state machines whose transitions each contain exactly one event
(whose signal has zero arguments) and no guards or assignments.

Definition 23 (Phase 2 - Preliminary definition 1) The transformation
ph2’ € SM — SM which yields the inversion of state machines whose transi-
tions each contain ezactly one event (whose signal has zero arguments) and no
guards or assignments is defined by

phz’((g, QR q1,F)) £ (EvP(Q)sR's{QI}!P(Q))

where the transition relation R' is defined by the formula

let St(Qe) = {d€Q|HeQ:qgSq R}
in  ¥QePQ):
Ve e £

StQ,e)nF=0eQ@QUSLQ,e)eR

The rule for generating transitions ensures that previously visited states are
“recorded”. To sce why this is nceded, consider the state machine P on the left
hand side of Fig. 14. The set of traces described by it is

{{a;a), (b, b)}

The inversion of P is the state machine P' shown on the right hand side of
Fig. 14, i.e., ph2'(P) = P'. All states of P' are final, thus we have omitted to
specify the final states in the figure. The trace semantics of P' is the set

{0:(a), (b), (a,b), (b,2}}

Initially, both a and b are enabled. However, if a has occurred, then only b is
enabled (if we assume that the alphabet of the state machine is {a, b}). Similarly
if b has occurred, then only a is enabled. If both a and b have occurred, then
no events are enabled. The final states of P are used to find those events that
should not be enabled in P'. For instance, consider the transition {1} A, {1,2}
in P'. Here the state 1 is “collected” because we need to make sure that b is not
enabled after b has occurred in state {1,2}. Since 1 is collected, the occurrence



D FROM SEQUENCE DIAGRAMS TO STATE MACHINES 37

Figure 14: State machine P and its inversion P’

i) 1—. ﬂ _.
=3 ?/\a[nut{l <=10andi=10)]

a[| <= 10] a[l =4 0]

. . afi <= 1U/Ud‘h01(40)] \/c a[notli<=10) and i = 10ﬂ

d i—_mg[not(i = 10)] |alnot(i <= 1E[1_’__| ¢

\ a[|<-10andl"10]

Figure 15: State machine Q and its inversion Q°

of b in state {1,2} leads to state {1,2,3} and b is not enabled in this state because
the occurrence of b in state 3 leads to a final state in P.

The following lemma shows that the transformation of phase 2 is correct for
simple state machines, i.e., state machines with no guards or assignments.

Lemma 2 Let SM be a state machine whose transitions each contain exactly
one event (whose signal has zero arquments) end no guards or assignments.
Then ph2/(SM) is an inversion of SM if {) ¢ [SM], ie.,

inu(SM, ph2'(SM))

The transformation of phase 2 is more complicated for state machines whose
transitions contain guards. To see this, consider the state machine Q depicted
on the left hand side of Fig.15. Inverting this state machine according to the
transformation of Def. 23 would not work because the transformation does not
take the guards into consideration. A correct inversion of Q is given by the
state machine Q' depicted on the right hand side of Fig.15. Here we see that
the transitions

(a,bza,e)

B, 2 and 1 —=3

1
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of state machine Q (where bx; denotes i <= 10 and bza denotes i = 10) have
been converted into the transitions

(a,not{bz, or bzy),e) (a,not(bz1) and bza,e)
{1} —— {1} {1} ; +{1,3}
(a,bzy and not(bxa),c) (a,bzy and bza,¢)
{1} — {2} %24
In general, if a state machine SM has transitions
(e,bz1,50;1) (e,bxa,saq) (e,bx,,,5a4)
1 2y — n
where qi,...,q, are not final states, and its inversion SM" has a state {g}, then
for each set of indexes Iz C {1,...,n}, the inversion SM' has a transition

(e,bzand br' sa)
_—

{a} {g}uQ

where bz is the conjunction of those guards bz; that have an index in Iz (i.c.,
i € Iz), bz’ is the negation of the disjunction of the guards that do not have an
index in Iz, sa is the concatenated sequence of assignment sequences sa; that
have an index in Iz, and @ is the set of states g; that have an index in Iz.

Note that for the special case where fz = §, then bz should be equal to true.
In addition, for the special case where Iz = {1,...,n}, then bz’ should be equal
to true.

To make this more precise, we make use of the function . ®_€ P(N)xA — A
(where N denotes the set of all natural numbers, and A denotes the set of all
sequences), that for a set of indexes Iz and a sequence s, yields the sequence
obtained from s by removing all elements whose index is not in Iz, c.g.,

{17356} @(ﬂ,b, c, d,E) = (G,C) and {2141 5} ®(a1b1 c, d: E) = (b1d| e)

In addition, we let lis¢ be a function that turns a set into a list, set be a function
that turns a list into a set {(according to some total ordering on the elements in
the set), and flatten be the function that flattens a nested sequence, e.g.,

list({a,b,c}) = (a,b,c)
tist({b,a,c}) = (a,bc)
set({a,b,a,c)) = {a,b,c}
flatten((a, (b,c),(},f))) = (a.b,c,f)

We also need functions on boolean expressions. As before, we let the function
conj yield the conjunction of a sequence of boolean expressions. We also define
the function disj € BExp™ — BExp which yields the disjunction of a sequence
of boolean expressions. For the empty sequence, disj yields false, i.e., disj(()) =
f. Finally, we let neg € BExp — BExp be the function that yields the negation
of a boolean expression.

We now revise the definition of the transformation of phase 2 in light of the
above discussion.
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Definition 24 (Phase 2 - preliminary definition 2) The transformation
ph2" € SM — SM which yields the inversion of well formed state machines is
defined by

ph2"((€,Q, R, a1, F)) £ (€, P(Q), R, {a:}, P(Q))
where the trensition relation R' is defined by the following two Tules:

(e,e,5a) (c,c,5a)

g —>qdeRe{u}—>{¢leR

and
let Vi(@e) 2 (g peRr|geQre=¢)
Vi(Q,e,Jz) £ set(lz ®list(Vi(Q,e))
SHQ,e,Iz) £ {ge 0|3 L, o e ViQ, e, Iz) i g = ¢}
Ga(Q,e,Iz) = list({bx € BExp|
¢ Jaeion), q" e Vi(Q, e, Iz) : bz = bz'})
Gd'(Q,e,Jz) £ conj((conj(Ga(Q,e, I),
 neg(disj(Ga(@,e, N\ Ta))))
As(Q,e, Iz) = {as € (Var x Exp)*|
g Joieiel, q" € Vi(Q,e, Iz) 1 as = as'}
As'(Q,e,Iz) = [latten(list(As(Q, e, Iz)))
in YQ eP(Q):
Yee £
Iz € P(N):

S5t(Q,e,Iz)NF=0%
Q (e,Ga (Q.e,1x),As (Q-E'II))l (Q U St(Q,e,IﬂT)) e Rr

The transformation ph2” does not always yield the correct inversion of a state
machine. For instance, consider the state machine W depicted on the left hand
side of Fig. 16. It describes two traces: one trace consisting of 9 occurrences
of a, and one trace consisting of 9 occurrences of b. Applying the phase 2
transformation ph2" to W yields the state machine W' depicted on the right
hand side of Fig. 16. Note that we have not depicted final states (since all
states are final) or transitions whose guards always evaluate to false and that
redundancy in the boolean expressions of the guards have becn removed, e.g.,
i < 10 and true is written i < 10.

The state machine W' rejects traces consisting of 10 or more occurrences of a
or b. For instance, the trace ¢ consisting of 5 occurrences of a and 5 occurrences
of b is rejected by the state machine W'. However, no trace of W is a sub-trace
of ¢t. Hence, W' is not a correct inversion of W. The reason for this is that the
two possible executions of W, resulting from the branch in state 2, share the
variable i, i.c., the variable is used in a condition/guard of one exccution and
assigned to a value in another execution. In the example, this causes W' not to
be a correct inversion of W.

In general, to ensure that ph2" yields the correction inversion SM' of a state
machine SM, we must require that all guards encountered when executing SM !
must evaluate to the same values as the "corresponding” guards encountered
when executing SM. We say that a transformation is side effect free for SM if
this requirement is satisfied. This is precisely captured by the following defini-
tion.
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L) afi<10/i=i+1
» al 1:M\
b[i<16]'5,{=,+1
w all<10yizi+ 1
A T N o)

brizit1 ali=i+1 7
a 5 a{i<10]f|\'=|+1
~

bli<10)f=i+1

Figure 16: State machine W and its inversion

W)
‘@ fi=1 \{? ali=i+ \('Bﬂ b[i < 10] M
I, blnot(i < 10)]
. ﬁ{‘[}} fi=1 f {2}\ ali=it1 {2|3}
=g @ ;
b ali=i+1
w' ) b{not(i < 10)]
(1), V) 12152, Vo) —2H=E (12,3}, V) )
& _J
b a

Figure 17: State machine W, its incorrect inversion ph2’(W) = W', and its
correct inversion W"

Definition 25 (Side effect free) Let SM = (£,9,R,q;,F), ir € SM —
SM, and tr(SM) = SM' = (', Q" R, ¢}, F"). Then transformation tr is side
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effect free for SM iff

Vs, t € (EU {e})* : V(e, bz, as) € Actg :
V1,92 € @ : Vqi E“Q" :
VO’],O’I,J’I,O’E € Op:
Algr, a1l 4 [ql,al] € EG(SM)
Alar, o] = lg1,01] € EG(SM")

{e,bz,as)

ANp—— @ eR
Acomp([SM],s,t)
= oy N (var(bz) x Exp) = o} N (var(br) x Exp)

ﬁhere the predicate comp(-, -,-) € P(E")xE*xE" — B is defined comp(T', s, ) =
“satApr(T,s) # 0A—(3s' € pr(T,s) : s T &' As' at) where the function
pr € P(B) x E* — P(E") is defined by pr(T,s) (s~ eT|-(HeT: tC
s—s"}.

Lemma 3 Let SM be a well formed state machine such that () ¢ [SM] and
ph2'" be side effect free for SM, then ph2"(SM) is an inversion of SM, i.e.,

inv(SM, ph2"(SM))

It is possible to define an alternative version of the transformation of phase
9 for which the side effect free condition is less restrictive. In particular, we
observe that ph2” may generate unnecessary guards and assignment sequences
for transitions corresponding to inconclusive behavior. As an example, consider
the state machine W in Fig.17. It describes the trace (a,b). The result of
applying transformation ph2" to W is depicted by state machine W' in Fig.17
(i.e., ph2"(W) = W'). Note that we have not illustrated final states (since all
states are final) or transitions whose guards always evaluate to false, and that
boolean expressions have been simplified. The state machine W is not a correct
inversion of W since b is enabled after a has occurred 10 times. The problem is
that the reflexive transition

{2,3} {2,3}

in W' describing inconclusive behavior, contains the (unnecessary) assignment
i =i+ 1) since W has the transition

@fi=i+1)
_

5 afi=i+1) 3

which has been previously visited to reach the state {2,3}.

A solution to the problem of the current example, is the let each state of the
inverted state machine record all transitions that are previously visited in order
to reach that state. The previously visited transitions can then be disregarded
when generating reflexive transitions corresponding to inconclusive behavior.

State machine W" in Fig.17 shows how this would work in the current ex-
ample. Here Vi, Va, V3 are sets of previously visited transitions of W defined

by

L= v=pl=ha, afi=Tal, 5

V=0 sz{l
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w | a[l<1(]]{i=i+1
.7C1] /=0 ‘ﬁzl b[i>=10] f 3 @

w b[nu i==10] b{notl>-—-\0]
@ (), vz ma ‘"’“"”
anot'i £ 10]
W" a[j<10/]__l\]=i+1 /a[noti < 10]
li= > =
®— v 1=0 ¥ (42}, Va)

b [not ié= 10]

Figure 18: State machine W and its (incorrect) inversion W' and (correct) in-
version W"

Now, when generating transitions for a in state ({2, 3}, V3), we disregard the set
V3 of previously visited transitions. Thus we get

(12,3}, Va) & ({2,3},Va)

and by definition of inversion (Def. 22) we have that W" is a correct inversion
of W.

