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Introduction

This is the fourth Traceability Workshop organised in the context of the ECMDA
conference series. For this year’s workshop we received 15 papers and accepted 10 of
them, after detailed review and revision. The focus of the papers spanned from the
quite theoretical to implemented solutions for practical problems.

We trust that the workshop papers, and the presentation of these, act as catalyst for
constructive discussion both on the theoretical and practical aspects of traceability in
model driven engineering. The record number of submitted and presented papers
indicates that the topic of traceability still is a focus within the community. From last
year’s workshop the message taken away by the organising committee was that
industrial adoption of traceability techniques and theories was hindered by lack of
mature tools and standardisation. During this year’s workshop we would like to revisit
these topics, among others, to see if there has been improvement on these areas.

With this we wish you all a fruitful workshop.

Acknowledgment: The organisation of the ECMDA-TW workshop was made
possible through the MODELPLEX' project (IST Project 34081).

— ECMDA Traceability Workshop Organising Committee, June 2008.

" This work is a result from the MODELPLEX project co-funded by the European
Commission under the *Information Society Technologies” Sixth Framework
Programme (http://www.modelplex-ist.org/). Information included in this document
reflects only the authors’ views. The European Community is not liable for any use
that may be made of the information contained herein.
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A Traceability Engine Dedicated to Model
Transformation for Software Engineering

Bastien Amar, Hervé Leblanc, and Bernard Coulette

[RIT, Université Paul Sabatier,
118 Route de Narbonne,
F-31062 Toulouse Cedex 9
{amar,leblanc,coulette}@irit.fr

Abstract. This paper deals with the use of a model transformation
traceability engine in a model-driven process. We propose to use traces of
model transformations for the visualization and debugging of an example
of model refactoring transformation. We start off with the transformation
Java code and analyse the trace graph generated by the framework during
the transformation execution. A short description of the framework and
its functionalities is presented. We compare our work with frameworks
already proposed to manage traceability in a MDE context.

1 Introduction

With the advent of languages and tools dedicated to model-driven engineering
(e.g., ATL', Kermeta®, EMF3), as well as reference metamodels (MOF, Ecore),
model-driven development processes can be used easily. As a result, recurring
problems linked to software production are emerging in this new context of
development. One of those issues concerns traceability, which comes especially
from requirements engineering. In a MDE context, traceability is achieved by
the definition and maintaince of relationships between artifacts involved in the
software-engineering life cycle during system development [1]. This paper aims
at describing the use of a model transformation traceability engine in a model-
driven process.

To illustrate the presentation, we provide directly a case study. We consider
an imperative java transformation using the EMF platform and we deduce a
graph trace transformation thanks to a traceability engine. We present some
hypotheses about the use of the graph for the visualization and debugging of
a model transformation (section 2). Then we present the main features of our
engine which is an Eclipse plug-in. Its main particularities are (i) the use of the
aspect oriented programming paradigm in order to isolate trace generation from
code transformation, (ii) a composite trace meta-model which allows to modu-
larize link sets at different granularity levels (section 3). We make a comparison

! http://www.eclipse.org/m2m/atl/.

2 http:/ /www.kermeta.org.
3 hitp://www.eclipse.org/modeling/emf/.
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with other works that deal with change tracking and use of traces to facilitate
the writing of new transformation types (section 4). Finally, we conclude and
give some perspectives about software engineering for model transformations
(section 5).

2 Case Study

The case study presented in this section will help us to present the issues and
an example of results we obtain with our traceability platform. This is divided
into two parts: the first is an example of model transformation written in Java
EMF, the second is a representation of the transformation process in the form
of annotated graph. This graph is deduced from automatically generated traces
by a model to text transformation. Here, a trace model that conforms with a
composite meta model is transformed to a .dot notation which is an entry to a
graph visualization tool. This graph will provide us better understanding of the
transformation process, and as a result, can be a valuable aid in debugging.

2.1 Transformation Code

Figure 1 shows the source code of a Java transformation in the considered en-
vironment. This transformation is endogenous and horizontal according to the
classification criterias of [2]. It's an abstraction at design model level of refactor-
ing code transformations proposed by Martin Fowler [3]. We named this class
GeneralizationProcess because the main method (run()) would be executed
at the end of a design stage for eliminating redundancies due to different points
of view or to a collaborative process development. The run method initializes
context and launches backup of the result models. The designer of a transfor-
mation has the possibility to encapsulate code subject to traces generation wvia
a call to the transform method. During a transformation execution, all events
affecting a modeling element are used to name the corresponding traceability
link.

Now consider the two methods named respectively extractSuperClass and
pullUpField. Their operational semantics are equivalent to Martin Fowler’s
refactoring motivations:

— Extract Superclass: you have two classes with similar features, then create
a superclass and move the common features to the superclass.

— Pull up Field: two subclasses have the same field, then move the field to the
superclass.

— Extract Superclass calls Pull up Field: one by one, use Pull up Field to move
common elements to the superclass.

Finally, the dependant platform code in Java EMF is found in the following
low-level operations:
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public class GeneralizationProcess {

}

public void run() {
Resource model = Util.load (path);
EPackage ep=(LEPackage)model.getContents (). get (0);
EList<EClassifier> classes = ep.getEClassifiers ();
transform(classes );
Persistent.save(”./model/Result.ecore” ,ep);

}

public void transform(EList<EClassifier> classes) {
for (int i = 0; i<classes.size{); i++) {
for (int j=i+1; j<classes.size(); j++){
EClass a = (EClass) classes.get(i);
EClass b = (EClass) classes.get(j);
if (needRefactoring(a,b)) {
classes .add(extractSuperClass(a,b));

}
}
}
}

public EClass extractSuperClass(EClass a, EClass b) {
EClass result = EcoreFactory .eINSTANCE. createEClass ();
result .setName(a.getName() 4 "_ " + b.getName());
EList<EAttribute> aAttribute = a.getEAttributes();
EList<EAttribute> bAttribute = b.getEAttributes ();
for (int i=0; i<aAttribute.size(); i++ ){
for (int j=0; j<bAttribute.size (); j++ ){
if (aAttribute.get(i).getName().equals(bAttribute.get(j).getName())}){
PullUpField (aAttribute.get(i), bAttribute.get(j),result);
}
}

result .setAbstract (true);
addInheritanceLink (a, result);
addInheritanceLink (b, result);
return result;

}

public EAttribute PullUpField (EAttribute al,

EAttribute a2,

EClass target) {
EAttribute result = EcoreFactory .eINSTANCE. createEAttribute ();
result .setName(al.getName());
result .setEType(al.getEType());
al.getEContainingClass (). getEStructuralFeatures ().remove(al);
a2.getEContainingClass (). getEStructuralFeatures ().remove(a2);
target . getEStructuralFeatures ().add(result );
return result;

}

private void addInheritancelLink(EClass subclass, EClass superclass) {
subclass . getESuperTypes().add(superclass);

}

Fig. 1. Generglnggt;';gn process class [3BN 378821404369



— The creation of a new modelling artefact is translated by a call to a specific
method on a unique dedicated Factory class: createE<TypeArtefact>. The
creation of an artefact does not imply the persistence of it in results model.

— The addition or removal of a model artefact is translated by the same oper-
ation on a list of artefacts contained by the appropriate container of model
elements, for example: the addition of an attribute to a class container or
the addition of a class to a package container.

2.2 Transformation Traces Representation

We execute our transformation on a source model that contains two classes A
and B with a common boolean attribute named attrA. Then, the target model
contains a common super class A A B that factorizes this attribute. The figure 2
represents a trace graph corresponding to the execution of the transformation.
This graph was generated thanks to our traceability engine.

extractSuperClass actions

PullUpField actions

£ 1

’ : LB %
':rcmovc PullUpField I’[rumovc I’u]lUpFicl%.;sﬂleTypccmuleEAltﬁbule:l
N , A .
2y 3] A - L
TRASH attrA _~"  createEClass
.//" o
( PullUpField ~ “add T i
; -

™ =
: addextrctSuperClass ‘\udd extractSuperClass \l,ldd

X \/
A B

ModclToRefactor

GenenlizationProcess

Fig. 2. Trace graph generated by ETraceTool

The nested traces are represented by boxes. The method transform has
been declared in GeneralizationProcess class which is the name of the main
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composite trace link. The method calls graph is isomorphic to the nested traces
graph, and the box named ExtractSuperClass includes the box named PullUp-
Field. Lines represent trace links from source to target element of a transforma-
tion. Solid lines represent high level transformation links (of user-specific opera-
tions) and dashed lines represent low level transformation links {(of API-specific
operations). For example, classes A and B are source elements of the high-level
transformation extract super class, while classe A A B is source element of two
low-level transformations which consist in adding inheritance links to the two
classes A and B. We can deduce easily that the attribute named attrA is the
factorized common feature. We can remark that attributes attrd in classes A
and B are not lost. They are saved in a generic container named Trash.

This annotated graph can be considered as a static visualization of a trans-
formation. How can it be used as a debugging transformation tool ? Due to
the composite structure of our trace meta model, we can generate a sub graph
directed by the scope of a transformation method or by elements model type
involved in a transformation process.

3 Realization

In this section, we make a brief description of ETraceTool, a traceability platform
dedicated to imperative model transformations. The platform is encapsulated in
an Eclipse plug-in. It permits us to generate all links of traceability during a
model transformation. Transformations must be written in Java using the EMF
API [4]. EMF is an Eclipse tool based on Ecore metamodel, which is equivalent
to the MOF provided by OMG. It’s the core of many meta modeling tools
(Kermeta from INRIA, SmartQVT [5] from OrangeLabs and the open source
project TopCased [6]).

A prototype of our plugin is available for the SmartQVT platform: SmartQVT
is an implementation of the OMG standard “QVT operational” and compiles
its transformations to Java/EMF. So, we easily adapted our plug-in to this lan-
guage.

Below, we present the main features of our plug-in:

— The trace generation code is not intrusive in the transformation code.

— Trace generation is explicitly activated by the designer of the transformation.

— Trace models are isolated from source and target models involved in trans-
formation.

— Trace models can be used at different levels of granularity. In the example,
creation of an attribute can be considered as a sub-level granularity link for
the creation of a class link.

The figure 3 represents the platform architecture. During the transformation,
we catch categorized events thanks to aspect oriented programming [7], and the
Tracer aspect generates a trace model conform to a boxed links metamodel. At
the end, the trace model can be serialized in a XMI file or transformed to dot
language vie a model-to-text transformation [8]. Other transformations can be
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Fig. 3. ETraceTool architecture

conceived from the model in memory or from the serialized model. We focus now
on the two original points of our approach: the use of a single aspect for isolating
the traceability code and our metamodel composite structure.