The solution proposed above may not work for state machines that contain
loops. For instance, consider the state machine W of Fig.18. It describes the
trace containing 9 occurrences of a followed by b. In other words, the policy
states that b is not allowed to occur after a has occurred 9 times. If we use
the transformation ph2” to invert W and record previously visited transitions
as described above, we gct state machine W' of Fig.18. Here we have that

V=9 Va = {1 2} vy = {1 / ali < 10]/i=i + 1 2)

The state machine W' is not a correct inversion of W since it allows the oc-

currence of b after a has occurred more than 9 times. In this case, adding the

0 Jd<10i=i+1y : 2.8 i
transition 2 A2 < 0 =1 £l 2 into the set of previously visited transitions,

and thereby disregarding its transitions, is incorrect, because the transition is
in a loop and may thercfore be visited several times.

A solution to the problem is to remove the transitions of a loop from the
set of visited transitions each time the loop is iterated. To achieve this, we can
remove the outgoing transitions of each state that is entered from the set of
previously visited transitions. In the current example, we would then obtain
the state machine W" of Fig.18 which is a correct inversion of W.

We are now ready to give the final definition of the transformation of phase

2.

Definition 26 (Phase 2) The transformation ph2 € SM — SM which yields
the inversion of well formed state machines is defined by

ph2((€, Q. R, a1, F)) = (£, (F(Q) x P(R)), R', ({as}, 0), (P(Q) x P(R)))
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where the transition relation R' is defined by the following two rules:

o £, ot e R & ({ar},0) LD, ({d'},0) e R'

and
let Vi(Q) # (oL, yeR|ge Q)
Vi@eV) L (4= geR|geQre=e}\V
Vi(Q, e, Iz, V) d=: set(Iz @list(Vi(Q,e,V))
St(Q,e,fx,V) = {g€ Q]
3, e viQe,In V) ta =)
Ga(Q,e, Iz, V) = list({bx € BExp|

g’ Jbend ), " eVi(Q,e, Iz, V) : bz = bz'})
Ga'(Q,e,Iz,V) = conj{(conj(Ga(Q,e,Iz,V),

neg(disj(Ga(Q,e,N\ Iz, V))))))
As(Q,e,Iz,V) = {as € (Var x Exp)*|

Aq’ (et ) g € Vi(Q,e, Iz, V) : as = as'}
As'(Q,e,Iz,V) = [flatten(list(As(Q,e, Iz, V)))

in Y(Q,V)eP(Q)xP(R):Vec&:
Viz € P(N):
S5iQ,e, Iz, VN F =0«
(Q, V) (e,Ga’(Q,e,[z,V),As'(Q,e,]x,V))

(QUSLQ, e, Iz, V), (VUVIi(Q,e, Iz, V) \ Vi(SH(Q,e, [T, V))) € R

Corollary 1 Let SM be a well formed state machine such that () ¢ [SM ] and
ph?2 be side effect free for SM, then ph2(SM) is an inversion of SM, i.c.,

inv(SM,ph2(SM))

The transformation ph2 will correctly invert the state machine examples of
Fig. 14, Fig. 15, Fig. 17, and Fig. 18, as well as all the examples of the first part
of this report (the part before the appendices).

However, ph2 does not work for the state machine of Fig. 16, where the
variable i is shared in the sense that it is used in a condition/guard of one
execution and assigned to a value in another execution. We make this precise
in the following definition.

Definition 27 (Shared variables) Let SM = (£,Q,R,q1,F), then SM does
not have any shared variables iff

Vs, L, i € Act™ :¥q,¢' € O
¥(e1, bz, as1), (e}, bz}, asl), (e2, bxa, asa), (5, bx5, asy) € Act :
s~((e1,bry,a5))t~((ez,brz,a82)}
Agr »ygER

s={{ey b as]))t'~{(eh bxh ush))

JER

Aaqr

A (e1,bzy,as1) # (e, brl, asi)

A=(Vo € &7 : eval(a(bz)) = eval(a(bz}))
= ((var(bz2) N avar{ash)) \ PVar) = §
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where avar € (Var x Exp)* — P(Var) yields all the variables that are assigned
to a value in an assignment sequence, i.e., avar(((z1,ez.),...,(Tn,eZ4))) =
{z1}y---U{z.}.

We conjecture that if a state machine SM does not have shared variables in the
sense of (Def. 27), then ph?2 is side effect free for SM (Def. 25). By Corollary 1,
this means ph2 will yield the correct inversion of any state machine that does
not have shared variables.

In practice, the condition that a state machine policy must not have shared
variables, means that when we compose several policies, then these policies
cannot have the same variable names. For instance, consider again the state
machine W of Fig. 16. This state machine may be seen as the composition of
the two policies: (1) more than 9 occurrences of a is not allowed, and (2) more
than 9 occurrences of (2) b is not allowed. However, since both policies use
the variable i to count the number of occurrences of a or b, the condition of no
shared variables is violated.

Note that it is feasible to automatically check whether a state machine has no
shared variables because the condition is formulated in terms of the transitions
of a state machine as opposed to the transitions of the execution graph.

Together, the transformation of phase 1 and phase 2 is adherence preserving
when the condition of phase 2 is satisfied.

Theorem 1 Let d be a well formed single lifeline sequence diagram such that
ph2 is side effect free for phl(d), then the transformation d2p(d) is adherence
preserving, t.e.,

d =4y & = d2p(d) —4, © for all systems ®

D.2 From general sequence diagrams to state machines
In this section, we define the transformation that takes a (gencral) sequence
diagram and yields a set of state machines.

Definition 28 (From sequence diagrams to sets of state machines) The
transformation d2pc € D — P(SM) which takes a sequence diagram and yields
a set of state machine, is defined by

d2pc(d) = U {d2p(m(d))}
lell.d

The transformation from sequence diagrams to state machine sets is adherence
preserving when the condition of phase 2 is satisfied.

Theorem 2 Let d be a well formed sequence diagram such that ph2 is side
effect free for phl(m(d)) for all lifelines | in d, then the transformation d2pc(d)
is adherence preserving, i.e.,

d —rgag O < d2pc(d) —suy D for all systems ©

E Proofs

Lemma 1 Let d be a well formed sequence diagram, then the state machine
phl(d) describes the negative traces of d, i.e.,

[phl({d)] = Hneq for [d] = (Hposy Hneg)
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Proof of Lemma 1 By Lemma 1.1 and Lemma 1.2, and definition of phl
(Def. 21).

Lemma 1.1 Let d be a well formed sequence diagram, SM = (eca.dNE, @, R, q;, F)
and SM' = (¥(£),Q,%(R),qr,F) for some variable renaming function ¢ €
PVar — PVar satisfying constraint (26). Then the semantics of SM is equal

o the semantics of SM', i.e.,

[SM]=[SM']

Proof of Lemma 1.1 By definition of the execution graph of state machines
(Def. 11), all parameter variables are treated as local variables for each transi-
tion, thus a renaming of the parameter variables has no effect on the execution
unless two distinct parameter variables of the same signal are renamed into the
same parameter variable. However, this cannot occur since 1) is assumed to
satisfy constraint (26). Note that it is always possible to find a renaming func-
tion that satisfies constraint (26) for the events of a given well formed sequence
diagram because well formed diagrams must satisfy conditions SD3 and SD7

Lemma 1.2 Let d be a well formed single lifeline sequence diagram such that
[d] = (Hpos, Hueg), let phl(d) = (¥(£), Q,%(R),qs,F) for some parameter
variable renaming function ¥ € PVar — PVar, and let SM = (E,Q,R,q1,F)
then the semantics of SM is equal to Hy.y, ie.,

[SM] = Hueg

Proof of Lemma 1.2
AssUME: 1. phl(d) = (#(£), S, %(R),q,F) and SM = (£,Q,R,qr,F) for
some d € D', | € L, and ¢ € PVar — PVar
2. [[d]] = (-Hpom ang)
3. d is well formed (i.c., d satisfies conditions SD1 - SD10)
ProvE: [SM] = Hneq
(1)1. AssuME: 1.1. s € Hng
PrOVE: s€ [SM]
(2)1. 35" € (EU{e})" 01,0 € SrqeF:
Alar,o1) 2o [g,0] € EG(SM)
As'lg=3s
(3)1. Choose {es,...,en} € E" such that {e1,...,eq) =5
Proor: By assumption 2, assumption 1.1, and definition of [ ] (Def. 7).
(3)2. Choose
te (E U Lt' £, 1, 7ant, Trefuse TIaop})‘:
ap,0n € ET; and
fn€B
such that
[(8,10.d),d, 67] = [Bn,skip, 0n]
tl{'rm,;..,mf!J.} € ‘{Trcfusc}+
tlE =3
PROOF: By assumption 2, assumption 1.1, and definition of [-1 (Def. 7).
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(3)3. Choose

tly,...,tin € {t}',

ttag, ttay, ..., tia, € {Tassign}™, and

E= (E U {ta Tusn'gn}) \ {Taff.; Tioop, Trcj’ux:} such that

t|g = tlag ~ ity ~{e1) ~ttay ~- - ity (en) ~tiay
Proor: By (3)1 and (3)2 we know that t|g = {(eq,...,e,}. Furthermore,
since d satisfies syntax constraints SD4 and SD8 (by assumption 3), we
know that ¢ must be of the form asserted by (3)3 by definition of the
execution system for sequence diagrams (Def. 6).

<3)4. [(U),H.d), d,cr;] ttagtti~{e1 ) ttar~ —ttn~{en ) ttay [ﬁ,,,skip,crn]
Proor: By {3)2, (3)3 and definition of = (Def. 19).

{3}5. Choose

TQy..,0n-1 € E,

ﬁﬂaﬁh---:ﬁn—l € Br

dﬂ,'“)dn—l € D

such that ;
it e )tta
[(8,10.d),d, 7] 223 |G, dy, o] S (51, dy o) -

=\r“'"n(“">r1t“f [ﬂn: Skip! Jn]
Proor: By (3)4.
(3)6. Choose
tcr,..., ten € G,
tag,...,ta, € A", and
e,...,en €E
such that
'(1.d, d) 223 T1'(11.d, dg

Lo len o, (U shin),
evel(oi(el)) =e; foralli e {1,...,n},
eval(o;(c2g(te;})) =t forall i e {1,...,n},
oo = as2ds(or,a2e f(tap)), and
oi+1 = as2ds(o;,a2ef(te;)} forall i € {0,...,n— 1}
PROOF: By Def.6, a transition IT'(Il.d, d") == TT'(ll.d, d") of the revised
0_,] eval{o(eca))

) 2SI i 4, dy) -

projection system corresponds to the transition [#,d',
[8”,d",a'| of the execution system if eca is an event or constraint, or the
transition [, d', o] 227, [8”, d”, 0"] where 6" = o'[z — eval(ez)] =
asds(c’, (eca)) if eca is an assignment of the form (z,ex). By {3)5, defi-
nition of the execution system for sequence diagrams (Def.6), definition
of c2g (Eq. (25)), a2ef (Eq. (25)), and as2ds (Eq. (24)), we therefore
have that {3)6 holds.

(3}7. LET: Let pr be a function that sets the index of all parameter vari-

ables in a term to zero, e.g., pr((vn,3)) = (vr,0)

()8, TI{lL.d, d) 428 TI(1L.d, dp) Zeaterls W omlie) oy o or(dy))
| prlteartor(eh ) prtinal 1oy 5o )

Proor: By (3)6, (3)7, and definition of the projection systems for se-
quence diagrams (Def4 and Def. 5).
(3)9. Choose
(Qﬂr TTLO[]), ey (Q1|.1 mon) e
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such that

({d}, pos) (Qo, mon)
(Q1,moy) -+ (pr(ey).pric2g(ten)).pr(a2ef{lan))) (Qn,mon) € R,
pr(d;) € @; for all i € {0,...,n— 1}, and
skip € (a
PROOF: By definition of phl (Def 21), a transition II(!.d, d’) 'ﬂ:’mu'
TI(ll.d,d") of the projection system corresponds to a transition

(@', mo) S rAE ), (@", mo') of the state machine (which is pro-
duced by phl) where &' € Q' and d” € Q". Therefore, by assumption 1
(since phi(d) = SM), (3)8, and definition of phl (Def 21), we have that
{3)9 holds.
(3)10. (Qn,mon) € F
PRroOF: By definition of phl (Def 21), (Q,,mo,) is in the set of final
states F if skip € Qn and mo, = neg. By (3}9, we know that skip € Q.
To see that mo, = neg, note that by (3)2, t must contain the silent
event Trepyuse. This means that [(@,1l.d),d, o/] =t>neg [Br, skip, @5] holds
by definition of =, (Def. 20). By (3)5 - (3)9 and definition of ph1 (Def.
21), this implies that mo,, = neg.
(3)11. 3a},...,0, € B
[({d},pos), Jf] 5 [(QD-; mau),g’o] = [(Ql: m01), OJI] o
= [(@n,mon), 0}] € EG(SM)
(4)1. Choose

(e.e,02ef(tag)) (prie}}.pr(c2g(te1))prinef(tu1)))
—

Jf],...,U;LEET and
gf,...,oh X
such that

(A)YDom(c?} = pvar(pr(el)) for all i € {1,...,n},
(B)eval(a[c!)(pr(el))) = e; foralli € {1,...,n},
(C)al, = as2ds(or, a2ef(tap)), and
(D)’ = as2ds(o}[o}], pr(a2ef(ta;))) for alli € {0,...,n — 1}
Proor: Data staes that satisfy (A), (C), and (D) of (4}1 can always
be chosen trivially. Furthermore, data states that satisfy (B) can be
chosen because the message of cach event pr(e;’) contain parameter
variables only since d is assumed to satisfy syntax constraint SD3 by
assumption 3. Therefore it is always possible to chose a data state o
such that eval{ci[o?](pr(e)))) = eval(a!{pr(e}))) = o (pr(e})) = e
(4)2. eval(al[o!)(pr(c2g(tc:)))) =t foralli € {1,...,n}
PRrRooOF: By (3)6, (3)7, {3}8, and {(4)1.
(4)3. Q.E.D.
PrOOF: By (4)1, (4)2, and definition of the execution graph for state
machines (Def. 11).
(3)12. Q.E.D.
PROOF: By (3)10 and (3)11.
(2)2. Q.E.D.
Proor: By (2)1 and definition of [ ] (Def.12}).
(1)2. AssuMmE: 1.1. s€ [SM]
PROVE: s € Hpey
{2)1. Jo,0’ € iT,,B eB,s' e (EU {t,%, L, 7a1t, Trefuse: Tloop})™
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A[(8,11.d),d, 0] <= (B, skip, o]
As'lg=s
A stl{i,_L,T,.:h,,c} = {Trefuae}+
(3)1. Choose
te(BuU{e),
g1,0n € Er,
(Qn,moy) € F
such that
Eq;,vlf] = [(Qn, neg),an] € EG(SM) and
s=1t|g
PRrooF: By assumption 1, assumption 1.1, definition of [ ] {Def. 12}, and
definition of phl (Def. 21).
{3)2. t=(e)~s
Proor: By definition of phl (Def. 21), SM has exactly one transition
from its inital state, and that transition is not labeled by an action con-
taining an event. All other transitions of SM are labeled by actions con-
taining events. By definition of [ ]| (Def. 12), this means that ¢ = (e} ~s.
{3)3. Choose {e1,...,e,) € E” such that s = {e1,...,e,)
Proor: By (3)1 and definition of the execution graph of state machines
{Def. 11).
{(3)4. Choose
(Qo, mon), (Q1,mo1), ..., {Qn-1,m0,—1) € Q and
00,01y.++,0n—1 € B
such that
[g7,01] = [(Qo,mo0), 0] == [(Q1,m01),01] -+
=2 [(@n, neg), o] € EG(SM)
Proor: By (3)1, (3)2, (3)3, and definition of the execution graph of state
machines (Def. 11).
{3}5. Choose
e}y...,en € B,
bzxiy,...,br, € BExp,
asg, .- .,as, € (Var x Exp)”, and
al,...,0n € Sr
such that
qi -—f(é'msu) (Qo, moo)
m (Q’llneg) E Rl
Dom(ol) = pvar(el) for all i € {1,...,n},
gg = as2ds(asp),
oi+1 = as2ds(o;[ol],as;) for alli € {0,...,n -1},
eval(oi[o})(el)) = e; for all i € {0,...,n}, and
eval(oi[a!)(bz;)) =t for all i € {0,...,n}
Proor: By assumption 1, R denotes the transitions of SM, therefore,
{3}5 holds by {3)4 and definition of the execution graph for state machines
(Def. 11).
{3}6. Choose
dU € Qﬂw"':dn—l € Qn-—!s
tcy, ..., tey, € C*, and
tag,tay,...,ta, € A*

(e],bz1,a81)
R ——

1(Q11m*ol)"‘
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such that
(AYTL(Ld, d) 223 TI(1Ld, do) terXeal o e d,dy) oo
tenen 00 11110, skip),
(B) bz; = 2g(tc;) for all i € {1,...,n},
(C)as; = a2ef(tu;) for all i € {0,...,n}, and (D)
tey~{ef)as;
T(Ld, d;) =20 (g, djs)
for some j € {0,...,n—1}
or

TI(I.d, d) 228 ., TI(IL.d, do)

PROOF: By definition of ph1 (Def 21), a transition TI(ll.d,d")

TI(ll.d, d”) of the projection system corresponds to a transition
(Q' mo) e,c2g(te),a2ef(ta)
?

te~{e)~ta
mao’

(Q",mo’) of the state machine (which is pro-
duced by phl) where d' € Q' and @" € Q”. Therefore, by assumption 1
(since phl(d) = SM), {3)5, and definition of phl (Def 21), we have that
(A), (B), and (C) hold. (D) holds by definition of ph1 (Def 21) because
the last state (@, neg) (3)5 has mode neg.

(3)7. LET: Let pr be a function that sets the index of all parameter vari-

ables in a term to zero, e.g., pr((va,3)) = (vn,0)

(3)8. Choose

L dheD,
tch,... tc, € C,
- ,e:: e E, and
taf,... tal, € A"
such that
pr(d)) = d; foralli € {1,...,n},
pr(tcl) = te; for all i € {1,...,n},
pr(e!) = ¢} for all i € {1,...,n},
pr(tal) = ta; for alli € {1,...,n}, and
T (11.d, d) 228 TT'(iL.d, do) ES w(d,d,) -

tetend) e mr1d, )

Proor: By (3)6, definition of pr ({3)7) and definition of the revised
projection system (Def. 5).
19, Ty, vittn €48}
ttag,. .., ttan € {Tassign}™ !
aﬁ(]l"‘?ﬁﬂ eEB:
30%,00,07,.--10y, € 3

[(9,11.d),d, 07] &3 [ﬂu,do,%] el tioy (,,d}, 0} -
e (eu)"ttu,:! [ﬁ ]
(4)1. Choose
0-’[10-:)1" -10';-; €L
such that
(A )Uf \ (PVar x Exp) = o; \ (PVar x Exp),
(B) oy gy = = as2ds(o’, a2ef(tao)),
(C)oiy = as?ds(or,, a2ef(ta})) for all i € {0,...,n— 1}, and
(D) eval(c)(e!)) = e for all i € {1,...,n}
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Proor: Conditions (A4), (B), and (C) of (4)1 hold trivially. Condi-
tion (D) holds because the signal of each event e contain parameter
variables only and no two events contain the same parameter variables
(since d satisfies syntax constraints SD3 and SD7 by assumption 3).
Therefore, we can always choose an initial state ¢ that assigns vari-
ables to values such that (D) holds since parameter variables are never
explicitly assigned to values by any assignment sequence te} (since
only a normal variable and not a parameter variable can be explicitly
assigned to a value by the constructs in a sequence diagram).

{4)2. eval(gi(c2g(tcl))) =t for alli € {1,...,n}
ProorF: By (3)4 and (4)1.

{4)3. Q.E.D.
ProoF: By {4)1 and (4)2.

(3)10. Q.E.D.

ProOF: By (3)9, we know that [(0,il.d),d,c%] 5 [Bn,d.,, )] for some

trace ¢ such that ¢|g = s. Furthermore, df, = skip by (3)6 and (3)8, and ¢

must contain the silent event Trepyse by (3)6. Therefore (2)1 must hold.

(2)2. Q.E.D.
Proor: By (2)1 and definition of [ ]| (Def. 7).
(1)3. Q.E.D.
Proor: By (1)1 and (1)2.

Lemma 2 Let SM be a state machine whose transitions each contain exactly
one event {whose signal has zero arguments) and no guards or assignments.
Then ph2'(SM) is an inversion of SM if {) ¢ [SM ], i.e.,

¢ [SM] = inv(SM,ph2'(SM))

Proof of Lemma 2

ASSUME: 1. SM = (£,Q,R,q,F) and (} ¢ [SM]
2. ¢35 ¢ €eR = acl = (e, e, €) for some e € E whose signal has
zero arguments
3. SM' = ph2(SM) = (€', @', R', @1, F")
4. sc{ecE|Iecf:e=¢}"

ProveE: (Vte[SM]:~(t<s))ese[SM']

{1}1. AssuMmE: 1.1, (Vt € [SM]:-(t 23))
Prove: sé€ [SM']
(2)1. ¥spe E :spCs = spe [SM']
{(3}1. AssuME: 2.1 sp C s for some sp € B
ProvE: spe€ [SM']
(4)1. Case: 3.1, sp= ()
PROOF: @y € F' by definition of ph2’ (Def. 23) and assumption 3.
This means that {} € [ SM'] by definition of [ ] (Def.12).
(4)2. CASE: 3.1. sp = sp’'~{e) for some sp’ € [SM'] and e € B
{5}1. Choose ey,es,...,e, € E such that sp’ = {e1,es,...,en)
Proor: By assumption 2.1 and assumption 3.1.
(5)2. Choose Q1,Qs,...,Qn € Q' such that Q; =% Q; = Qa-++ =
QnerR
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PROOF: By assumption 2, case assumption 3.1, (5)1, and definition
of [ ] (Def.12).
(5)3. Choose @Qn41 € F such that Qy, S QueR
(6)1. AssuME: 4.1 =(3Qnt+1 € F : Qn = Quy1 € R')
ProvE: False
{7)1. Choose g, € Q, and gy € F such that gn — gy €R
PROOF: Assumption 4.1 implies that St(Q.,e) N F = where
5t is the function defined in (Def. 23) (otherwise we would have
Qn = Qn U St(Qn,e) which contradicts assumption 4.1). By
(5)2, assumption 3, and definition of ph2' (Def. 23), this means
that (7)1 holds.
(7)2. Choose u € B such that g1 = gn € R and u < sp’
ProOF: By definition of ph2', we know that for each transition
¢ = ¢" (where ¢" ¢ F) of SM, there is a corresponding transi-
tion Q' = Q" (where ¢’ € Q' and ¢” € Q") in the inverted state

machine SM'. Since we have Q; —— @, € R’ by (5)1 and (5)2,
it is easy to see that we can choose u such that gy LmeR
and u < sp'.
(3. u—{e)e [SM]
PROOF: By {7)1, {7)2, assumption 1, and definition of [ ] (Def.12).
(T, 1~ (e) < 39/~ (e)
ProOF: By (7)2 and definition of © (Eq. (20)).
{7)5. Q.E.D.
PROOF:By assumption 1.1, no trace in [ SM | can be a sub trace
of 5. However, by (7)3 u~ (e) is in [ M ]. Furthermore, u— (e)
is a subtrace of s because u ~ (e} is a subtrace of sp (by (7)4
and assumption 3.1) which is a prefix of s (by assumption 2.1).
Hence assumption 4.1 cannot hold.
(6)2. QE.D.
Proor: By contradiction.
(5)4. Q.E.D.
PRrROOF: By case assumption 3.1, (5)1, {5)2, (5)3, assumption 3, and
definition of [ | (Def.12).
(4)3. Q.ED.
PROOF; By (4)1, (4)2, and induction over the length of sp.
(3)2. Q.E.D.
PRrooF: By V-rule.
(2)2. Q.E.D.
Proor: By (2)1.
(1)2. AsSUME: 1.1s€[SM']
Prove: (Vte[SM]:-(t<s))
(2)1. AssUME: 2.1t < s for some ¢ € [SM]
Prove: False .
(3)1. Chooset' = {e1,...,eq) € E suchthat ' C ¢, and chooseq,... ,qn-1 €

En—-1

O\ F and g, € Fsuch that g, 4, qm =, Qg — (Qn—-1 —cl’f]n ER
Proor: By assumption 2, assumption 2.1, assumption 1 (since () ¢

[ SM]), and definition of [ ] (Def.12).
{3)2. Choose u € E  such that u—{e,) C s and (e1,ez,...,en-1) @u and
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=(¢’ < u), and choose Q,Q' € Qsuch that Q; L Q =5 Q" e R
PRroOF: By assumption 1.1, (3)1, assumption 2, assumption 3, and defi-
nition of [ ] (Def.12).