3.1 Catching transformation events

Aspect-oriented programming is a programming paradigm that allows to sepa-
rate implementation of a cross-cutting concern from application code. The prin-
ciple is to code separately the issues, and define integration rules for combining
the different issues to create the final system. Compared to object-oriented pro-
gramming, this paradigm allows to encapsulate behavior that affects multiple
classes in a reusable module. In our case, the generation of traces is a concern,
and the transformation is the core of the application. AspectJ? is used to imple-
ment our prototype.

All that remains is to categorize operations used to manipulate models in
the EMF platform. We associate the corresponding pointcut pattern to each of
them. They are used to identify events to be catched by a regular expression.
During the transformation process, the categorized events are catched and the
trace model is built in the following manner [9):

— Before the execution of the method intercepted, links are built and their
sources are affected.
— After the execution of the method, their targets are affected.

1 http:/ /www.eclipse.org/espectj/
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3.2 A nested trace metamodel

A traceability platform keeps information on the evolution of the models during
the various undergoing transformations. A trace model is associated with each
execution of a transformation. The definition of a trace metamodel allows us
to structure the traces generated by our platform. Our work deals with model
transformations, and we will study only metamodels dedicated to this activity.

Several trace metamodels have already been proposed [10,11]. They support
most of the transformations envisaged in a MDE process [2].

The core of the trace notion was presented in [10]: a trace link is composed by
a set of sources and a set of targets elements. It's adapted to declarative model
transformation languages, such as ATL, for which it was designed.

The first extension of the trace notion is to consider a trace as a set of
bipartite graphs with a common intersection [11]. A step artefact permits to
manage chain-transformation - several transformations performed successively
on models. The difference is the trace multiplicities: a trace has an unique source
and target.

Our metamodel (Figure 4) extends the one propesed in [11]. It’s useful, for
imperative as well as declarative transformations, to have a multiscaled trace.
The fact that an operation transformation can call another one (or that the
rules can trigger other rules) creates levels of nesting that it's useful to be able
to represent. That’s why the composite pattern is applied on the links [12].

ModelElement
+source . g
+target
+subType
kT «Component»
mEivpe AbstractLink
+ description : string e
*| + purpose : string type 1.4
£ uses string e Fchild
+ example : string
+ name : string 7 oy
[ ] o v ‘-_,,‘\
,.«-“/ . W ‘}
«Leaf= «Composite»
| _Link CompositeLink
+ createlink{)

+ createCompositeLink()

i)
L%

ETrace
+ name : string

Fig. 4. The nested trace metamodel
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We have added the concept of link types (LINKTYPE) to allow the user
to reason on links [13]. We also added composite links (CoMPOSITELINK). A
trace (ETRACE) is a kind of COMPOSITELINK, ie composed of multiple links
(ABSTRACTLINK) that reference two model elements (SOURCE and TARGET).

In our case, the composite link allows us to separate low-level operation
{creation, deletion. .. ) from high-level operation (a refactoring transformation),
while we maintain a composite link between both. With the composite pattern,
we also support chain-transformation on models.

A link has necessarily one source and one destination. If we want to trace an
element deletion, which is a low-level operation, we create a generic container
to store deleted items. The link target will be this container, named “Trash”
on figure 2. For an element creation, we proceed in the following manner: the
factory will be the source and the newly created element the destination.

4 Related works

In software engineering, traceability has two main semantics, depending on the
context [14]:

— Traceability in requirements engineering is tracking a requirement from its
expression to its implementation. Traceability is strongly influenced by the
originators of traceability : the requirements management community [1].

— Traceability in model-driven development can be subdivided in two cate-
gories:

e Traceability of models during a transformation (or traceability of trans-
formations)

o Traceability in a larger context of model-driven development. This part
explores metamodelling of traces and their potential uses in a MDE tools
suite.

Our work is in the context of traceability during model transformations.

To generate traceability links in ATL, [10] proposes to apply a second order
transformation to insert traceability rules in the original transformation. This
transformation of a program can be seen as a precompilation or as a meta-
transformation. However, this approach is only applicable to declarative lan-
guage.

In Kermeta, the programmer must enter the code for traces generation him-
self and no automation is proposed [11]. The approach has been implemented,
and the perspective suggests a future management of markers in the code to
automate traces generation. Our approach is different: we're trying to avoid the
presence of traceability information in the original transformation to not pollute
it.

14 of 120 ISBN 978-82-14-04396-9



5 Conclusion

In this paper we have presented our traceability platform adapted to an im-
perative language. It works and is available as an Eclipse plugin. We propose a
trace visualization in the form of an annotated graph which allows us to analyse
a model transformation. Now that we have a working traceability framework,
we plan to implement the "undo / redo” of an endogenous transformation. The
use of the traceability during a MDE process may reveal new problems, such
as the decrease of transformation performances, the management of consistency
between traceability links and references to source or target elements, the pos-
sibility for the designer to choose specific elements or events to trace.

For the debugging problem, the creation of a dynamic trace representation
system may allow the user to navigate easily through the different levels of trace
and to find problems more efficiently.

T'inally, we would like to focus our research work on transformations engi-
neering: use traces for new transformations, such as incremental transformations
or refinement injection.
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Towards Rigorously Defined Model-to-Model
Traceability
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2 The York Management School, University of York
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Abstract. A Model Driven Engineering process typically involves mod-
els expressed in different modelling languages that capture different views
of the system under development. To enhance automation, consistency
and coherency, establishing and maintaining semantically rich traceabil-
ity links between model elements that belong to different models used
throughout the process is of paramount importance. In this paper we
propose a rigorous approach to defining such semantically rich traceabil-
ity links between models expressed in diverse modelling langusages using
case-specific traceability metamodels and demonstrate the practicality
and usefulness of our approach using a concrete example.

1 Introduction

Model-Driven Engineering (MDE) is an approach to software development where
the primary focus is on models, as opposed to source code. A model describes
certain views of the software system and its environment at a certain level of
abstraction. MDE uses models to represent all artefacts that are involved in
the software development process, such as requirements, software components
or system documentation. Usually, models are described by different languages
and they can be refined, evolved into a new version, and used to produce other
models or even executable code. The ultimate goal of MDE is to raise the level
of abstraction, and to develop and evolve complex software systems by manipu-
lating models [9].

In a typical MDE process, many different and heterogeneous modelling arte-
facts are produced. This poses challenges to the traceability of the various models
elements, i.e. the ability to establish, represent and update relationships among
the various artefacts developed during the software development life-cycle. Trace-
ability is considered as a necessary system characteristic since it underpins soft-
ware management, software evolution and validation [14].

In this paper we present an approach to specifying and capturing strongly
typed and semantically rich traceability links between models that conform to
potentially different metamodels. In our approach we use a dedicated traceability
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metamodel to specify type safe traceability links of interest, as well as a set of
inter-model constraints for verifying the validity of the established links.

The rest of the paper is organised as follows: In Section 2, we define the main
concepts, which are met throughout this paper, while in section 3 we present
the two approaches to storing and managing traceability information, as well as
the advantages and disadvantages of each approach. In Section 4, we propose
the main contribution of this paper, which is the use of case-specific traceability
metamodels and inter-model constraints, that define strongly typed and seman-
tically rich traceability links. In Section 5, we present a concrete example that
demonstrates the practicality and usefulness of our approach, while in section 6
we provide a discussion on related work and compare to our approach. Finally,
in Section 7 we conclude and identify interesting further work on the subject.

2 Background

Traceability is defined in the IEEE Standard Glossary of Software Engineering
Terminology [16] as follows:

The degree to which a relationship can be established between two or
more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another;
for example, the degree to which the requirements and design of a given
software component match.

The above definition exhibits a strong influence from the originators of the
traceability concept, the requirements management community. However, for the
purpose of traceability in the context of MDE a broader definition is required.
Such a definition is provided in [2], where traceability is considered as any re-
lationship that exists between artefacts of the software development life-cycle,
such as mappings generated as a result of transformations or relationships that
are computed based on existing information (e.g. dependency analysis).

Following [10], there are two strategies to storing and managing model-to-
model traceability information. In the first one, the traceability information is
embedded in the models they refer to, while in the second strategy the trace-
ability information is stored separately from the models.

2.1 Intra-Model Storage of Traceability Links

Under this strategy, the traceability information is stored within the artefact
they refer to in the form of model elements or model element attributes, such
as tags and properties. Despite its simplicity and human friendliness, keeping
such information with the artefacts can be problematic for several reasons, If
the link is directed and stored in the source model only, it is not visible from the
target model. On the other hand, if the traceability information is stored in both
models, then this information must be maintained consistent, thus the burden
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of maintaining consistency is introduced every time a change occurs [2]. In addi-
tion, embedding traceability information inside a model causes “pollution” [10],
i.e. the inclusion of elements in the model of secondary importance. Such an in-
clusion can render a model overcrowded and can make it difficult to understand
and maintain. Finally, the issue of uniformity arises in this approach [1]. In an
MDE environment, it is common that models have their own representations and
semantics. Hence, it is very difficult to distinguish the traceability information
from the other model artefacts. As a result, automated analysis of traceability
information becomes very challenging. The main approaches falling under this
strategy utilise mainly language specific constructs. For example, specific types
of traceability links are represented in UML diagrams by using stereotyped de-
pendencies, such as < refines > (§].

2.2 External Storage of Traceability Links

Under this strategy, traceability information is stored separately from the models
they refer to in a separate model. Constructing such models has two clear advan-
tages. First, the source and target models remain “clean”, since the traceability
links are stored in a separate model, whose concern is to capture this kind of
information. In this way, the aforementioned “pollution” is avoided. In addition,
storing traceability links in a model who conforms to a metamodel with clearly
defined semantics makes automatic analysis by tools much easier. A prerequisite
for storing traceability links externally from the models they refer to, is that the
various model elements have unique identifiers, so that the related traceability
links can be resolved unambiguously [10]. For example, such a mechanism is
provided by MetaObject Facility (MOT) [15] and Eclipse Modeling Framework
(EMF) [6] in the form of a mmi.id identifier. In our view, storing traceabil-
ity links in separate models is more preferable than embedding the traceability
information in the models they refer to. This is because in addition to the afore-
mentioned advantages, this strategy is able to capture both intra-model as well
as inter-model links.