(3)3. g1 €Q
ProoF: By assumption 2.1, (3}1, (3)2, assumption 3 and definition of
ph2' (Def. 23).
(3)4. Q.E.D.
Proor: By definition of ph2' (Def. 23), @ =% Q' cannot hold since
Gn-1 € Q and g1 = g, for g, € F. Therefore assumption 2.1 implies
a contradiction.
{2)2. Q.E.D.
PROOF: By contradiction.
(1)3. Q.E.D.
ProoF: By (1)1 and {1)2.

Lemma 3 Let SM be a well formed state machine such that (} ¢ [SM ] and
ph2" be side effect free for SM, then ph2”(SM) is an inversion of SM, i.e.,

inu(SM, ph2" (SM))

Proof of Lemma 3
AssuMmEe: 1. SM = (£,Q,R,q;,F) for SM € SM satisfying SM1 - SM4 and
0 ¢ 1SM]
2. ph2" is side effect free for SM
3. SM' =ph2"(SM)={(£", Q" R, q}, F")
4. sc{ecB|IcE:e=r})"

Prove: (Vte[SM]:~(t<s))=se[SM']
{131. AssumE: 1.1, (Vi € [SM]:-(t<s))
Prove: se[SM']
(1. Yspe B :spEs = spe [SM']
(3)1. AsSUME: 2.1 spC s for some sp € B
ProvE: spe€[SM']
(4)1. Case: 3.1. sp= ()
Proor: ¢/ € F' by definition of ph2” (Def. 24) and assumption 3.
This means that () € [.SM'] by definition of [ ] (Def.12).
(4)2. CasE: 3.1. sp = sp’ ~ (e} for some sp’ € [SM'] (the induction
hypothesis) and ¢ € E
{6)1. Choose e1,€e3,...,6, € E such that sp’ = {e1,e2,...,€n)
Proor: By assumption 2.1 and assumption 3.1.
(5)2. Choose t € (EU {e})", Qn € Q and 0,0, € 7 such that
l¢h,51] = [@n,ol] € EG(SM') and t|g = sp’
ProoOF: By case assumption 3.1 (since sp’ € [ SM']) and definition
of [ ] (Def. 12).
(6)3. t = (e) ~sp'
PRroor: By assumption 1, SM is assumed to satisfy syntax con-
straints SM2 and SM3 that ensure that all transitions of SM ex-
cept the outgoing transition for the initial state of SM are labeled
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by actions containing events. By definition of ph2" (Def. 24) this
means that the same constraints hold for the inverted state machine
SM'. Therefore we can assert that ¢ = {e) ~sp'.
(5)4. Choose
Q0,Q1,Q2,...,Qn-1 € @ and
0"0,...,0':1_1 € Lr
such that
[Q{[: gl'] = [QO!G"O] = in: Ji] = [Q2; 0’2] HEE
= [Qn,op| € BEG(SM')
Proor: By (6)1, (5)2, and {5)3.
{5)5. Choose Qni1 € F' and o, € $r such that
I_Qﬂ:g;l] i’ [Qrt+1:d;1+1] € EG(SM‘)
{6)1. Choose

ql:-"y(JkEQn'l
pll"'1pkEQ|
e ek,

bzi,...,bz; € BExp, and
asi,...,as; € (Var x Exp)*
such that
((Q!: (E,lbmlwasl)xpl)’ o) (qkw (el!hmhask)lpk)) =
list({(q, (e", bz, as),q") ER[q € QnAe=¢"})
PRrooF: By assumption 1, definition of the alphabet of state ma-
chines (Def. 10), and definition of the list function (sce App. D.1.2).
{6)2. Choose ¢ € % such that Dom(¢) = pvar(e’) and ¢(e’) = e
PRrOOF: By (6)1 and definition of the alphabet of state machines
(Def. 10).
(6)3. Choose Iz C {1,...,n} such that i € Iz iff eval(o!,[¢](bz;)) =
t
Proor: Trivial.
LET: bzs = (bxy,baa,...,bzy)
LET: ba" = conj((conj(Iz @baxs),neg(disj({1,...,n}\/z ®@bzs))))
(6)4. eval(ay[@](bz")) =t
PRrROOF: By (6)3, definition of bz”, and definition of conj, disj,
and neg (Sect. D.1.2}.
(6)5. set(Iz @(p1,--. Pe))NF= ]
(7)1. AssuMme: 4.1 set(Jz @ (p1,...,pe)) NF #10
Prove: False
(8)1. Choosesome j € [z such that p; € 7 and eval(c!,[¢](bz;)) =
t
PRroOF: By (6)3 and assumption 4.1.
(8)2. Choose
o € QU1A
09,01 € Ty, and
uEe o)
such that
lgr,os] = lgo, 00 = [g5,01) € EG(SM) and
comp([ SM 1, v, s7)
PROOF: By assumption 1-3, (5)4, and Lemma 3.2.
(8)3. Choose o2 € Tr such that [g;,01] = [pj, 0]
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(1. eval(a[p)(e')) =e
Proor: By (6)2.
(9)2. eval(oy[¢(bz)) = ¢
PROOF: By (8)2, (5)4, (6)1, (8)1 (since q; ~222%), . ¢
R ), (8)2, assumption 2, and definition of side effect free-
dom (Def. 25).
(9)3. Q.ED.
Proor: By {9}1, (9)2, and definition of the execution graph
for state machines (Def. 11).
(8Y4. u~—(e) € [SM]
PRroOF: By (8)1 (since p; € F) and (8)2 and (8)3 (since
(g1, 01] Janr iy, [pj,o2]), and definition of [ ] (Def. 12).
(8)5. u—~(eyos
Proor: We know that u < sp’ (by (8)2). By definition of
<, this means that u ~ (e} < sp’ ~ {e). Since sp’ ~{e) C s
(by assumptions 2.1 and 3.1) we know that u ~ {e) < s by
definition of <.
{8)6. Q.E.D.
Proor: (8)4 and (8)5 contradict assumption 1.1, therefore
assumption 4.1 does not hold.
(2. Q.E.D.
ProoF: By contradiction.
(6)6. St(Qn,e',Tz) N F = B (where St is the function defined in
(Def. 24)).
{NH1. Vi(Qn, e, Iz) =
SEt(I'T @ (((hr (erl bxltasl):pl)v teey (Q‘lh (ef! bxﬂ) GSn),Pn)))
PRroor:

Vi(Qn, €', Iz)
set(Iz @list(Vi(Qn,e"))) By Def. 24
set(lx ®list({(g, (e" bz, as),q'} € R|
gEQnhe=¢"})) By Def. 24
set(Iz @ ((q1, (e’ bz1,a81),p1),- -,
(qks (errbmkiﬂsk)lpk)))) By (6)1
(1)2. St(Qn, e Iz) = set(Iz ®(p1,...,px)
Proor:

Il

St(Qn, €, Iz)
{ge Q|ag L)

€ Vi(Qn, e, Iz) : g = ¢"} By Def. 24
(g€ Q(3g =), e

SEt(I:‘L‘ @ ((q11 (e’,b.’L‘]_, asl)'lpl)‘l siis5 g

(ar, (¢, bz, asi), px))) : ¢ = 4"} By (7)1

= set(fz @ (p1,...,pk)) By set abstraction
(7)3. Q.ED.
Proor: By (6)5 and {7)2.

(6)7. Q.E.D.

fl
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PRroor: By (6)6 and definition of ph2” (Def. 24)), we have that

"b I!| a :

Qn A el Qn U St{Qn, e, Iz) € R' for some assignment se-
quence se (sa is not important in the current argument). This
means that [Qn,0%] = [Qns1,0h4.] € EG(SM') (where Qny1 =

Q.USHQ, €, Iz)) by (6)2 (since ¢(e’) = e) and (6)4 (since eval(oy,[#](bz"))

t) and definition of the execution graph of state machines (Def. 11).
(5)6. Q.E.D.
Proor: By (5)1 - (5)5 and definition of [ ]| (Def. 12).
(4)3. Q.E.D.
Proor: By (4)1, (4)2, and induction over the length of sp.
{3)2. Q.E.D.
PRrOOF: By V-rule.
(2)2. QED.
ProoF: By (2)1.
(1)2. AssuME: 1.1 s€ [SM']
Prove: (Vte[SM]:-(t<s))
(2)1. ASSUME: 2.1 t < s for some t € [SM]
Prove: False
{3)1. Choose
t'= (El,...,ﬁn) S ﬁ‘,
q0, Ty -2Gn-1 € Q\j:y
qn € F, -
07, 00,01,---,0n € &, and
such that
t' as,
(3" e [SM]:t"C t' At" <s), and
[ar,01) < (90, 00] = [q1,01] = [g2,02] - -+ = [gn, 7u] € EG(SM)
PROOF: By assumption 1, assumption 2.1 and definition of [ ] (Def.12).
{3)2. Choose
wel
such that
(A)n—{en) C s and
(B) comp([SM ], {e1,e2,- .., en—1),2)
(5)1. pr([SM], (e1, €2, a-1)) # 8
ProoF: By (3)1 and definition of pr (Def. 25).
(5)2. Choose u € E* such that u—(e,) C s, {e1,€2,..., €n-1) Qu, and
=(t' < u).
PROOF: By assumption 2.1 and {3)1, we know that (e1,...,en) <
5. Choosing a prefix u of s such that (5)2 is satisfied, is therefore
possible.
{5)3. Q.E.D.
PRrooF: By (5)1, (5)2, (3)1, and definition of comp(-, -, -) (Def. 25).
{3)3. Choose
1,Q2,Q3 € @', and
71,03,03 € L
such that
ldhs01] 5 [@1,01] 2 (@2, 05] < [Qs, 03] € EG(SM")
(1. u~{en) € [SM']
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Proor: By (3)2, we have that v~ (e,) C s. Furhermore, by assump-
tion 1.1, we know that s € [SM']. Since the semantic trace set of
SM’ is prefix-closed (because all states of SM' are final states), it is
easy to sec that u~{e,) € [SM'].
{4)2. Choose
u' e (Bu{c})",
o € S, and Qz € Q'
such that
(¢4, 01) = [Qa,05] € EG(SM"), and
w'|g = u~(en)
Proor: By (4)1 and definition of [[.] (Def. 12).
()3, v = () ~u—(e,)
ProoF: By assumption 1, SM is assumed to satisfy syntax constraints
SM2 and SM3 that ensure that all transitions of SM except the
outgoing transition for the initial state of SM are labeled by actions
containing events. By definition of ph2"” (Def. 24) this means that the
same constraints hold for the inverted state machine SM’. Therefore
we can assert that v’ = (&) ~u~(e,) by (4)2.
{4)4. Q.E.D.
ProoF: By (4)2 and (4)3.
(3. gn-1 € Q2
PRrooF: By assumption 1-3, (3)1, (3)3, and Lemma 3.1.
{(3)5. Choose
decfandpel
such that
Dom(¢) = pvar(e’),
d(e') = en
PRroOF: By (3}1, and definition of the alphabet of state machines (Def. 10).
{3}6. Choose
bz € BExp and
as € (Var x Exp)”
such that
In—1 w” gn € R and
eval(on-1[g](bz)) = t
Proor: By (3)1, (3)5, and definition of the execution graph of state
machines (Def. 11).
(3)7. eval(oh[¢l(ba)) = £

(4)1. Choose @2 le iertaea)
eval(ay[d](bz3)) = ¢
Proor: By (3)3, (3)5, and definition of the execution graph of state
machines (Def. 11).
(4)2. bxy = conj(b, negl(disj(by, ..., bx,... b)) for some b,by,... bt €
BExp
{5}1. Choose Iz € P(N) such that Q3 = Q2 U 5t(Q2, €', Iz, Va)
ProOF:By (4)1 and definition of ph2” (Def. 24).
(5)2. Choose
qus"'1Q:'nEQ2
P;, T 119:71 €Q
bry,...,bzy € BExp

(23 € R’ such that
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asy,...,asy € {Var x Exp)*
such that
Vi(Qq, €', Iz) =
SEt(I:B @ ((9‘1: (e'l bz, ) {LSl), P;): vy (q:n': (6’1 bIm, ﬂsm)v P:n))
where Vi is the function defined in Def. 24.
PROOF: By (4)1 and definition of Vi (Def. 24).
{5)3. Choose j € N such that

(Q;:ﬂ (B’, bmjzasj)1pj) = (qn—ll (Elibml GS), er)

Proor: By (5)2, {3)4 (since gn—1 € @2), and (3)6 (since g,—1
MmER
{5¥4. j ¢ Iz
{6}1. AssuMmE: 3.1 j € Iz
Prove: False
(1. Si(Q2,e',Iz) N F # B where St is the function defined in
Def. 24
Proor: By {5)2, {5)3, assumption 3.1, and definition of St
(Def. 24), we have that p; € St(Qa, €', Iz). By (5)3 we know
that p; = gn. Since g, € F (by (3)1), this implies that p; € F
which agian implies that (7)1 holds.
(7y2. Q.E.D.
PROOF: {7)1 contradicts {4)1 by definition of ph2” (Def. 24).
{6)2. Q.E.D.
By (6)1, j € Iz leads to a contradiction, therefore j ¢ Ixz.
(5)5. bz; € set(N\ Iz @ (br1,...,bz:n))
PROOF: By (5)2, {5)4 and definition of @ and set (sec App. D.1.2).
(5)6. bah = conj(Iz @ (bzy,...,bxm), neg(disj(N\Iz @ (bzy,...,bxn))))
PROOF: By (4)1, {5)2 and definition of ph2” (Def. 24).
{5)7. Q.E.D.
Proor: By (5)5 and (5)6.
(4)3. Q.E.D.
Proor: By (4)1, (4)2, and definition of conj, disj, and neg.
(3)8. eval{on-1[](bz)) = eval(gh[](bx))
(4)1. o1 N (var(bz) x Exp) = g5 N (var(bz) x Exp)
). lgr,01] S [q0,00] = [a1,01] <2 g2, 00] -+ =5 [ga—1,00-1] €
EG(SM)
Proor: By (3)1.
(8)2. laf,01) = [Qu.01] = [Q2,0%] € EG(SM')
Proor: By (3)3.

(5)3‘ net (e’ ,bx,us)
Proor: By (3)6.
(5)4. comp([SM ], (e1,e2,...,en1),u)
ProoF: By (3)2.
(5)5. Q.E.D.
Proor: By (5)1 - {(5)4, assumption 2, and definition of side-effect
freedom (Def. 25).
(4)2. ay-1[¢] N (var(bz) x Exp) = a4[¢] N (var(bz) x Exp)
PrOOF: By {4)1 and definition of the data state overriding operator
(4)3. Q.E.D.

(e’ bx.as)
—_

gmeER
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ProoF: By {4)2 and definition of eval (see App. A.2.2).
(3)9. Q.E.D.
Proor:We have that (3)8 contradicts (3)6 (which asserts eval(on—1[¢9](bz)) =
t) and (3)7 (which asserts eval(a}[d]|(bz)) = £).
(2)2. Q.ED.
Proor: By contradiction.
{1)3. Q.E.D.
PROOF: By (1)1 and (1)2.

Lemma 3.1 The proof is based on induction. We make use of the predicate
Ind € SM x SM x N — B which high-lights the induction:

def

Ind((£,2,R,q1,F), (£, Q" R ¢}, F),m) =
VneN:
Vg € Q\F:---:V¥g, € O\ F:
VarlE‘ZT:--~:VJﬂE}31~:
VQI!QI’I € Q’ .
VJ’I EET :VJ:: € E'p:
YeieE:- - :Ve, e E:VueE"
An<m
Acomp([ SM],(e1,.-.,en—1), 1)
Alar,or] 5 [g,01] = [g2,00] -+
= [gn, on] € EG((€, Q, R, q1, F))
Alaryar] 5 [Q1,01] =
[Qn,07] € EG((E', 2, R, q}, F'))
= gn € (s

AssuME: 1. SM = (£,Q,R,q;,F) for SM € SM satisfying SM1 - SM4 and
(0 ¢[SM]
. ph2"” is side effect free for SM
. SM' = thH(SA/I) = (Er: Q’,R’,q'},f’)
neN
. ql:-e Q\.F.,-;-,Qn,e Q\:F
01,...,0n € Tp
. Qla Qn EAQ,
A D’i,d:,_ € Xr
. 8l,...,en €EE
10. comp([SM ], {e1,... ,en},u) for u € E*
11. lgr,04] = [g1,01] == [g2,02] -+ = [gw, 0] € BEG(SM)
12. (g}, 01] = [Q1,01] = [Qn, o)) € EG(SM')
PROVE: g, € Qn
{1)1. Case: 1.1n=0
Proo¥F: Case assumption 1.1 leads to a contradiction. To see this, note that
by case assumption 1.1, assumption 11, and definition of [ -] (Def. 12) have
{} € [ SM ]} which contradicts assumption 1.
(1)2. Casg: 1.1 Ind(SM,S5M',n—1)
{2}1. Choose u’ € E" such that u'~ {e,;) C uand comp([ SM ], {e1, ..., en-1),2’)
(4)1' P?‘(IISM]], (eln LR ] en—l)) # (3
ProoF: By assumption 10 and definition of pr (Def. 25).

=R I S RN
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(4)2. Choose v’ € E* such that v~ (e,) C u and {e1,...,en-1) 0u’ and
_‘((elr LR eTI.): ul)
PRrRooOF: By assumption 10 and definition of comp(-, -,-) (Def. 25).
(4)3. =3s' e pr([SM ], {e1,...,en—1) : {€1,... €n—1) C &' A5’ 2/
Proor: By (4)2.
(4)4. Q.E.D.
Proor: By {4)1 - {4}3 and definition of comp(-, -,-) (Def. 25).
{2)2. Choose Qn-2,Qn-1 € @ and g}_s,0,,_ € $7 such that [g},a7] =
[@1,04] 5 [Qn-2, 7o) < [Qn-1,0%, 1] € BG(SM')
ProoF: By assumption 12, {2)1 and definition of the execution graph for
state machines (Def. 11).
(2)3. gn-1 € Q-2
Proor: By (2)1, (2)2, assumptions 4-12, and induction hypothesis 1.1.
{(2)4. Choose
(e}, bz, as) € Act and
gl
such that

(el ,bx,as)

fn-1 —— @ € R,
Dom(¢) = var(el,),
':'b(e{-l) = ey, and
eval{on-1]¢)(bz)) =t
PRrOOF: By assumption 11 and definition of the execution graph for state
machines (Def. 11).
{(2}5. Choose
{el,bz' as") € Act and

such that
(el b’ a8’

Qn-2 i Qn-1€ R,
cval (o, [¢](bx)) = ©
Proor: By (2)4 (since Dom(¢) = var(e!,) and ¢(e,) = en) assumption 12,
(2)2, and definition of the execution graph for state machines (Def. 11).
(2)6- In € Qn-1
{3)1. Choose fz € P(N) such that Qp-1 = Gn-2U St(Qn-2,el, Iz) where
St is the function defined in Def. 24.
Proor: By {2)5 and definition of ph2" (Def. 24).
{3)2. Choose
qis " e vQ;); € Q'n—?
Pl Pm € Q
bxy,..., bz, € BExp
asy,..-,2sm € (Var x Exp)*
such that
Vi(Qn*-Q! B;,, I.’E) =
SBI(IE @ ((qi! (6:1, bxl) (151), p;.)r L] (Qina (E;:bwrrlrasrn):p:—n))
where Vi is the function defined in Def. 24.
Proor: By definition of Vi (Def. 24).
(3)3. Choose j € N such that
(qu bmj! G.S'J') = (Qﬂ—ll (e:u b, G.S), QTL)
ProoF: By (2)3, (2)4, {3)2 and definition of Vi (Def. 24).
(34. jelr
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{4)1. AssuME: 217 ¢ Iz
ProvE: False
(5)1 &‘Uﬂl n 2[¢‘](

(6)1. ba: —cong(Im @(b:cl, Jhzm) neg(M\Iz ® (bz1,...,bzm))))
Proor: By (3)1, {3)2, and deﬁnition of ph2"” (Def. 24).

(6)2. bx; € set(N \ I @ (bxy,...,bxm)))
PROOF: By assumption 2.1 and definition of @ (see App. D.1.2).

(6)3. Q.E.D.
Proor: By (6)1, and {6)2, definition of conj, dz'sj, and neg (see
App. D.1.2), bz must evaluate to false (i.e., eval( I _alg](bz))

since bz’ evaluates to true (eval(crn 1[¢](bz =1) by {2 )5
(5)2. evaf(Un—I[fiJ] (bz)) = eval( _2[¢’](bx))
(6)1. lar,01] = [a1,01] = g2, 02] -+ == [gu—1,00-1] € EG(SM)

Proor: By assumption 13.

6)2. lar,01) = [Q1,01] = [Qn-2,0}_0] € EG(SM')
Proor: By assumption 14.

(6)3. gn-1 M’ g ER
PRrOOF: By (2)4.
{6Y4. comp([SM],{e1, .. en-1),u")
ProoF: By (2)1.
(6)5. Q.E.D.
Proor: By (6)1 - {6)4, assumption 2, and definition of side effect
freedom (Def. 25).
(5)3. Q.E.D.
PRrOOF: {5}1 and {5)2 contradict {2)4 (since it asserts that eval(g,—1[¢](bz)) =
t)
(4)2. Q.E.D.
Proor: By contradiction.
{3)5. qn € St{Qn—z,e}, [z) where St is the function defined in Def. 24.
Proor: By (3)2 - (3}4, and definition of St (Def. 24).
(3)6. Q.E.D.
Proor: By (3)1 and {3})5.
(2)7. Q.E.D.
PROOF: By (2)6 since by definition of ph2” (Def. 24), we know that @ =
Q' € EG(SM') implies Q C Q".
(1)3. Q.E.D.
Proor: By {1}1, {1)2, and induction over n.

Lemma 3.2 The proof is based on induction. We make use of the predicate
Ind € SM x SM x E* — B which high-lights the induction. Let SM =
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“(€,Q,R,q;,F), and SM' = (€', Q', R, ¢, F'), then Ind is defined by
Ind(SM,SM',s) £
Vs'e B :
vQ, € %’:Vq,, €0NQy:
Yoy € Lp : Vo), € S
Ns' Cs

Algy.oi) Ay [@n, 0l € EG(SM')
— Juec B
Jo, € Lt

Alar,o1) <25 [gn, 00] € BG(SM)
Acomp([ SM ], u, s")

AssuME: 1. SM = (£,Q,R,qr,F) for SM € SM satisfying SM1 - SM4 and
(VglsM]
. ph2" is side effect free for SM
. SM'=ph2"(SM) = (€', @\ R, q1, F')
seE*
. QneQ
. Oq, D’.‘n € Ty
. EQNE
8. (¢4, 01) L5 [Qn, 0] € EG(SM')
ProvE: Ju€E™:
do, € E:
Algr, o1] 22 [gn,0a] € EG(SM)
Acomp([ SM ], w, 8)

(1)1. CasE: 1.1 s=)

(2)1. Choose q1 Jatdo, g ER

PROOF: By assumption 1 since SM satisfics syntax constraint SM2.