3 A Generic Approach to Inter-Model Traceability
Establishment

In the general case we need to establish links between elements belonging to a
number of models that potentially conform to diverse metamodels. Also, several
types of traceability links linking different types of model elements may need to
be captured. As discussed, traceability links should not be captured by constructs
internal to the models they refer to, to reduce “pollution”. Instead, they should
be captured in the form of a separate model. This model that contains the
traceability links must conform to a metamodel. There are two alternatives: use a
general-purpose traceability metamodel or use multiple case-specific traceability
metamodels.
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3.1 General-Purpose Traceability Metamodel

In this case, a generic metamodel that enables capturing relationships between
any types of model elements is used. In this metamodel, a traceability link can
connect any number of elements, of any type in any model. Such a metamodel
is the Unified Traceability Scheme developed in [12]. The main advantages of
a general-purpose metamodel are simplicity and uniformity (as all traceability
models conform to the same metamodel) which creates potentials for enhanced
tool-interoperability as tools will be able to import, export and manage traceabil-
ity in a common format. On the other hand, such a general purpose metamodel
does not capture case-specific strongly typed traceability links with rigorously
defined semantics and constraints, and thus allows establishment of potentially
illegitimate traceability links. For example, in the case we want to represent
traceability links between a class diagram and a relational database model and
we know that links exist between classes of the former model and tables of the
later, a generic traceability metamodel allows the establishment of possibly il-
legitimate links, such as class-column links. Provision of extension mechanisms
along with the general-purpose traceability metamodel is an approach often used
to allow better support for case-specific requirements. Examples of this approach
can be efficient in tackling the aforementioned issues [3, 13]. However, they still
lack the efficiency of case-specific metamodels to capturing case specific infor-
mation and semantics.

3.2 Case-Specific Traceability Metamodel

In this case, for each traceability scenario, a case-specific traceability metamodel
is defined. This traceability metamodel captures case-specific strongly typed
traceability links with well-defined semantics that potentially include correct-
ness constraints that extend beyond simple type conformance. Apparently, such
a metamodel can capture more case-specific information and semantics and, due
to its strongly typed nature and the attached constraints, restricts users and
tools to establishing legitimate traceability links only. By contrast, a case-specific
traceability metamodel requires some effort to be spent for its construction and
also tools that support different traceability metamodels shall not be able to
directly communicate with each other. Nevertheless, the process of establishing
an explicit traceability metamodel is to our view beneficial in the long term as
it involves the engineers in a cognitive process through which the conceptual
correspondences between the respective metamodels that are involved in the
traceability scenario are enhanced. Also, with the advent of model management
technologies (e.g. model transformation languages) transforming between dif-
ferent well-defined traceability metamodels is expected to be a straightforward
process to automate.
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4  Establishing a Strongly Typed, Semantically Rich
Traceability Metamodel

In this paper we propose an approach for capturing and representing strongly
typed and semantically rich traceability links. This approach involves establish-
ing a traceability metamodel that defines strongly typed traceability links and
a set of constraints that express validity requirements that can not be captured
by the metamodel itself.

To be strongly typed, the traceability metamodel needs to explicitly refer
to types of elements defined in other metamodels. For example, consider that
we need to define a traceability metamodel that enables establishment of simple
traceability links between instances of A (from MMa) and instances of B (from
MMb), but no links between two instances of A or two instances of B. To capture
such a metamodel, the underlying modelling technology must not consider each
metamodel as a closed space - but instead allow inter-metamodel references.
An exemplar technology that supports inter-metamodel references is the Eclipse
Modeling Framework (EMF) [6].

Although a metamodel captured using a modelling technology that allows
inter-metamodel references can enforce type safety, there are often additional
requirements that need to be specified, and which the traceability metamodel
cannot capture by it self. For instance, in the previous example, an additional
requirement may be that each instance of A from MMa can only be linked to no
more than one instances of B in MMb. To specify such constraints, a constraint
specification language that can express constraints spanning over elements be-
longing to a number of models of potentially different metamodels is required.
The Object Constraint Language (OCL) [17] currently lacks such capabilities as
it does not provide constructs for expressing cross-model constraints. Exemplar
constraint languages that support establishing cross-model constraints include
the Epsilon Validation Language (EVL) [11] and the XLinkit [4] toolkit.

The combination of a strongly typed traceability metamodel with verifiable
inter-model constraints restricts users and tools to establishing and maintaining
only meaningful traceability links, which can be automatically validated to dis-
cover potential omissions and inconsistencies. Such issues can arise either during
the establishment of the traceability links or later on in the lifecycle of the mod-
els among which traceability links have been established. In the next section,
we demonstrate the practicality and usefulness of our approach using a concrete
example.

5 Example

In this section, we present the proposed methodology using a concrete example.
In our example, we use two simple metamodels, the ClassMetamodel and the
ComponentMetamodel, which are illustrated at the top and bottom of Figure 1
respectively. Our aim is to capture traceability links between instances of Pack-
age from the ClassMetamodel and Component from the Component metamodel,
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Fig.1. The ClassMetamodel, ComponentMetamodel and ClassComponent-
TraceLinkMetamodel metamodels

and links between instances of Method from the ClassMetamodel and Service
from the ComponentMetamodel. Furthermore, the following exemplar constraints
must be satisfied by the trace model (ComponentClass TraceModel):

— (C1) For each Service in ComponentModel there is exactly one ServiceMethod-
TraceLinkTrace in the ComponentClass TraceModel that links it with a Method
in the ClassModel

— (C2) If a Service in the ComponentModel is linked to a Method in the
ClassModel via a ServiceMethodTraceLink, then the component in which
the service is defined must also be linked with the Package in which the
Class that contains the Method is defined.

The first step of the solution is to define the ClessComponentTraceMeta-
model case-specific traceability metamodel that is displayed as a shaded pack-
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age in the middle of Figure 1. The metamodel specifies a TraceModel container,
an abstract TraceLink class, and the ComponentPackageTracelink and Ser-
viceMethod TraceLink classes that extend TraceLink. The ComponentPackage-
TraceLink defines two references: the package reference that is of type Package
and the component reference which is of type Component, from the respec-
tive metamodels. Similarly, the ServiceMethod TraceLink defines the service and
method references which are of type Service and Method respectively. By spec-
ifying explicitly the supported traceability links, we preempt- establishment of
illegitimate links (e.g. tracing a Component to a Method).

However, the metamodel cannot enforce the additional constraints C1, C2
discussed above by itsell. To impose such constraints, we use the Epsilon Vali-
dation Language [11], a constraint language that is capable of expressing con-
straints over multiple models of different metamodels simultaneously.

In Listing 1.1 constraint C1 applies to all instances of Service in the Compo-
nentModel and in line 5 it calculates the number of ServiceMethod TraceLink in
the ComponentClassTraceModel that link the Service with a Method from the
ClassModel. In line G it returns true if exactly one trace link is found and false
otherwise. Then in line 8 it reuses the count variable calculated in the check part
of the constraint to generate an appropriate error message according to whether
zero or more than one trace links have been found.

Listing 1.1. Constraint C1 expressed in EVL

1 context ComponentModel!Service ({

2 constraint Cl (

3 check {

4 var count := ComponentClassTraceModel!ServiceMethodTraceLink.
5 all.select (sml|sml.method = self).size();

6 return count = 1;

7 }

5 message |

9 if {count = 0) [

10 return ‘Service ' + self.name + ' does not trace to a method’;
11 }

12 else {

13 return ‘'Service ' + self.name + * traces to many methods’;

14 }

15 }

16 )

In Listing 1.2 constraint C2 is evaluated against all instances of ServiceMethod-
TraceLink in the ComponentClassTraceModel and checks that there exists at
least one ComponentPackageTraceLink that links the component in which its
service is defined with the Package in which the class that contains the methoed
is defined.

Listing 1.2. Constraint C2 expressed in EVL

1 context ComponentClassTraceModel!ServiceMethodTraceLink (
2 constraint C2 {
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In this example we have demonstrated our approach on a simple but repre-
sentative example. To establish rigorous traceability links between elements of
the exemplar ComponentMetamodel and ClassMetamodel metamodels we have
introduced a new metamodel (ComponentClass TraceMetamodel) in which every
legitimate type of traceability link is represented as a separate metaclass that
contains references to the types of elements it can link. Moreover, we have demon-
strated that additional constraints which cannot be captured by the traceability
metamodel are necessary for rigorously specifying legitimate traceability links,
and shown how such constraints can be captured using a constraint language
(EVL) that supports accessing multiple models simultaneously.

6 Related Work

6.1 Atlas Model Weaver

AMW, the Atlas Model Weaver [13], is a tool created by INRIA as part of the
ATLAS Model Management Architecture . Its primary goal is to capture and
to store links between models. This information is stored in a model, which is
called weaving model. This metamodel is very flexible and may be extended to
add additional mapping semantics. The process of creating the weaving model
can be manual or semi-automatic. AMW provides a base weaving metamodel
enabling to create links between model elements and associations between links.
The main difference of AMW and the approach proposed in this paper is the
fact that AMW treats the weaving model as a closed space and does not allow
inter-metamodel references, while our approach focuses on those references since
they provide the basis for a more semantically rich weaving metamodel.

6.2 C-SAW

The Constraint-Specification Aspect Weaver (C-SAW) is a general transforma-
tion engine for manipulating models and is a plug-in for GME [19]. This approach
is strongly influenced by the Aspect Oriented Software Development community.
The main goal of C-SAW is to maintain consistency of complex evolving models.
C-SAW offers the ability to explore numerous modelling scenarios by consider-
ing crosscutting modelling concerns as aspects that can be rapidly inserted and
removed from a model. This permits a modeller to make changes more easily
to the base model without manually visiting multiple locations in the model.
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Comparing C-SAW to our approach, there are two differences. C-SAW focuses
on specifying side-effects rules to deal with model changes, while our approach is
focused on capturing various links among different model elements. In addition,
C-SAW does not consider explicitly inter-metamodel references.

6.3 XWeave

XWeave is a model weaver based on EMF’s ECore meta metamodel [7]. XWeave
takes a base model as well as one or more aspect models as input and weaves
the content of the aspect models into the base model. XWeave finds pointcuts
either by name matching or by defining them with the oAW expression language.
Similarly to C-SAW, XWeave uses an automated approach to identifying links
between elements of different models while our approach is focused on manual,
rigorous trace link establishment.

7 Conclusions & Future Work

In this paper we have presented an approach to establishing trace links between
models expressed using different modelling languages. We have proposed using
case-specific traceability metamodels that define strongly typed and semantically
rich traceability links and inter-model constraints to ensure the soundness of the
established links.

‘We have used the proposed technique for defining rigorous traceability links
between requirements specifications expressed using models conforming to the
non-trivial i* (18] and KAOS [5] metamodels. Throughout this work we have
identified a number of interesting reoccurring patterns in case-specific traceabil-
ity metamodels. In the future we plan to encapsulate these patterns in a dedi-
cated language that enables specifying traceability metamodels with rigorously-
defined semantics at a higher level of abstraction.
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Abstract. MDE approaches are wide-spreading more and more. They
allow the generation of code from high level abstraction models, using
intermediary models. A development system based on an MDE approach
often involves several model transformations composing one or more
transformation chains. In order to deal with the complexity in such a
system, it is necessary to introduce a traceability mechanism helping
both the users and the developers keeping track of elements. Several
traceability mechanisms and semantics have already been defined, but
they are not appropriate to trace fine grained elements, like properties.
In this paper, we have adapted existing traceability mechanisms in or-
der to manage a richer semantics for traceability. We have implemented
a generic and partially reusable traceability solution tested in Gaspard
transformation chains.