' {c,c,5a)

(2)2. ¢t ——— {d'} e R’
PROOF: By (2)1, assumption 3, and definition of ph2" (Def. 24).

(2>3' [Q?:UI] = iQn:g;] € EG(SM’)
PROOF: By assumption 8, case assumption 1.1, and assumptions 1 (since
SM is assumed to satisfy syntax constraint SM3) and 3 and definition of
ph2" (Def. 24).

(2. qn = q
ProoF: By assumption 7, (2)2, and (2)3 and definition of ph2" (Def. 24)
(since Qn = {¢'})-

(2)5. Choose oy, € Z such that [q7,07] = [gu, on] € EG(SM)
PRroOF: By (2)1, (2)4 and definition of the execution graph for state ma-
chines (Def. 11).

{2)6. Q.E.D.
ProoF: By {2}5.

(1)2. Case: 1.1 s=3s"~{g)
1.2 Ind(SM,SM',s")

{2)1. Chooss—: Qn-1 € Q' and o’,_, € Ty such that ¢}, o] dars [@n-1,0%h_4] =
[@n,07] € EG(SM')

--IG'J(‘JILJLDJM
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Proor: By assumption 8, assumption 1.1, and definition of the execution
graph for state machines (Def. 11).
{2)2. Choose
(e’,bz' as’) € Act and
sed
such that
Qn—l _(M Qn ER
Dom(¢) = var(e'),
¢(e') = e, and
eval(ct,_, [](bz")) = £
Proor: By (2)1 and definition of the execution graph for state machines
(Def. 11}).
(2)3. Case: 2.1 ATz € P(N) : g, € St(Qn—-1,¢, [2)

{3)1. Choose Iz € P(N) and g1 fegvdie)
In € Vi(Qﬂ—lreI:I‘I)
Proor: By case assumption 2.1 and definition of Vi (Def. 24).
{3}2. Choose
On-1 € )57- and,
e E
such that )
(A) lar, 01] 25 [ganr, on-1] € EG(SM),
(B) comp([ SM ], ', 5)
PROOF: By assumptions 1.1, 1.2, and (3)1.
(3)3. Choose o, € S such that
[Qn—ln Un—lj = [Qny ‘Tn] € EG(SM)
Proor: By {2)1, (2)2, (3)2, assumption 2, and assumption 3.
{3)4. comp([SM], v —(e),s' —~{e))

AL pr([SM],u'~(e)) # 0
Proor:By (3)2 and definition of pr (Def. 25).

{4)2. u'~(e) a s’ ~(e)

Proor:By (3)2 and definition of comp(_, -, .) (Def. 25).

(4)3. =(3s" e pr([SM],v'~(e}): v’ ~(e) C 6" A s" au'~({e))
ProoF:If (4}3 does not holds, then we can choose ¢/ € E such that
u' ~{e,e') <« s’ ~{e), but by definition of <, this is impossible.

{4)4. Q.E.D.

PROOF:By (4}1 - {4)3 and definition of comp(,-,-) (Def. 25).
(3)5. Q.E.D.
Proor: By (3)2 - (3)4.
{(2)4. Cask: 2.1 ~(3lz € P(N) : g, € St(Qn-1,€',x))
(3)1. Choose

fn-1 € Qn—l na,
on-1 € X and,
v e B

such that

{e) '

(A)lar,o1] = lan-1,00-1] € EG(SM),
(B) comp([ SM ],', s"),
(C) In—1 = tn

(e’ bz, 5a)
-

Gn € R such that g,_;
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ProoF: (A) and (B) hold by case assumption 1.2. (C) holds by case
assumption 7, assumption 2.1, and definition of ph2" (Def. 24) since we
have Qn = Qn-1.
(3)2. [gn-1,0n-1] < (g, 0u-1] € EG(SM)
ProOF: By (3)1 and definition of the execution graph for state machines
(Def. 11).
(3)3. comp([SM ], u',s"~(e))
(@1, pr([SM1,u') # 0
Proor:By {3)1 and definition of pr (Def. 25).
2. v <25 ~(e)
Proor:By (3)1 and definition of comp(-, -, -) (Def. 25).
(4)3. =(2s" € pr([SM],v') : '~ (e} € 5" As" o u'~(e})
PRrOOF:If (4)3 holds, then there must be trace ¢ € [ SM | such that
u'~(e) C t. However, this contradicts case assumption 2.1.
(4)4. Q.E.D.
PRroOF:By (4)1 - (4)3 and definition of comp(-, -, -) (Def. 25).
(3)4. Q.E.D.
Proor: By (3)1 - {3)3.
{2)5. Q.E.D.
Proor: By (2)1 - (2)4.
(1)3. Q.E.D.
Proor: By (1)1 and (1)2 and induction.

Corollary 1 Let SM be a well formed state machine such that {) ¢ [SM ]
and ph2 be side effect free for SM, then ph2(SM) is an inversion of SM, i.e.,

inv(SM, ph2(SM))

Proof of Corollary 1
ASSUME: 1. SM = (£,Q,R,q1,F) for SM € SM satisfying SM1 - SM4 and
() ¢ [SM]
2, ph2 is side effect free for SM
3, SM' = ph2(SM) = (€', 2", R, q};, F)
4. sef{ecB|I e e=¢}"

PROVE: (VL€ [SM]:~(t<os))esec[SM']
(1)1. AssuME: 1.1. (Vt € [SM]: ~(t <5))
ProVvE: s€[SM']
{2)1. Vsp € B ispCs = spe[SM']
(3)1, AssuME: 2.1 sp C s for some sp € o
ProVE: spe[SM']
(4)1. CAsE: 3.1. sp= ()
PROOF: ¢} € 7 by definition of ph2 (Def. 26) and assumption 3. This
means that () € [SM’] by definition of [ ]| (Def.12).
(4)2. CasE: 3.1. sp = sp’ ~ (e) for some sp’ € [SM'] (the induction
hypothesis) and e € E
{5)1. Choose e1,e,...,en € E such that sp’ = {e1,e2,...,€n)
PRroOF: By assumption 2.1 and assumption 3.1.
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(5)2. Choose ¢t € (BU {e})*, (@n,V,) € @ and a4, 0, € St such that
la7,01) = [(@n, Va), 03] € EG(SM") and t]g = sp/
PRrROOF: By case assumption 3.1 (since sp’ € [ SM']) and definition
of [ ] (Def. 12).
{5)3. t = {e)~sp
Proor: By assumption 1, SM is assumed to satisfy syntax con-
straints SM2 and SM3 that ensure that all transitions of SM ex-
cept the outgoing transition for the initial state of SM are labeled
by actions containing events. By definition of ph2 (Def. 26) this
means that the same constraints hold for the inverted state machine
SM'. Therefore we can assert that ¢ = (e) ~sp'.
({5)4. Choose
(Qﬂw VU): (Qla Vl)r (Q2: 1/2)1 vy (Q'ﬂ—ll Vn—l) € Qi and
Ohyo 01 EZp
such that
lg}, 1] < [(Qa, Vo), o] = [(Q1, V2), ] 2 [(Qa, Vo), -+
=5 [(Qn, Vo), ok € EG(SM)
Proor: By (5)1, (5)2, and {5)3.
(5)5. Choose (Qn41, Vay1) € F' and o, € f}r such that
[(Qn, V;z); U,’-;] = [(Qn-{-ls Vn+1)a 0':1-}-1] L= EG(SAJ’)
(6)1. Choose

Q!i"':leQﬂ:
Pri.- PEEQ,
e ek,

bz, ..., bz € BExp, and
ast,...,asy € (Var x Exp)*
such that
((qli (ef’ bxl) ﬂsl),Pl), s (ka (e’,bmk, ask):pk)) =
list({(q,(e",bz,a8),q") ER|qgE QrnAhe=2e"}\ V)
PRoOOF: By assumption 1, definition of the alphabet of state ma-
chines (Def. 10), and definition of the list function (see App. D.1.2).
{6)2. Choose ¢ € & such that Dom(¢) = pvar(e’) and ¢(e') = e
ProoF: By (6)1 and definition of the alphabet of state machines
(Def. 10).
(6)3. Choose Iz C {1,...,n} such that i € Iz iff eval(e},[¢](bz:)) =
t
Proor: Trivial.
LET: brs = (bzy,bzg, ..., bzy)
LET: br" = conj((conj(Iz @bzs),neg(disj({1,...,n}\Iz @bzs))))
(6)4. eval(ol[d](bz")) =1t
ProoF: By (6)3, definition of bz”, and definition of conj, disj,
and neg (Sect. D.1.2).
(6)5. set(Iz @ (p1,...,px))NF =40
(7)1. AssuME: 4.1 set(Iz @(p1,...,pe)) NF # 0
PROVE: False
(8)1. Choosesome j € Iz suchthat p; € F and eval(a!, [¢](bz;)) =
t
ProoF: By (6)3 and assumption 4.1.
(8)2. Choose
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g € Qo _
oo, 01 € Ly, and
ueE
such that
lor,01] =+ [0, 70] = g5:01] € BG(SM) and
comp([ SM ], u, sp')
PROOF: By assumption 1-3, (5)4, and Corollary 3.2.
(8)3. Choose o3 € S such that [g;,01] = [ps, o]
(9)1. eval(o1[d](e')) =e
Proor: By (6)2.
(9)2. eval(a1[¢](bz;)) =
(e’ \bzj,as;)

t

Proor: By (8)2, (5}4, {631, (81 (since gj ———— p; €
R ), (8)2, assumption 2, and definition of side effect free-
dom (Def. 25).

(N3. Q.ED.
PROOF: By (9)1, (9)2, and definition of the execution graph
for state machines (Def. 11).

(8)d, u—(eye [SM]
Proor: By (8)1 (since p; € F) and (8)2 and (8)3 (since

(ey1te) [pj,02]), and definition of [ ] (Def. 12).

lg1,01]
(8)5. u—~{e) s
PROOF: We know that u < sp’ (by (8)2). By definition of
<, this means that u —~ {e) < sp’ ~ {e). Since sp’ ~(e) € s
(by assumptions 2.1 and 3.1) we know that u — {e) @5 by
definition of <.
(8Y6. Q.E.D.
PROOF: {8)4 and (8)5 contradict assumption 1.1, therefore
assumption 4.1 does not hold.
{72. QED.
Proor: By contradiction.
(6)6. St(Qn, €', Iz, Vy)NF =B (where St is the function defined in
(Def. 26)).
(DL Vi(Qn, e, Iz, V) =
set(Im © ((ql ) (elvbzltasl)apl)) R ¥ (Q?h (611 bmﬂ: &.Sn),pn)))
PROOF:

Vi(Qn: e, Ir, V)

= set(Ix ®list(Vi(Qu,¢',Va))) By Def. 26
= set(Iz ®list{{(q,(e",bz,as),q0') € R|
g€ Qure=e"}\ Vi) By Def. 26
= set{(Jx ®({q, (e bzr,a81),m1),. -,
(qx, (€', bz, ask), pe)))) By (6)1

(7)2. §t(Qn, €', Ir,Vy) = set(Iz @ (p1,---,Pk))
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PROOF:

St(Qnrel: le Vﬂ)
= {ge @3¢ ==, g
€ Vi(Qn,e' Iz, V) : g = ¢"} By Def. 26
(g€ @3y =D, g e
Set(I:L‘ @ ((qll (Er= b$1;asl):P1)1 vy
(qw, (€', bk, asy), pr))) : g = "} By (7)1
= set(lz ®(p1,...,pr)) By set abstraction
{7}3. Q.E.D.
PRrOOF: By (635 and {7)2.
(6)7. Q.E.D.
PRrooF: By (6)6, definition of ph2 (Def. 26), (6)2, and definition
of the execution graph of state machines (Def. 11).
(5)6. Q.E.D.
Proor: By {5)1 - {5)5 and definition of [ ] (Def. 12).
(4)3. Q.E.D.
Proor: By (4)1, (4)2, and induction over the length of sp.
(3)2. Q.E.D.
Proor: By V-rule.
{2)2. Q.E.D.
Proor: By (2)1.
(1)2. AssuMmE: 1.1se [SM']
ProvE: (VL€[SM]: (i <s))
(2)1. AssUME: 2.1 i< s for some ! € [SM]
ProvE: False
{3)1. Choose
t'={ey,...,en) € E*,
G0y J1re s Gn—1 € Q\]‘-,
gn € F, =
g1,00,01,...,0, € 5, and
such that
t' < s,
(" e[SM]:t"Ct' AL <s), and
lar,01] = [g0,00] == [g1,01] = [g2,02] -+ = [gn, 00] € EG(SM)
Proor: By assumption 1, assumption 2.1 and definition of [ ]| (Def.12).
{3)2. Choose
uvel
such that
(A)u—{en) C s and
(B) comp([ SM ], (e1,€2,...,en-1}, 1)
(5)1. pr([ SM], (e1,ea,... en-1)) #0
ProoF: By (3)1 and definition of pr (Def. 25).
(5)2. Choose u € E” such that u—{e,) C s, {e1,€e2,...,en—1) 9u, and
=(t < u).
Proor: By assumption 2.1 and (3)1, we know that {e1,...,en) ©
5. Choosing a prefix u of s such that {5)2 is satisfied, is therefore
possible.
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{5}3. Q.E.D.
Proor: By {5)1, (5)2, (3)1, and definition of comp(_, -,.) (Def. 25).
{3)3. Choose
(QI; V1)1 (Q2: V'2)1 (Qﬂy %) g Q’s and
o, 0,04 €L
such that
(@,01] S (@1, ), 2l 2 [(Qay Va)s oh] 255 [(Qs, Vi), 0b] € EG(SMY)
(1. u—~{e,) €[ SM']
Proor: By (3)2, we have that u~ (e,) C s. Furhermore, by assump-
tion 1.1, we know that s € [SM']. Since the semantic trace set of
SM' is prefix-closed (because all states of SM' are final states), it is
casy to see that u—{e,) € [SM'].
{4)2. Choose
v e (BU{e}),
oh € £, and (Qs,V3) € @
such that
¢}, o1] = [(Qs,Va),0%) € EG(SM'), and
u'|g = u~{en)
PROOF: By {4)1 and definition of [ -] (Def. 12).
{4)3. u' = (&) ~u~{en)
PROOF: By assumption 1, SM is assumed to satisfy syntax constraints
SM2 and SM3 that ensure that all transitions of SM except the
outgoing transition for the initial state of SM are labeled by actions
containing events. By definition of ph2 (Def. 26) this means that the
same constraints hold for the inverted state machine SM’. Therefore
we can assert that u' = () ~u~—(en} by (4)2.
(4)4. Q.E.D.
ProOF: By (4)2 and (4)3.
(3)4 n-1 = QQ
PRrROOF: By assumption 1-3, (3}1, (3)3, and Corollary 3.1.
{3)5. Choose
¢'cEand €N
such that
Dom(¢) = puar(e’),
p(e) = en
PROOF: By (3)1, and definition of the alphabet of state machines (Def. 10).
(3)6. Choose
bz € BExp and
as € (Var x Exp)*
such that
g D, o R
eval(gn-1{¢](02)) = t
ProOF: By (3)1, {3)5, and definition of the execution graph of state
machines (Def. 11).
(3)7. eval(oh|g](bz)) = £

(1. Choose (@, V3) 22252, (
evﬂ'l(géiff’](bzé)) =1t

@3, Vs) € R’ such that
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PRrooOF: By (3)3, (3)5, and definition of the execution graph of state
machines (Def. 11).
(4)2. bzh = conj(b,neg(disj(by, ..., bz, ..., b)) for some b,by,..., b €
BExp
(5)1. Choose Iz € P(N) such that 3 = @2 U Si(Qa, €', Iz)
ProoF:By (4)1 and definition of ph2 (Def. 26).
(5)2. Choose
Toroortl € @
Pl Pm€Q
bzxy,..., bz, € BExp
asy,--.,a8m € (Var x Exp)”
such that
Vi(Q2: efr Iz, V-g) =
SBf,(IIE @ ((q'ii (Era bml‘lasl))p,‘l)‘l ] (Q;nr (8'7 b.'Em,G.Sm), p:n))
where Vi is the function defined in Def. 26.
Proor: By {4)1 and definition of Vi (Def. 26).
{6)3. Choose j € N such that

(9‘3, (efr bIju asj)spj) = (qu—-la (e’,b:r, CLE), QH)

Proor: By {5)2, (3)4 (since g,—1 € Q2), and (3)6 (since gn_1 e R,
in € ,R')
(5)4. j & Iz

(6)1. AssuME: 31j¢€ Iz
Prove: False
{N1. St(Qa,e' [z, Va) N F # B where St is the function defined
in Def. 26
Proor: By (5)2, {5)3, assumption 3.1, and definition of St
(Def. 26), we have that p; € St(Q2,¢',Ir,V2). By (5}3 we
know that p; = gn. Since ¢, € F (by (3)1), this implies that
p;j € F which agian implies that (7)1 holds.
(7)2. Q.E.D.
Proor: (7)1 contradicts (4)1 by definition of ph2 (Def. 26).
(6)2. Q.E.D.
By (6)1, j € Iz leads to a contradiction, therefore j ¢ Iz.
(85, bz; € set(N\ [z @ (bxy,...,bzy))
Proor: By (5)2, (5)4 and definition of ® and set (see App. D.1.2).
{8}6. bzh = conj(fz @ (bzy,...,bxy), neg(disj(N\Iz @ (bz1,...,bz.m))))
Proor: By {4)1, (5)2 and definition of ph2 (Def. 26).
{5)7. Q.E.D.
Proor: By (5)5 and (5)6.
(4)3. Q.E.D.
ProoF: By {4)1, (4)2, and definition of conj, disj, and neg.
(3)8. eval(on_1[¢](bx)) = eval(a[¢)(bx))
{41, gp—1 N (var(bz) x Exp) = o4 N (var(bz) x Exp)
(51 [ar,01] = [g0,00] <> [g1,01] = [g2,02] -+ == [gn—1,0n-1] €
EG(SM)
Proor: By (3}1.
(5)2. la},01] = [(Q1,V1),01] = [(Q2, V2), 0] € EG(SM')
Proor: By (3)3.
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(e’ bx,as)
-

(533. gn-1 g €ER
PROOF: By (3)6.
(5)4. comp([SM1,{e1,€2,.. . en—1},1)
Proor: By (3)2.
{5Y5. Q.E.D.
Proor: By {(5)1 - (5)4, assumption 2, and definition of side-effect
freedom (Def. 25).
#)2. ou—1[@] N (var(bz) x Exp) = o4[@] N (ver(bz) x Exp)
Proor: By (4)1 and definition of the data state overriding operator
(4)3. Q.E.D.
PROOF: By (4)2 and definition of eval (sec App. A.2.2).
{(3)9. Q.E.D.
ProoF:We have that (3)8 contradicts (3)6 (which asserts eval(on—1(¢](bz))
t) and (3)7 (which asserts eval(oj[¢](bz)) = £).
(2)2. QED.
Proor: By contradiction.
(1)3. Q.ED.
Proor: By (1)1 and (1)2.

Corollary 1.1 The proof is based on induction. We make use of the predicate
Ind € SM x SM x N — B which high-lights the induction:

Ind((gx erR')qJ)]:): (E"n Q’!R’,q'},f'),m) g

VneN:
Vg, € Q}}‘:---:an EAQ\F:
Yop €Ly Vo, € Ly

V(levl)v(QnsVn) € Q':
Vol e 87 :Vo!, € 8r:
Ve,eE: - :Ve, e E:Vue E”
An<m
A comp([SM],{e1,. .. en=1) 1)
Alaror) < [m, 1] =5 (g2, 0] -
= [qnygn] € EG((SI Q,R,CM’,F)}
Alar,ar] = (@1, V), o) =
I(van)nﬂ';] € EG((EJa Q’,'R,",q’“f’))
=> qn € Un

AssUME: 1. SM = (£,@Q,R,q;,F) for SM € SM satisfying SM1 - SM4 and
(YElsM]

2. ph2 is side effect free for SM

3. SM'=ph2(SM)=(£',Q" R, q7, F')
4. neN

5. QhE Q\f!';'IQ‘ﬂle Q\Jﬂ:

6. 61,..-,0n € &7

7' (er‘/l}:LQﬂ':Vﬂ) E Q’

8. O'Jl,cﬁ'f,1 € X

9.¢e,...,.en,€E

10, comp([ SM |, {e1,- .., en),u) for u € E*
11. [gr,o1] = [q1,01]) = [g2,02] -+ 2% [gn, 0n] € EG(SM)
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12. (g5, 01] = [(Q1, Va), 0] = [(@n, V), 7] € EG(SM')
PROVE: gn € G

(1)1. Case: 1.1n=0
PROOF: Case assumption 1.1 leads to a contradiction. To see this, note that
by case assumption 1.1, assumption 11, and definition of [_] (Def. 12) have
{) € [ SM || which contradicts assumption 1.
{1)2. CasE: 1.1 Ind(SM,S5M' n—1)
(2)1. Choose v’ € E” such that ' ~(e,) C uand comp([ SM |, {e1,...,en-1),u')
(1. pr([SM],{er,...,en-1)) #0
PRroOF: By assumption 10 and definition of pr (Def. 25).
(4)2. Choose v’ € E” such that v'~(e,} C w and {ey,...,en-1) 0% and
—({e1,.. . en)y 1)
ProoF: By assumption 10 and definition of comp(_, ., .) (Def. 25).
(4)3. =3’ e pr([SM ], {e1,....en-1) s {e1,...,en1) C &' As' 0/
ProoF: By (4)2.
(4)4. Q.E.D.
PRroOOF: By (4)1 - (4)3 and definition of comp(_,_,.) (Def. 25).

{2)2. Choose (Qn-2,Va—2),(Qn-1,Va_1) € Q' and a!,_,,a0),_;, € Ly such

that [q), 01] 5 [(Q1,V4), 4] 5 [(@n-2, Vac2), 0ha] ~1s [(Qno1, Vi), 7oy ] €
EG(SM')
Proor: By assumption 12, {2}1 and definition of the execution graph for
state machines (Def. 11).
(2)3- gn-1 € Qn—2
Proor: By (2)1, (2)2, assumptions 4-12, and induction hypothesis 1.1.
{2)4. Choose
(el,, bz, us) € Act and
pes
such that

(e, .bx,a8)

gn-1 —*n € Rr
Dom() = var(el),
#(e,,) = en, and
eval{on_1[0)(bz)) =t
PRrRoOF: By assumption 11 and definition of the execution graph for state
machines (Def. 11).
{2}5. Choose
(el,, bz’ as') € Act and
such that

(Qn—-?) Vn—2
eval(a;,_[#](bz")) = ¢
Proor: By (2)4 (since Domn(¢) = var(e]) and ¢(el) = e, ) assumption 12,
{2)2, and definition of the execution graph for state machines (Def. 11).
(2)6 gn € Qu-1
{3)1. Choose Jz € P(N) such that
(Qn—ls Vn—l) e (Qn—ﬁUSt(Qn—zg E:n Iz, Vn—z): (Vn—EUVi(Qn—Qs e:,, Iz, Vn—-Q)J\
Vi(St(Qﬂ—Q: 6;,_, I'Tr MI—E)))
where St is the function defined in Def. 26.
Proor: By (2)5 and definition of ph2 (Def. 26).
{3)2. Choose

(e b’ yns")
) ik + (Qu—l-;vn—l) € RJ1
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q;.!""l‘;;‘n, € Qﬂ—2
B P € Q
bzq,..., bz, € BExp
asy,...,asy € (Var x Exp)*
such that
Vi(Qr1—2= B;ﬂ IIE, v:l—2) =
SEl'.(I.'L‘ @ ((Qi: (6:“ bwl:asl)sp‘;l)v vy (Q:n: (e;” bz, asm)ap:-n})
where V1 is the function defined in Def. 26.
PRrooF: By definition of Vi (Def. 26).
{3)3. Choose j € N such that
(qrfa bz, as;) = (gn-1, (e, bz,as),qn)
Proor: By (2)3, (2)4, (3)2 and definition of Vi (Def. 26).
(3. j € Iz
(4)1. AssuME: 2.1 j ¢ Iz
Prove: False
(31 eval(sh_od](b
(6)1. bz’ —-(‘D?‘LJ(I.’I‘ ®(b:r1, cobzg), neg(M\ Iz @ (bx1, ..., bxm))))
Proor: By {3)1, (3)2, and definition of ph2 (Def. 26).
(6)2. bz; € set(N \ It ®(bxy,. .., bzm)))
PROOF: By assumption 2.1 and definition of @ (see App. D.1.2).
(6Y3. Q.E.D.
PRroOF: By (6)1, and (6)2, definition of conj, disj, and neg (see
App. D.1.2), bz must evaluate to false (i.e., eval(c/,_o[¢](bz)) = £)
since bz’ evaluates to truc (eval(on—1[g]( bz: =1t) by (2)5.
<—>z evl(e—[6t2) = vaer, ()
6)1. [gr,a7] = [91101] = [g2,02] -+ == [gn-1,0n—1] € EG(SM)
PROOF By assumption 13.