1 Introduction

MDE offers the basic principles and a methodology to use models as main arti-
facts in the life cycle of complex software systems.

We use MDE to implement Gaspard, a co-design environment for Embedded
Systems. In this environment, the hardware architecture and the application are
modeled separately at a high level of abstraction using UML2. Next, models are
transformed into domain specific models and finally into code that will be used
by simulators or generators. Figure 1 is a simplified view of our co-design envi-
ronment. In the real process several intermediate models representing different
levels of abstraction are used, and different kinds of code are targeted. Auto-
matic transformations are involved to go from one abstraction level to another
or code. The whole transformation process from the high level model in UML
to the generated code constitutes what we call a transformation chain.

The transformations that are implemented in the Gaspard environment are
often very complex [9]. We have several input data sprayed into different related
classes producing several output data also sprayed into different related classes.
Furthermore, we have what we call Black- Bozes, i.e. external piece of code, to do
complex computations, for example compute repetition factors from matrices,
which are difficult to be implemented in a transformation language.

As it is defined in the literature, traceability is the ability to establish de-
grees of relationship between two or more products of a development process,
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Fig. 1. Simplified View of A Gaspard Transformations Chain

especially products having a predecessor-successor or master-subordinaie rela-
tionship to one another [10]. Traceability may be used for different purposes
such as understanding, capturing, tracking and verification on software artifacts
during the development life cycle [1].

In the Gaspard environment, we want to use the trace information for the
following purposes:

— To debug modeled applications - The traceability links help to establish where
a property value or a class instance comes from. Furthermore if a property
value is changed in an abstraction level, these links allow users to inspect
what has to be modified in other levels.

— Optionally to debug transformation rules during the rules development pro-
cess - Trace can help to know which rules are involved in producing a prop-
erty value or a class instance.

— To explore architecture for the evaluation of alternative software/hardware
solutions. - Several architectural solutions as well as several application spec-
ifications have to be evaluated with regard to their performance and cost.
The evaluation is done at code level but modifications are done at model
levels. A traceability mechanism can help in order to identify the property
values from the models associated with the values at code level.

As a consequence of these requirements for traceability in our system, our
trace solution should provide the possibility to trace not only transformed classes,
but also transformed property values. In order to do this we need a fine grained
trace mechanism. Two types of transformation are involved in our environment,
model to model and model to code. We want to be able to trace both kind, but
as our work is in progress, this article will describe a traceability solution only
for the model to model transformation.

The traceability solutions proposed in literature do not respond entirely to
our needs of fine grained tracing of models elements and transformation debug.
We proposed to enhance a trace metamodel for elements with new concepts and
use a Global Trace metamodel[5] for the navigation between models and their
traces in a transformation chain. To generate and exploit the trace, we have
instrumented our transformation engine and developed an independent visual
tool. This tool is organized as Eclipse plug-ins using EMF. It allows selecting a
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class or a property from a model and shows its associated elements along the
transformation chain. The models and the tool are independent of the transfor-
mation engine and of the way traces are collected. We presume that they are
reusable in other projects, as long as the appropriate information for the trace
model is provided.

This paper relates our experience in implementing the trace mechanism. It is
organized as follows. Section 2 presents existent traceability solutions adaptable
to our environment. Section 3 presents the Local Trace metamodel and the Global
Trace metamodel along with the reasons of the metamodels choice. Section 4
presents how we exploit the models in order to recover information and Section
5 presents the future work and concludes.

2 Related Work

Many solutions for traceability are proposed in the literature [1] [3], each of them
responding to specific needs of projects.

MDE has as main principle that everything is a model, so it seems a good
solution to store trace information as models. Selutions are proposed to keep
the trace information in the initials models source or target [11]. The major
drawbacks of this solution are that it pollutes the models with additional in-
formation and it requires adaptation of the metamodels in order to take into
account traceability. Using a separate trace model with a specific semantics has
the advantage of keeping trace information independent of initial models. [4].

In [3] the authors argue that an optimal solution for a trace metamodel should
be a simple core that offers a predefined link between the elements that allows
customization and extensibility to define new links. A traceability metamodel
should be able to express the links between all the elements in a transformation.
The metamodel proposed in [4] can trace model elements but it is not possible
to specify traces for the properties of elements.

One solution for collecting the trace information is during the transforma-
tions since this only incurs a small cost [7] as the trace model is viewed as an
additional target model. As for this reason, trace generation could be manually
implemented in transformations to produce an additional trace target model or
it can be supported by the transformation engine [2]. In [4], an automatic gen-
eration of trace code into rule code is presented, based on the fact that trans-
formation programs are models that could be transformed into another models
that contains trace code.

After the trace is generated the main interest for the user is to have simple and
quick access to the information that he needs. To interrogate a transformation
chain, the trace models, which are produced during the transformations, are not
enough. This kind of traceability is referred as traceability in the small [5]. For
an end-to-end solution for traceability, another type of model, called megamodel,
is introduced to handle the navigation between initial models and trace models,
referred as traceability in the large [5]. In other solutions is proposed to use a
trace model for the entire transformation chain, like in [8]. They introduce new
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concepts to manage the navigation in a transformation chain like the abstraction
level at which the model elements are found.

A metamodel, UTR (Unified Transformation Representation), is proposed
to handle a transformations chain [7). The main purpose for this metamodel
is to facilitate transparent composition and reuse of transformations written
in various transformation languages. UTR metamodel could be easily extended
with concepts for global traceability [7].

In order to be as little intrusive as possible, we have chosen to have separated
trace models for which we have defined appropriate metamodels.

3 Traceability Metamodels Description

In order to implement traceability in a transformation chain, we use the idea of
separation of traceability levels between {raceability in the small and iraceabil-
ity in the large [5], which we refer as local and global traceability. We modify
the metamodel developed in [4] in order to take into account the fine-grained
traces and the black-boxes, and obtain a Local Trace metamodel. For the global
navigation we use a Global Trace metamodel.

3.1 Local Trace Metamodel

The Local Trace metamodel capture the traces between the input and the out-
put of one transformation. The metamodel is based on the Trace metamodel
presented in [4]. Figure 2 shows the Local Trace metamodel. It contains core
concepts that are based on the Trace metamodel and some additional business
concepts.

ElementContainer
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Fig. 2. Local Trace Metamodel

Core concepts. The Local Trace metamodel contains two main concepts
Link and ElementRef in order to express that one or more source elements are
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linked to one or more target elements. Those concepis are the same as in [4]. In
our metamodel Elementfef is an abstract class representing element that can be
traced: instances of Classes or Property values. Property values are traced using
PrimitivePropertyRef which points to the property container instance and has
a name that is the feature name. In fact, only property values that are primitive
types in the Java sense, like integer, double, String etc., need special handling
because there are no instances in the model. Properties that are typed by a
normal class are traced by the ClassRef mechanism. Tracing property values is
one of the requirements for our trace solution.

Additional business concepts. More information is needed in order to
trace the transformation rules and black-boxes. The rule producing the link is
traced using RuleRef concept. A rule can be associated to several links, so the
association many to one between RuleRef and Link. The RuleRef concept is
optional and RuleRef instances are generated only if they are used. Those kind
of elements are generated only for transformation debug.

Black-Boxes are special kind of rules: they have input elements from the input
model and produce output elements of the output model. So, they can be traced
with Links, but we take care to identify the black-boxes with the BlackBozRef
concept which is a subclass of RuleRef.

RuleRef and BlackBoxRef are concepts that allow establishing a bridge be-
tween the traceability and the transformation world. Information concerning the
rules and black-boxes are used for the transformation debug as an answer to the
second purpose of our trace solution presented in introduction.

Implementations concepts. An ElementRef has a reference to the real
object in the source or target models. As in our environment models are imple-
mented with EMF, the reference named EMFObject is an EObject from Ecore
metamodel. The LocalTraces concept represent the root of the Local Trace model
and it contains RuleConiainer, used as a container for the rules, and two Ele-
mentContainers, used for containing respectively source and target ElementRefs.
Separating source and target elements allows reducing the cost of search of input
or output elements.

3.2 Global Trace Metamodel

The Global Trace metamodel links Local Traces according to the transformation
chain. A Global Trace model is a main entry point from which all the Local Trace
models are found, and describes that a target/source model of one transformation
is a source/target model for the next/previous transformation.

Figure 3 shows the Global Trace metamodel. It allows to represent all local
traces and models in a transformation chain and the way those models are linked,
represented by TraceModel, respectively LocalModel. The models can be shared
between transformations, indicating that they are produced by one transforma-
tion and consumed by another one.

The GlobalTraces implementation concept represents the root of the model.

Introducing this extra Global Trace level [5] permits the navigation between
transformed models and their Local Trace models. It also gives a better separa-
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Fig. 3. Global Trace Metamodel

tion of trace information, which leads to a better flexibility for trace creation and
exploitation. Not using this Global Trace semantic could have as a consequence
collapsing all traces in a big unique trace model for the entire transformation
chain, more difficult to create and interrogate.

3.3 Semantics of Traceability Links

The proposed Local Trace metamodel can lead to different Local Trace models
for the same transformation, depending on how traces are collected and how
rules are organized. More precisely, the difference is in the semantic of the Link
concept.

Fig. 4. Simple transformation A to X

In the example in Figure 4, 4 is transformed into X, z is computed from a
and b, and y is also computed from a and b. Such an example can lead to at least
three different traces, like in Figure 5, where each tuple (link; sourceElements;
targetElements) represents a link, its source and target elements.

trace 1 trace 2 trace 3
- (11; A; X) - (11 A; X) - (I A X)
— (12; a,b; x) - (12585, y) = (125 85 %)
- (13; a)b; y) - (13 by x,y) = (13; b; x)
= (4; a5 y)
— (15; by y)

Fig. 5. Different set of traces for the same transformation
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The first two traces use multiple sources or targets for the link. In the first
trace, link {2 means that a and b produces . In the second trace, link {2 means
that a produces x and y. In the third trace, there is a link for each simple
relation.

Our metamodel support all of these traces, and the exploitation of any of
them leads to the same result. Searching the ancestor of y in any set of traces
will always have the same result: @ and b. At this point we argue that the way
the trace is constructed do not influence the way it is exploited and this give
flexibility trace generation.

4 Trace Exploitation

One of the main goals of collecting traces in our system is to permit the user to
inspect these traces. After the trace is collected in trace models, the trace models
are interrogated using an search algorithm in order to obtain the elements related
to an element specified by the user, then the result is shown to the user.

gm: Globalhodel
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Fig. 6. Schematic view of Local and Global Trace models in a simplified Gaspard
transformation chain

In Figure 6 are described the Local and Global Trace models that are pro-
duced from the Gaspard transformation chain presented in Figure 1 with the
trace tool. The navigation sense between the models is represented with dotted
lines.