(6)2. [qfigf] = [(@1, Vl)agl] = [ Qn-2, Vn-2) n 2] € EG(SM')
PROOF: By assumption 14.

(6)3. gn-1 Lo trod, gn€ER
PROOF: By (2)4.

{6¥4. comp([SM],(e1,-..,en-1},u)
ProoF: By {2)1.

(6Y5. Q.E.D.
PROOF: By (6)1 - {(6)4, assumption 2, and definition of side effect
freedom (Def. 25).

{5)3. Q.E.D.

PROOF: (5)1 and (5)2 contradict (2)4 (since it asserts that eval(on,—1[¢](bz)) =

t)
(4)2. Q.E.D.
PROOF: By contradiction.

(3)5. qn € St{Qn-2,e,, Iz, V,_z) where 5t is the function defined in Def. 26.

Proor: By (3)2 - {3)4, and definition of St (Def. 26).
(3)6. Q.E.D.

Proor: By (3)1 and (3)5.

(2)7. QED.

PROOF: By (2)6 since by definition of ph2 (Def. 26), we know that (@, V) =
(Q', V') e EG(SM') implies @ C @'.
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{1)3. Q.E.D.
Proor: By (1)1, {1}2, and induction over n.

Corollary 1.2 The proof is based on induction. We make use of the predicate
Ind € SM x SM x E* — ,lB which high-lights the induction. Let SM =
“(£,Q,R,q1,F), and SM’' = (£',Q", R, ¢}, F'), then Ind is defined by

y =y

def

Ind(SM,SM' s} =
V' e B :
V(Qn:VrQ e 3VQ1LE QNQn:
Yor € Tp Vol € Ty
ASLCs
Alqy, 4] = (Qn, Va), 03] € EG(SM)
= JueE*:
do, € ET :
Algriot] 2% (g, 0] € EG(SM)
Acomp([ SM ||, u,s")

AssuME: 1. SM = (£,Q,R,q1,F) for SM € SM satisfying SM1 - SM4 and
O¢lsM]

2. ph2 is side effect free for SM

3. SM' =ph2(SM)= (', Q' R',q;,F)
4, se E*

5. (Qn,Vn) € O

6. o1, O';‘ € ET

7.3, €Q,NQ

8. [07,07] <2 [(@n, Vo), %] € EG(SM')

PROVE: ZueE":
Jdo, € Lp:
Alar, 1] 225 [gn, 0a] € BG(SM)
Acomp([ SM ],u,s)

{1}1. CasE: 1.1s=)

(2)1. Choose g; Tt geER
ProoF: By assumption 1 since SM satisfies syntax constraint SM2.
'l (e.¢,5a)

(2)2. ¢ —— {d'} e R/
Proor: By {2)1, assumption 3, and definition of ph2 (Def. 26).

(2)3. lgh.01] = [(Qn, Va), o] € EG(SM')
Proor: By assumption 8, case assumption 1.1, and assumptions 1 (since
SM is assumed to satisfy syntax constraint SM3) and 3 and definition of
ph2 (Def. 26).

(2M4. g =¢
PROCF: By assumption 7, {2)2, and {2)3 and definition of ph2 (Def. 26)
(since @, = {q'}L

(2)5. Choose @, € L such that [g;,0%] = [gn,0n] € EG(SM)
Proor: By (2)1, (2)4 and definition of the execution graph for state ma-
chines (Def. 11).

(2)6. Q.E.D.



E PROOFS 73

PRrooOF: By {2)5.
{1)2. Case: 1.1 s=5"~{e)
1.2 Ind(SM,SM', s")
(2)1. Choose (Qu—1,Vu-1) € @ and ¢'_, € Tr such that [g},0}] Eia P
[(Qn=1,Va=1),0h_1] = [(Qn, Vo), 0h] € EG(SM")
PRooF: By assumption 8, assumption 1.1, and definition of the execution
graph for state machines (Def. 11).
{2)2. Choose
(e',bz',as") € Act and
bed
such that
(Qn-—ln Vn—l)
Dom(g) = var(e’),
¢(e') = e, and
eval(g!,_[¢](bz")) =t
PRrOOF: By (2)1 and definition of the execution graph for state machines
(Def. 11).
(2)3. CasE: 2.1 3Tz € P(N) : gy € SU(Qn-1,¢, [z, V1)

{3)1. Choase [z € P(N) and gn_; el dn € R such that gn_1
gn € Vi(Qn—l, e, Iz, Vo_1)
PROOF: By case assumption 2.1 and definition of Vi (Def. 26).
{3)2. Choose
Op—1 € E']' and,
u eE"
such that .
(4) lar,01] “2°5 (a1, 0a1] € EG(SM),
(B) comp([ SM ], v, 5')
Proor: By assumptions 1.1, 1.2, and (3)1.
{3)3. Choose g, € &7 such that
[gn-1,0n-1] = [, 0n] € EG(SM)
Proor; By (2)1, (2)2, (3)2, assumption 2, and assumption 3.
{3)4. comp([ SM ], u'~{e),s" ~(e))
(1. pr([SM],u'~(e)) # 0
Proor:By (3)2 and definition of pr (Def. 25).
{4)2. u'~{e} s ~{e)
PRrOOF:By (3)2 and definition of comp(-, ,-) (Def. 25).
(493, =(Fs" e pr([SM ], v’ ~{e)) : u' ~(e) C 5" A s" 2 v/~ (e})
Proor:If (4)3 does not holds, then we can choose e/ € E such that
' —~{e, e’} @ s'~(e), but by definition of <, this is impossible.
(4)4. Q.ED.
Proo¥:By (4}1 - {4)3 and definition of comp(-, -, .) (Def. 25).
(3)5. Q.E.D.
Proor: By (3)2 - (3)4.
(2)4. CAsE: 2.1 =(Az € P(N) : gn € 5t(Qn-1,€, Iz, V5i-1))
{3}1. Choose
gn-1 € Qn—l na,
On—-1 € Y and,
v eE

(e’ bz’ as’)

(Qn, V) R

(e’ ,bz,sa)
———
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such that :
(4) [ar,07] 25 [gumy, 0umi] € EG(SM),
(B) comp([ SM ], ', s'),
(C) gn-1 =t
PRrooF: (A) and (B) hold by case assumption 1.2. (C)} holds by case
assumption 7, assumption 2.1, and definition of ph2 (Def. 26) since we
have @, = Qn-1.
(3)2 [qu—laau—l] ﬂ* [fln, G-u—l] S EG(SA’I)
Proor: By {3)1 and definition of the exccution graph for state machines
(Def. 11).
(3)3. comp([SM],v',s'~(e))
(1. pr([SM 1) # 0
Proor:By (3)1 and definition of pr (Def. 25).
{4)2. u' a8’ ~{e)
ProoF:By (3)1 and definition of comp(_, -, .) (Def. 25).
(A)3. =(Fs" € pr([SM ], ') : ' ~ (e} C s" A s" o/~ (e))
Proor:If (4}3 holds, then there must be trace t € [ SM] such that
u'~(e) C t. However, this contradicts case assumption 2.1.
{4)4. QE.D.
ProoF:By (4}1 - {4}3 and definition of comp(_, -, ) (Def. 25).
(3)4. Q.E.D.
Proor: By (3)1 - (3)3.
(2)5. Q.E.D.
Proor: By (2)1 - (2)4.
{1}3. Q.E.D.
Proor: By (1)1 and {1)2 and induction.

Theorem 1 Let d be a well formed single lifeline sequence diagram such that
ph?2 is side efTect free for phl(d), then the transformation d2p(d) is adherence
preserving, i.e.,

d —rge = d2p(d) —;, @ for all systems @

Proof of Theorem 1
AssUME: 1. d € D! for somel e L
2. d satisfies conditions SD1 - SD10
3. ph2 is side effect free for phl(d)
PrROVE: d —y, @ & d2p(d) —, @

{1)1. AssuME: 1.1d —4, @
ProvE: d2p(d) —su P
(1. Bl C [d2p(d)]
{3)1. AssuME: 2.11 € @|g
ProvE: 1€ [d2p(d)]

(4)1. ¥s e [phl(d)] : -(s<t)
Proor: By assumptions 1, 2, 1.1, and 2.1, Lemma 1, and definition of
—gq (Def 8).

{4)2. t € [ph2(phl(d))]
PRroor: By assumption 2.1, (4)1, assumptions 1-3, and Corollary 1.

{4)3. Q.E.D.
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ProoF: By (4)2 and definition of d2p (Def. 18).
(3)2. Q.E.D.
Proor: By (3}1 and definition of C.

(2)2. Q.ED.

Proor: By (2)1 and definition of —,, (Def. 13).

(1)2. AssuMmE: 1.1 d2p(d) —,a @
PROVE: d —q, P
{2)1. AssUME: 2.1 s € Hpeq for [d] = (Hpes: Hneg)
PROVE: —(s<t)
(3)1. t € [ph2(phl(d))]
Proor: By assumption 1.1, assumption 2.2, and definition of —4, (Def.
13).
(3Y2. 5 € [phi{d)]
PROOF: Assumptions 1 and 2, assumption 2.1, and Lemma 1.

(3)3. QE.D.
Proor: By {3)1, (3)2, assumptions 1- 3, and Corollary 1.
(2)2. Q.E.D.
Proor: By (2)1 and definition of —y4, (Def. 8).
(1)3. Q.ED.

Proor: By (1)1 and {1)2.

Theorem 2 Let d be a well formed sequence diagram such that ph2 is side
effect free for ph1(m(d)) for all lifelines ! in d, then the transformation d2pc(d)
is adherence preserving, i.e.,

d —gag © & d2pc(d) —r504 © for all systems ®

Proof of Theorem 2
AsSUME: 1. d € D and d satisfies conditions SD1 - SD10

2. ph2 is side effect free for phl(m/(d)) for all [ € il.d
PROVE: d —4q9 ® & d2pc(d) —gag

{1)1. AsSUME: 1.1d —gqq @
PROVE: d2pc(d) =g
(2)1. d2p(m(d)) —se @ for all L € li.d
(3)1. m(d) —ge P foralll € lld
PROOF: By assumption 1.1 and definition of — 44, (Def. 9)).
(3)2. Q.E.D.
PRroOF: By (3)1, assumptions 1 and 2, and Theorem 1.
(2)2. QED.
PROOF: By (2)1, definition of —44, (Def. 14)), and definition of d2pc (Def.
28).
(1)2. AssuME: 1.1 d2pe(d) — 40y P
PROVE: d —tgag P
{2)1. m(d) —do @ forallielld
(3)1. d2p(m(d)) = @ for all € ll.d
PROOF: By assumption 1.1 and definition of — s, (Def. 14)), and defi-
nition of d2pc (Def. 28).
(3)2. Q.ED.
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ProoF: By (3)1, assumptions 1 and 2, and Theorem 1.
(2)2. Q.E.D.
Proor: By (2)1 and definition of — g4, (Def. 9).
{1)3. Q.E.D.
Proor: By (1}1 and {1)2.
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