Due to these relations, starting from the Global Trace model we can navigate
to Local Trace models and to the models involved in the transformations. Also in
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a Local Trace model we navigate between models elements. A Local Trace model
only contains references to the actual elements in the models, as for example
usrl is a reference for the element u! in model wmli: UML. We represent in this
example links between the elements without instances of RuleRef in order to not
overload the figure. One example of link is (12, usr2, gtr2) that is an element of
lt1 model, instance of LocalTrace. Links can be constructed between instances of
PrimitivePropertyRef (for example usr2 and gérg of 1), instances of ClassRef
(for example gst! and 7ir! of it3) or between instances of PrimitivePropertyRef
and ClassRef (for example gsrd and riri of it3).

Adding another model in the transformation chain requires the generation
of the trace for this new transformation and the addition of some new infor-
mation to the Global Trace model. The proposed mechanism allows having a
scalable trace adapted to our environment that already contains five transfor-
mation chains each made of two to four transformations.

4.1 Trace Generation

Trace generation can be handled in different ways as seen in Section 2. In the
Gaspard environment, we use a homemade transformation engine implemented
in Java and EMF. Internally, this transformation engine stores information about
each transformation: source and target classes and the transformation rule that
involves those classes. Parts of the Local Trace models are generated using the
internal trace data provided by the engine. Our transformation engine doesn’t
store any information about property values transformations and Black Box
calls, nor it use a standardize way to compute such transformation or calls. We
have instrumented our transformation engine with specific instructions to store
the trace information that is not provided from the engine as to be recovered in
Local Trace models.

Our transformation engine includes & mechanism allowing defining transfor-
mation chains from several transformations. The Global Trace model can be
generated using this mechanism. The Global Trace model can also be generated
from the Local Trace models. The models can be identified using the informa-
tion from the ElementsRef of Local Trace and their order using the fact that an
element is sourceElement or targetElement.

4.2 Search Algorithm

The search algorithm start with the selected element and a search direction
that can be backward or forward. We have a backward navigation in case the
navigation is made from the current element to the elements at a higher level
of abstraction in the transformation chain (as for example in Figure 1 we go
from an element in RTL model to an element in UML model) and forward if we
descend in the abstraction level (from an element in UML model to an element
in RTL). In the following steps we consider a backward navigation:

1. the algorithm identifies the model containing the element
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2. it searches in the Global Trace model for the LocalTrace that has the model
as target

3. from this LeocalTrace, it looks in the targetContainer for the ElementRef
corresponding to the element

4. from the ElementRef, it navigates to the Link, and then to the source Ele-
mentRefs

5. for each ElementRef found, the algorithm is applied recursively

The recursive call stops when no LocalTrace can be found in step 2. In this
case, the current element is linked to the first selected element. Also, all interme-
diate FlementRef found are linked to the first selected element. The algorithm
is the same for a property value search. In this case, step 3 manipulates a Prim-
itivePropertyRef corresponding to the selected property.

Let us apply this algorithm on the transformation chain described in Figure 6.
If g1:MmPort is the selected element, step 1 identifies the ga:GaspardApplication
model. Step 2 results in the identification of tmi:TraceModel. The ul:Port is
found during Step 3 and 4. The algorithm is recursively called with the uf:Port
element but stops as umil:UML is not the target of any LocalTrace model. The
element that is linked with gl:/nPort is ul:Port.

4.3 Visual Tool

To ease the exploration of the trace, we developed a visual tool in Eclipse. This
tool allows to select elements (classes or properties), to run the algorithm and
then to presentis the search result. The models involved in the transformation
are presented as EMF Trees. The property view has been modified in order to be
able to select property values. The user selects one or more classes or properties
and then presses the search button. The algorithm is run and the result elements
or properties are selected in the EME Trees. The result for the transformation
debug is shown in the console, allowing the discovery of the rules involved in
the transformation of selected elements. The tool is independent of the way the
traces are collected, and we think it can be reused in other projects as long as
the trace models respect the specified trace metamodels. The trace models and
mechanism are completely transparent to the users.

5 Conclusion and Future Works

In this paper we present our experience in the implementation of traceability
for an MDE approach of embedded systems. We reuse ideas presented in lit-
erature for the construction of Local and Global Trace models to which we
add new concepts like RuleRef, BlackBozRef to trace rules and black-box and
PrimitivePropertyRef to trace property values. The former are used to debug
transformation rules whereas the latter is needed for architecture exploration
and to debug modeled applications.

We explain why in a complex system, with complex transformations, a fine
grained traceability is needed and why the trace are at elements property level.
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Then we present examples and argue our choice of models concepts. We present
the search algorithm used to inspect the trace for an element along the trans-
formation chain. We argue that the use of a trace system is helpful as a debug
tool for the transformation chains developers as well as for the final application
designers and give a clearer image of the relation between the input models and
the output models.

We intend to use the trace information for more complex operations as to help
us do semi-automatic architecture exploration: Some properties, like number,
type, deployment of processors, memory, buses, etc., of the high level application
madels are tuned according to the result, like speed, power consumption ete., of
the simulation of the low level models or code. The trace mechanism will serve to
track-back which properties should be changed, and the impact of the changes
will help to set the property values.

We are currently in the process of changing our transformation language. As
the trace generation is independent from the trace exploitation, the developed
algorithm and tool will not affected, as long as the required Local and Global
traces are generated. If the new transformation engine provides a trace mecha-
nism we can implement an API to transfer this information to the Local Trace. If
it provides its own trace model, a model to model transformation should permit
the transfer to our Local Trace Model.

We also investigate how to implement the trace in model to code generation.
We think that we will be able to use the same or a very similar Trace metamodels.
Indeed, for model to code traceability tracing the classes and property values is
mandatory. In addition it will be possible to introduce other concepts required
by model to code transformation, like line number.
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Abstract. The development and the evolution of large, complex soft-
ware systems bear several risks. Traceability links can help to master
the complexity of these tasks. Currently, they are not used in a large
scale, because tool support is necessary to reduce the overhead effort.
At present, tools for handling traceability links cannot be effectively de-
veloped, because the syntax and the semantics of the traceability links
are not sufficiently defined. In this paper we present a set of traceability
link types together with a definition of their semantics. The set of link
types was developed by analyzing the link evaluation and exploitation.
The presented link types are customized for the support of architectural
design decisions in regard to a set of non-functional design goals. The
extension of the results to a wider scope is discussed. The work was
performed within a large industrial project.

1 Introduction

Large, business critical software systems have to perform a tough succession of
changes in order to maintain their value for a company. Changes of complex
software systems bear several risks. Design decisions have to be made under un-
certain conditions, because the consequences of different alternatives cannot be
determined precisely. Traceability can support the decision making by facilitating
the software comprehension, the change impact analysis, and the minimization
of risks. However, the accuracy of the traceability links constitutes a critical is-
sue to achieve the expected benefit. If the information provided by these links
is wrong, bad decisions and the introduction of errors are a consequence.

For maintaining the accuracy of the traceability links, tool support during
the establishment, the adaptation and the evaluation of the links is necessary.
Furthermore, the link maintenance by humans requires a high effort and in-
troduces new risks of mistakes. Currently, an effective tool support can hardly
be provided because the semantics of the artefacts and models used, and of the
traceability links themselves is not defined precisely enough. Guidelines and rules
for link modifications during changes and for evaluations are only provided as far
as the semantics of the links and of the linked artefacts are defined. Furthermore,
there is a broad variety of proposals for link types, but little attention has been
paid on the definition of the link semantics. The semantics has to support the
link utilization in order to be of practical value. A pure categorization of links

39 of 120 ISBN 978-82-14-04396-9



2 Robert Breina and Matthias Riebisch

constitutes an important step, but it does not lead to the required preconditions
for a tool support.

In this paper we present a traceability link definition framework for support-
ing architectural design decisions. Traceability links have to represent relations
between artefacts in different phases of the development process. Depending on
the goal of the decision, different types of artefacts and relations have to be
considered. Due to space limitations, we focus on architectural design decisions
regarding the non-functional design goal evolvability. We start from a subset
of the currently used link types and define their semantics by the way of their
utilization. Even if the results of this work are applicable only to these decisions,
we expect that the discussion about link types and semantics is driven forward
and that they lead to a significant support for the tool development.

After a brief discussion of related work, section 3 introduces the traceability
approach. Based on them, in section 3.3 the indicators and the corresponding
resolution actions are introduced. In section 3.4 the application of the approach
in an iterative development process is illustrated by an example. In section 4 we
introduce the link meta model and the link semantics.

2 Related Work and Traceability Link Utilization

From the engineering point of view traceability links are used to trace design
decisions during the development process. Both, functional and non functional
lracing allow following functional and non functional issues of the system devel-
opment [10]. They facilitate system comprehension by providing the required in-
formation about relations between artefacts and entities, e.g. the scenario based
approach described in [7]. A traceability model is used to define the required
entities and relations during the software development, e.g. in [8]. The definition
of relations as traceability link types is important for the utilization of the model
information. Unfortunately, the definition of a standard set of traceability link
types is still an unresolved issue. However, for a tool support of design evolution
a semantic differentiation of the traceability link types is needed. Due to differ-
ent research goals, a high number of traceability link type definitions has been
established, e.g. in [9] or [8]. As a step toward simplification and abstraction, we
will later restrict ourselves mostly on the implemented By traceability link type
plus the dependency relations of the modelling language UML2.

Traceability Link Ulilization. Link types should be defined in a way suitable for
the intended usage. In the following we list a set of activities in which the links
are used, together with the goals of using them.

Verification of (forward) engineering activities: identification of the input to
an engineering activity (e.g. requirements, goals, models, risks); understanding
and making a decision; verification of the completeness of an activity; verification
of the design rules applied.

Change impact analysis: identification of all entities depending on the changed
one; understanding the type of dependency to a related entity in order to identify
the necessary way of changing it, accordingly.
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Software comprehension and reverse engineering: identification of all related
entities to the one in focus; understanding the type of relation between the entity
in focus and a related one; identification of abstractions, e.g. design patterns,
architectural styles, principles.

Identification of the source of a decision or requirement: identification of
the stakeholder who demanded a particular property; justification of a decision
effort; resolution of a set of contradicting requirements.

Decision support: understanding the influence factors and the goals of a deci-
sion; establishment of proposals for solutions; evaluation of alternative solutions.

Systemn configuration and versioning: identification of constraints between
components; identification of necessary changes to resolve a constraint; identifi-
cation of differences between two versions of the same artefact and their impact
on other ones.

3 Traceability Approach for Design Decision Support

3.1 Architectural Design Decisions for Evolvability

Decision-making and assessment are both critical activities for the suecess of de-
velopment processes because they apply the success criteria. They are performed
during and after work on artefacts. Assessments have to be performed as early as
possible to provide early feedback for developers and to minimize rework. They
provide the means to control iterative development processes.

Elaboration of the criteria for the assessments. In the following, we will ap-
ply evolvability as one criteria for architectural quality in long-term development
projects. It is influenced by an appropriate use of the concepts of abstraction,
delegation, modularization [4], conceptual integrity [5] and separation of con-
cerns [6]. Beside these aspects, there are additional ones related to general issues
of software development processes, such as the availability of a proper set of doc-
umentation. We will focus on the concepts of modularization, encapsulation and
separation of concerns for the assessment of the goal evolvability. Additionally,
the ease of change at architectural level is an important criterion. Problems arise
from effects called scattering, tangling and insulated artefacts, which hamper the
above mentioned criteria and the quality attributes. Based on a traceability ap-
proach and on the set of defined traceability links we introduce indicators (see
section 3.3), which enable us to analyze, reveal and reduce these effects.

Artefact Categories. In our approach, we consider relations between require-
ments, architectural elements and implementation. The key idea is to enable
a tracing of all software elements back to the requirements. According to the
method used for the system development, different artefacts are involved. Within
a feature driven development we consider four types of artefacts: features (F),
architectural components (A), classes (C) and implementation artefacts (I). Ex-
amples for I type artefacts are configuration units.

Typical effects. From a point of view of changeability, a 1:1 relation between
dependent objects is the most effective one (Fig. 1 left). In such a case the change
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of a feature fp requires only the change of the precisely related component ag.
Following all related objects, the ideal but usually not realistic case is that each
object does not have more than two traceability link connections. In this case
the alignment of components to features is possible. It enables minimal invasive
changes, as the features can be exchanged by code compasition.

F A Cc | F A o] | F A (o] |
fo * g, G Iy I, — a,— ¢, — | 12 _: C e A
rd ~3 f

: ) P e
f, —>a8— ¢c,—> | T a— C—* |, f3 / Cug 'l

87 G

Fig. 1. Ideal case (left), feature scattering (center), feature tangling (right).

In practice, more dependencies have to be considered. A high number of de-
pendencies means that more artefacts are affected by a change resulting in a
higher maintenance effort and a reduction of the variability. The two important
types of eflects are discussed using Fig. 1. Feature scattering {Fig. 1 center)
means that one feature f; is implemented by more than one architectural com-
ponent — in this case the components @1, a; and others. In the case of feature
tangling, an architectural component is responsible for more than one feature
(Fig. 1 right) e.g. the implementation of feature fo, f3 and others is tangled in
component ay. If one of these features has to be removed, the component ag
has to be analyzed and split into appropriate parts, with a much higher effort
than just the removal of one component. In order to improve the flexibility of a
system concerning feature variability, all variability points should be aligned in
a way that each of them is related to exactly one optional feature.

Corresponding artefacts depending on the evolution of one feature, e.g., sys-
tem components and classes are related by traceability links. The right part of
Fig. 1 shows an example: the class traceability enables a discrimination between
the relation of ¢3 and f» (indicated by a solid arrow) from the one between ¢4 and
f3 (dashed arrow). An impact analysis for feature-related changes is facilitated
by this discrimination.

3.2 Types of traceability links and artefacts

In the following, we will show a cutout from an industrial IT infrastructure
project for illustration purposes. For the chosen cutout it is not necessary to
consider implementation artefacts. The set of features F and the considered
subset F C F' hoth are contained in the feature model. The set of architectural
software components A and the considered subset A C A are part of the archi-
tecture model. The set of classes C and the considered subset € C C are part of
the realization (design) model. The traceability links, which are required for the
later evaluation by the indicators (section 3.3) are defined in Table 1.

42 of 120 ISBN 978-82-14-04396-9



Defining a Traceability Link Semantics for Design Decision Support 5

Traceability Cat-|Traceability-Link- |Link-Source [Link- Link-Symbol
egory Type Destination
Component implemented By Feature Component |f ~ A
Traceability
Class Traceabil-{implemented By Feature Classes f~C
ity
Component Re-|use Component (Component |a +— A
quire Relation
Table 1. The used set of traceability links.

Component Traceability. Each component contributes to a set of require-
ments. Such a relationship is expressed by the implementedBy traceability link
pointing to components that implement a set of features.

Class Traceability. Software components consist of a set of classes and vice
versa a class ¢ is related to exactly one software component in order to imple-
ment at least one part of a feature. For classes the same traceability link type
implementedBy is used as for features and components.

Component Require Relation. Similar to class traceability this kind of use of
traceability links describes the relationship between two components in which
one component needs the others to implement the related feature.

3.3 Metrics for evaluation: Scattering and Tangling

The above defined traceability links are used to establish indicators — often called
metrics — which enable us to evaluate architectural design decisions regarding
the quality attributes for evolvability. The indicators are accompanied by actions
for problem resolution and explained in the following, whereas section 3.4 illus-
trates their application during the evolutionary development. Due to the space
limitation, the insulated features effect cannot be discussed here. The traceabil-
ity link based indicators defined here, together with a variety of other indicators
[11] are applied for design decision support and architectural evaluation.

Feature Scattering. Feature scattering affects the evolvability of a system
because the change of one feature demands changes of more than one compo-
nents, thus leading to higher effort and to a higher probability of mistakes than
in the ideal case. On the architectural level, feature scattering refers to a rela-
tion between one feature and more than one components. In order to avoid a
division by zero while calculating the feature scattering indicator, all insulated
features and insulated components have to be removed before. The traceability
link type necessary for the indicator is indicated within the definition using the
traceability link symbol defined in Table 1.

Definition: Feature Scattering Indicator
fsca is based on a € A, f € F and is defined as follows:

sca(f):=|{a: f~a}| -1, and (1)
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ZFsca (f)
fsca (F) = fTFJW’ Fsca€[0,1). (2)

The more features are scattered into components, the worse the evolvability of
the software gets and the closer the result of the indicator moves to 1. The
maximum value of 1 is reached if |a| approaches infinity and each feature f € I
is implemented by all a € A.

Resolution: Reducing feature scaltering

A reduction of the feature scattering could be achieved (a) by splitting up
the features into several ones starting with the feature with the highest value
for sca(f), (b) by merging components to reduce the number of involved
components.

Feature Tangling. Feature tangling refers to relations between more than
one feature and one component. In order to avoid a division by zero while cal-
culating the feature tangling indicator, all insulated features and insulated com-
ponents have to be removed before.

Definition: Feature Tangling Indicator
The Feature Tangling Indicator flang is defined as follows for a € A:

tang (a) = |[{f € F: f ~ a}| -1, and (3)
§4tang {(a)
ftang (A) := AT Sftang € [0,1). (4)

The more features are tangled to one component, the more difficult is the adap-
tation of this component and the closer is the result of the indicator to one. The
maximum value of 1 would be reached if |f| would approach infinity and each
component a € A would implement all features f € F. An example for ftang is
shown in section 3.4

Resolution: Reducing feature tangling

A reduction to the feature tangling effect could be achieved by (i) splitting
up the component starting with the highest number of tang (a) into several
components, each with a reference to the corresponding feature, or (ii) by
merging features to reduce the number of involved features.

3.4 Illustrating Example

We illustrate the application of our traceability approach by evaluating the archi-
tectural solution of an Administration System (ADS) part of an IT-Infrastructure
by using the indicators defined in the previous section. We will examine one de-
velopment iteration (we call it evolution step) and its rework. The goals are
evolvability and the ease of change on architectural level in order to support
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variability. Due to space limitations only a part of the IT infrastructure project
is visible in the example.

Evolution Step. All three features User and Application AManagement and
Datastore Adaptability are implemented at the levels of features, architecture
and classes. The feature Application Management allows to manage all appli-
cation specific information, whereas the feature User Management allows to
manage all user specific information of the IT infrastructure. As shown in Fig.
2, traceability links are used to express the dependencies between these models.

Evolution Step
__Feature Model |_Architecture Model Realisation Model

wimplementedBy» . «ImplementedBy}
sos T || 2 -,_
tration I
/“l" User |»’ {UsarSn
| Datastore User
| Adaptability | M unrManagur
Husulls - e Mandatory Faatura Dn!uslnmAccess CDHW!NE!I'

A|F HtangJ fsca |Varlabliity| —oOptional Featurs
3 213 1 1] ] limited | -~ Tracaabllity Link |AccussProvlder f%{Oh[ectProvider‘
-—»Use-Relatlon
Rework of the Evolution Step

Feature Model Architecture Model

Realisation Model
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agcomponent» £
usarservico

1 Datastore User

1
Adnpmbillty ‘Manngnmnnt

«components&l| |
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I

! «implementedBy» L 1 !
1

H I

«QEMn

Results: v laimplen
[A | F [ttang] tsca [Variabillty | ’—Vudaa\rm:n—%
[a 3] 0 | o [ flexiblo | ataaccese

Fig. 2. The evolution step (above) and its rework (below).

Change operations within each evolution step are recorded by traceability
links. A feature tangling effect is revealed by three traceability links starting
from each feature to the component administration. As defined in Table 1 there
are two types of traceability links, use between components and implemented By
links between features and components as well as classes. Additionally, relations
between classes are considered.

The evaluation results using the indicators are summarized in Fig. 2 in small
tables at the lower left. The result ftang = 2/3 indicates that there is a tan-
gling between the features and the architectural component, which hampers the
evolvability of the ADS system. In addition to evolvability it is important to
achieve a high flexibility regarding changes of features. To support variability
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al architectural level, the components shall be used independently; and the cus-
tomers can select a random set of optional features, e.g. User Management or
Application Management and their combination. The application of the indi-
cators reveals that the system has a limited variability because of the feature
tangling: the two features User and ApplicationManagement have to be de-
ployed even if only one is needed. In this case the component administration
consists of classes from both features, as indicated in Fig. 2 by corresponding
shades of grey. With the resolution actions these limitations will be resolved by
the following rework.

Activities for improvement. The tangling has to be eliminated by splitting the
component administration into three architectural components. The traceabil-
ity links indicate that a decomposition into components related to features is
possible. The result of the resolution actions is presented in the lower left of Fig.
2. Comparing the results of the evolution step with those of the rework shown
in the tables, we state a resolution of the feature tangling from ftang = 2/3
down to ftang = 0. As a result of the rework it is possible to use all optional
features without an overhead effort for configuration. However, the success with
this variability goal causes a dependency between the components.

4 Development of a Link Meta Model and a Link
Semantics for Design Decision Purposes

The definition of the traceability link semantics - together with the definition of
a metamodel - has a big influence on the resulting overhead effort for the link
maintenance and management. Following the goals of effort minimization, the
definitions are as lightweight as possible. This leads to link semantics with as
few as possible, but as many as necessary aspects covered.

We have discussed only a very small subset out of the bandwidth of trace-
ability link utilizations as mentioned in section 3. However, we are able to give
application details within the space limitations of this paper. Even if the es-
tablished link metamodel will have a limited scope, our procedure provides an
example for the development of traceability link frameworks based on the in-
tended ways of utilization.

For the design decision support regarding evolvability we only need links of
the types implementedBy and use. As explained in section 3, only links between
artefacts of the type feature, component and class are evaluated for a calculation
of the indicators. Information about the source and the destination of each link
is sufficient for this purpose. For the establishment and the evaluation of dif-
ferent alternatives for design decisions, additional traceability links are required
to evaluate the priority of competing design goals. These links connect compo-
nents and classes to features and are of the type implementedBy. As additional
information, these links carry design decisions about the way in which influence
factors are considered. During the mentioned activities for improvement, new
traceability links are established however they do not cover more information or
additional types than already mentioned.
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Defining a Traceability Link Semantics for Design Decision Support 9

The necessary information for the traceability link can be represented in a
metamodel definition. Due to the limited scope we expect less information than
mentioned in works with a broader scope, e.g. our earlier work [2]. The resulting
definition is expressed using UML as a metamodel as shown in Fig. 3.

choice

- Ly Aok decisi 1 :;"Srtlzzfunclﬁe
startElement : ModelElement | CeCHSIon A0

endElement : ModelElement 1/ LinkType
developer: String %kType [name: Sting____|

alternatives ‘
SolutionAlternative

solution: String

Fig. 3. Traceability Link Metamodel.

The semantic information is covered by the definitions of the link types and
artefact types, as well as by the rules which apply to the links. We can distin-
guish rules at different levels: regarding context-free syntax, context-sensitive
syntax, static and dynamic semantics. Rules regarding dynamic semantics are
not considered so far. As examples, we mention a few rules related to syntax:
1. Each feature is related to one or more compaonenis by an implementedBy link.

2. Each component is related to one or more classes by an implementedBy link.
3. Each component is related to one or more features by an implementedBy link.
4, Each class is related to one or more components by an implementedBy link.

The rules for link semantics express design rules. We can distinguish rules
of different categories: (a) Very general rules representing general engineering
principles, e.g. decomposition and abstraction, (b) method-specific rules, e.g. a
rule about the mapping of non-functional goals to functional solution principles
according the architectural method by Bosch [1], and (c) domain-specific rules,
e.g. a rule which type of response is valid for a certain type of event in a specific
telecommunication protocol. We have to state, that only a few rules have criteria
which are precise enough to enable clear statements. They can be implemented
in tools for an automatic evaluation and verification of models. Most of the
precise rules belong to the syntax-related ones. Unfortunately most semantic
rules cover less strict criteria; therefore they provide only degrees of fulfillment
between true and false. They can be used for human inspection only, but they
provide valuable hints and enable a reduction of the search space. Therefore they
increase the efficiency of an inspection by reducing the effort and by enabling a
concentration and an increased precision.

We just want to mention that there is another type of rules frequently called
heuristics which have even less clear criteria. They are used for other ways of
link utilization e.g. for impact analysis which are out of the scope of this paper.
They are applied e.g. for controlling how far links are tracked and to what level
of detail links are maintained, depending on an actual risk.

47 of 120 ISBN 978-82-14-04396-9



10 Robert Breina and Matthias Riebisch

5 Conclusion and Future Work

In this paper we have shown the application of traceability links for the support
of architectural design decisions. Evolvability was considered as an example of
a quality property of architectures. By an example it was shown how links have
to be defined in terms of syntax and semantics, to provide the best support for
architectural decisions. Even if the purpose is in some way specific, the procedure
can be expanded to further ways of link utilization.

The idea of model-based development behind our research aims the coverage
of all necessary information in models and the used traceability links. One could
dispute that this leads to heavy-weight development processes with a high mod-
eling effort, but a strong restriction to the necessary parts of information and
an exhaustive utilization of the models helps to increase the overall efficiency.
The next steps of our work include the investigation of the necessary adoptions
for other ways of link utilization including a refinement and a revision of the de-
fined link semantics, the evaluation of applicability of these link definitions for
the other utilization activities, and the extension of the rule set during empirical
research. The link definitions represent a prerequisite to the development of a
comprehensive tool support to provide a (partly) automated link management.
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Abstract. Model-Driven Engineering involves the application of many differ-
ent model management operations, some automated, some manual. For devel-
apers 1o stay in control of their models and codebase, trace information must be
maintained by all model management operations. This leads to a large number
of trace links, which themselves need to be managed, queried, and evaluated.
Classifications of traceability and trace links are an essential capability required
for understanding and managing trace links. We present a process for building
traceability classifications for a variety of widely used and accepted operations
(both automated and manual) and show the results of applying the process to a
rich traceability context.

1. Introduction

Traceability is the ability to chronologically interrelate uniquely identifiable enti-
ties in a way that matters. The IEEE Standard Glossary of Software Engineering Ter-
minology [IEEE 2004] defines traceability as “the degree to which a relationship can
be established between two or more products of the development process, especially
producis having a predecessor-successor or master-subordinate relationship to one
another; for example, the degree to which the requirements and design of a given
software component match.” Thus, traceability refers to the capability for tracing arte-
facts along a set of chained operations, where these operations may be performed
manually (e.g., crafting a software design for a set of software requirements) or with
automated assistance (e.g., generating code from a set of abstract descriptions). In the
context of Model Driven Engineering (MDE), many of the artefacts of interest are
models, conforming to a metamodel, and are constructed using a set of modelling
tools. Traceability in MDE is therefore predominantly concerned with chronologically
defined relationships involving models and elements of models. The relationships
between models are often called trace links [Olsen 2007]. However, when applying
MDE, we start development of models from other kinds of artefacts: informal, natural
language descriptions of requirements, spreadsheets, etc. Traceability needs to con-
sider these artefacts as well, in terms of how models can be traced to other (non-
model) artefacts and how (non-model) artefacts can be traced to models.
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Generating and maintaining traceability information is important in order to help
control the wealth of different artefacts in the development process: as systems be-
come more complex, and as the application of MDE techniques within a process be-
comes more in depth, the need for better management of MDE artefacts increases.
Traceability helps us to understand the many dependencies that exist between MDE
artefacts. If we are able to support end-ro-end traceability—that is, between all arte-
facts developed and generated in an MDE systems development process—then we
can support a variety of different kinds of analysis; for example, showing that a re-
quirement is fulfilled in implementation or showing that artefacts are up to date.

In a realistic MDE context, it is likely that a large amount of traceability informa-
tion will be generated or created; understanding and managing this information will
therefore be challenging, and will require structure to be imposed in order to under-
stand the most appropriate ways to manage it. Traceability information can be better
understood and managed through the help of a traceability classification. Several
classifications have been published (e.g., for requirements engineering) [Ramesh
2001, Limon 2005, Walderhaug 2006]; these vary from abstract, conceptual classifi-
cations that help to systematise our understanding of the traceability problem domain,
to concrete classifications (or traceability metamodels) that help to manage trace in-
formation in an implementation. Our focus in this paper is on the process of building
traceability classifications, and on using this to classify both manual and automated
MDE operations, thus helping to enable the full vision of end-to-end traceability.

The structure of the rest of the paper is as follows. In Section 2 we briefly review
related work. In Section 3 we sketch a simple process for building traceability classi-
fications. In Section 4 we outline how we have applied the process to build a trace-
ability classification for the MODELPLEX, project, encompassing both manual and
automated trace links.

2. Related Work

Different styles of traceability classifications have been presented in the literature. In
particular, classifications given in terms of scenarios of use of traceability are postu-
lated by [Olsen 2007, Walderhaug 2006]. Classifications in terms of specific domains
have been produced by [Ramesh 2001] for requirements engineering, and for business
applications [Rummler 2007].

Traceability classifications in MDE have been developed that emphasise different
attributes or characteristics of traceability. In particular, two categories of classifica-
tions can be identified in the literature: classifications that focus on explicit trace links
(which are captured directly in models themselves using a suitable concrete syntax),
and implicit trace links where trace information is generated or arises due to applica-
tion of one or more model management operations. The classification we build in
Section 4 includes both explicit and implicit trace links.

More generally, traceability has been identified as an important research issue. The
European project AMPLE, focusing on Aspect-Oriented and Model-Driven product

i hitp://www.modelplex.org/
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line engineering aims to support traceability across software product lines [Rummler
2007]. The Grand Challenges in Traceability report [GCT 2006] identifies a number
of challenges for managing and maintaining trace information, including evolution of
trace information, trace link semantics, and eliciting trace knowledge.

Many trace tools have been developed for managing trace information. Some of
the most well-known and widely used include Reqtify [ChiasTek 2007], RequisitePro
[IBM 2007], and Acceleo Pro [Obeo 2007]. An approach to trace link generation has
been presented by Egyed [Egyed 2003], who presents a trace tool that automatically
derives traces from code through requirements. [Kolovos 2006] presents support for
trace links where trace information is stored separate from the model; [Jouault 2005]
outlines a loosely coupled trace scheme for model transformations,

3. A Traceability Classification Process

As suggested by the related work presented in Section 2, a number of traceability
classifications have been presented, but there is little guidance yet on how to system-
atically build and maintain them (ranging from conceptual models to concrete meta-
models). A demonstrated process for building traceability classifications is useful for
this, not only for building classifications in the first place, but for maintaining classi-
fications as new MDE operations, new relationships between MDE artefacts, and new
stakeholder requirements, arise. In order to support this, we first describe a very sim-
ple process for building and maintaining traceability classifications, and then in the
next section we use it to develop a classification for the stakeholder requirements of
MODELPLEX.

The simple process is called the Traceability Elicitation and Analysis Process
(TEAP). 1t is derived from a process developed in [Chan 2005] for elicitation and un-
derstanding different forms of model-based contracts. The aim of TEAP is to elicit
and analyse traceability relationships in order to determine how they fit into a trace-
ability classification. While eliciting new traceability relationships, we improve our
understanding of the key attributes of these traceability relationships: the artefacts
they involve, their semantics, and their domain of applicability.

When applying TEAP, we typically bootstrap from a simple traceability classifica-
tion or metamodel, and iteratively and incrementally refine the classification through
a number of TEAP cycles. Each cycle in the TEAP enriches the existing classification
in terms of one or more key attributes of interest.

TEAP is a triggered process, in which there are three main activities in each itera-
tion: Elicitation, Analysis, and Classification. In elicitation, we identify basic trace
links and relationships. In the second phase, we extrapolate from these the key charac-
teristics of traceability (based on our current understanding) and as a result of this
analysis, identify constraints on relationships and any generalisations of relationships
and trace links. In the third phase, we build a classification. From this, we can itera-
tively enrich, refactor, and improve the classification, for example when customer
requirements dictate.

TEAP is intended for use in building new classifications and for maintaining clas-
sifications. The classification we describe for MODELPLEX is generic, and may be
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useful in a variety of settings — however, it can and will be extended over the duration
of MODELPLEX, and TEAP can be used to support this.

TEAP is derived from the spiral software development model, due to Boehm, and
the spiral model in requirements engineering. The main difference is that TEAP pro-
duces metamodels and classifications, rather than software or requirements. The ad-
vantage of defining and using TEAP is that it gives extensibility to its product. This is
essential in providing a generic, flexible framework for classifying and managing
traceability. In other words, the traceability classification can be kept up-lo-date by
carrying out additional TEAP cycles.

As mentioned earlier, TEAP is a friggered process; we can identify when TEAP
cycles should be executed. The triggers for executing TEAP cycles include:

e anew model management operation has been defined, in which case cycles
should be executed in order to refine the classification

e the system development process has changed; thus cycles should be executed
in order to refine how to handle sequences of model management operations,

e one or more modelling languages have changed to include new model rela-
tionships, artefacts, or changed model relationships, in which case cycles
should be executed to refine and extend the explicit link classification.

e The existing classification does not capture all requirements for traceability
inherent in a domain or project context.

The TEAP process is meant to provide guidance, not to dictate the way in which
the traceability classification must be extended and refined.

4. Example: Building the MODELPLEX Classification

In this section we outline how we used TEAP (from Section 3) to build a conceptual
traceability classification for use in the MODELPLEX European project. We start
with a very short overview of the traceability requirements for MODELPLEX, then
summarise a few iterations of TEAP applied to these requirements.

4.1 MODELPLEX traceability requirements

MODELPLEX is a three-year integrated project funded by the European Commis-
sion, with a mandate to improve productivity in the development of complex systems
through use of MDE. The project is case-study driven, with four industrial partners -

SAP, Telefonica, Western Geco, and Thales Information Systems - providing real

complex system scenarios, to which MDE technology (e.g., architectural modelling,

model transformation, performance analysis, simulation, model composition) is to be
applied. Each case study has traceability requirements. These can be summarised as:

o the ability to record traceability information that results from applying model
management operations: model-to-model (M2M) transformations, model-to-text
(M2T) transformations, compositions, simulations, and refinements;

e the ability to manually create trace links between MDE artefacts, e.g., between an
architectural model and a use case model, between a weaving model and a design
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model. Manual creation of trace links can involve modelling tools, or the use of a
textual domain-specific language tailored for one or more of the case studies;

e the ability to (typically manually) create trace links between MDE artefacts (e.g.,
models) and non-MDE artefacts (e.g., requirements stored in a MANTIS reposi-
tory, PDF documents). This is a necessary requirement as some of the
MODELPLEX partners do not currently use MDE technologies in their everyday
practice; moreover, non-MDE artefacts will always play a substantial role in the
MDE process, €.g., for early requirements elicitation and description.

o the ability to store and retrieve trace links and trace metadata from a repository.

We decided to initially produce a conceptual traceability classification that ad-
dressed the basic information that needed to be recorded for the first three sets of re-
quirements above. This would then be refined and implemented in a traceability tool,
which also provided repository features.

4.2 Basis for TEAP iterations

To apply TEAP, we initially constructed simple traceability infrastructure that would
evolve over the TEAP iterations. This infrastructure is depicted in Fig. 1. It is, effec-
tively, a very simple traceability metamodel that expresses the fundamental concepts
of artefacts, trace links, and operations. We specialise this model in the following
subsections. Arfefacts may be both MDE artefacts (e.g., domain-specific models) and
non-MDE artefacts (e.g., spreadsheets), and operations (either manual or automated)
elaborate the traceability information to be recorded. Finally, the different kinds of
trace links will be discussed in the following sections.

consumes b
Artefact produces Oporation
1.2
source
* target
Trace Link generales

Fig. 1: Basic traceability classification infrastructure

The classification in Fig. 1 is generic, and could thus be used to produce a variety
of specialised traceability classifications for different domains and contexts. In each
case, TEAP can be used to maintain and extend the basic infrastructure for new do-
main-specific requirements and contexts.
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4.3 Adding explicit and implicit traceability relationships

We start to extend our simple traceability infrastructure by carrying out TEAP cycles.
Our initial cycle was triggered by the obvious observation that the trace link model in
Fig. 1 did not satisfy all MODELPLEX requirements for traceability. We thus carried
out elicitation (what general kinds of trace links exist?), analysis (what information
did these trace links require?), and built a simple classification. The cycle focused on
the notions of implicit and explicit traceability. Implicit traceability involves trace
links that are created and manipulated by application of MDE operations. Explicit
traceability is defined in terms of trace links that are concretely represented in models.
Therefore, cur initial TEAP cycle was very simple and refines the traceability infra-
structure to that shown in Fig. 2,

consumes 18

Artefact produces Operatlon
s [
saurce
targat
Trace Link generales
Implicit Link Explicit Link

Fig. 2: Explicit and implicit trace link classification

4.4 Iterations for implicit trace link classification

The next cycle was triggered by two observations: the classification of implicit trace
links was weak; and, by obtaining more precise requirements about the operations that
were to be supported in MODELPLEX. We thus carried out a TEAP cycle for im-
proving our classification of implicit trace links. As usual, there is elicitation (what
kinds of MDE operations are relevant?), analysis (what information do operations
require, and how should this information be constrained?), and classification.

MDE operations implicitly define a variety of different trace links between two or
more artefacts (note that many artefacts will be models, e.g., for model-to-model
transformation, but non-model artefacts such as code and requirements may be in-
volved too). An MDE operation takes a set of artefacts as input (if the artefacts are
models, they may be from one or more different modelling languages) and produces a
set of artefacts and a set of trace links as output. Trace links can be recorded either in
the source or target artefacts, or as a separate model [Kolovos 2006]. The basic MDE
operations are elicited from studying the relevant standards—particularly UML,
MOF, and QVT—which indicate how trace links can be generated. The operations we
initially identify are: query, rransformation, composition (sometimes called merging),
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update (also called update-in-place), creation, deletion, model-to-text, and sequences
of operations. The resulting classification (focusing strictly on subclasses of Implicit
Link from Fig. 2) is shown in Fig. 3. As well, new operations (subclasses of Opera-
tion) are added for each, e.g., Query Operation, Delete Operation, etc.

Implicit Link

N R

Updata Link Quory Link | |Creation Link M2M Link MZT Link Composition LinK |Deletion Link

Fig. 3: Additions for implicit trace links

Examples of the well-formedness constraints elicited and produced in the analysis
phase are shown below.

context QueryOperation inv:
self.consumes->forAll (a |
self.generates->exists (t | t.source->includes(a) and
self.produces->includesAll ( t.target )));
self.generates->forAll( t | t.oclIsTypeOf (QueryLink))

context CreationOperation inv:
self.consumes->isEmpty () ;
self.generates.target->includesAll (self.produces};
self.generates->forAll( t | t.oclIsTypeOf (CreationLink)});

4.4 Iterations for explicit traceability relationships

We next carried out a TEAP cycle for improving our classification of explicit trace
links. This cycle was triggered by refined MODELPLEX requirements for explicit
representation of trace information in models and in domain-specific languages. Re-
call that explicit trace links are explicitly defined between artefacts, using one or more
languages. For example, a UML dependency constitutes a specific kind of explicit
trace link. Obviously, there are many different kinds of explicit trace links, and many
of them will be domain specific (and language specific). We illustrate the results of
the TEAP process for MODELPLEX’s explicit trace links. As was the case for im-
plicit trace links, we carry out elicitation (what kinds of explicit trace links are rele-
vant?), analysis (what information do these links require?), and classification.

The initial elicitation and analysis identified two basic kinds of explicit trace links:
model-model links (e.g., the aforementioned UML dependency), and model-artefact
links (e.g., between a model and a spreadsheet). Trace links entirely between non-
model artefacts were determined to be out of scope, and managed by other tools.

The model-model links were then further analysed. These were determined to be
divisible into static links (which represent structural relationships that do not change
over time) and dynamic links, which represent information regarding models that may
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change over time. A variety of both static and dynamic links were collected from
MODELPLEX’s requirements. Some examples of static model-model links are:

o consistent-with links, where two models must remain consistent with each
other, e.g., a sequence and class diagram.

e dependency links, where the structure and meaning of one model depends on a
second. Dependency links can be further subdivided into: is-a links (e.g., sub-
typing), has-a links (e.g., references), part-of links, import and export links,
usage links (e.g., one component uses another’s services), refinement links
(e.g., where a component reduces non-determinism in a second component).

Some examples of dynamic model-model links include: calls links (where one
model calls behaviours provided by a second model), notifies links (where it is neces-
sary to record information that cannot be handled automatically, such as changes that
require human intervention). Furthermore, there are design-time relationships, such as
generates or builds links that indicate where information from one model is used to
produce or deduce the second model; and synchronized-with relationships, where be-
haviours between models are synchronized. These usually apply when there is some
kind of tracking mechanism introduced between models. A further example includes
the consistent-with trace links that can exist between an early requirements specifica-
tion such as those in i*, and models of functional requirements [Alencar, 2000].

Model-artefact links are important in MODELPLEX, to support trace links be-
tween MDE artefacts (including UML models as well as domain-specific models) and
non-MDE artefacts, particularly spreadsheets, requirements databases, and results of
simulations. The scope of model-artefact links is broad, and we did not attempt to
elicit all such links in our classification. We provide important links in
MODELPLEX, while giving a classification that can be extended in the project.

The intent of most model-artefact links is to enable coverage checking, e.g., of re-
quirements. This is the case in MODELPLEX. The trace links of interest in
MODELPLEX were the following:

e satisfies links, to indicate that properties or requirements captured in an arte-
fact are satisfied by a model. Variants on satisfies links include verifies links
(which involve a specific mechanism, such as testing) and certifies links
(which also link to external standards and arguments for safety or security).

e allocated-to links, used when information in a non-model artefact is allocated
to a specific model that represents the information.

e  performs links, indicating that a task described in an artefact is carried out by a
specified model

e  explains and supports links, indicating that, e.g., a model is explained by a
norn-model artefact (e.g., natural language documentation).

These trace links are summarised in Fig. 4 (focusing strictly on the explicit trace

link part of the classification).
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Fig. 4: Summary of explicit trace links

As this brief discussion suggests, the space of explicit trace links is rich and com-
plicated, and encompasses many domain- and language-specific characteristics.

5. Conclusions

We have presented a lightweight process for building traceability classifications, and
illustrated its application to a conceptual classification for the MODELPLEX process.
The classification identifies basic categories of traceability — implicit and explicit -
and populates these categories with trace links from different MDE operations (such
as transformation and query) and from different modelling scenarios relevant to
MODELPLEX. The classification developed above is a living document, and will be
extended iteratively and incrementally over the course of the project. Furthermore, it
will be refined from a conceptual classification to a concrete design that can be sup-
ported in a trace tool that includes a repository and capabilities for retrieving, storing,
and updating trace links.

TEAP has so far proved to be suitably lightweight, yet helpful in guiding the con-
struction and the iterative improvement of traceability classifications. Since most, if
not all, classifications must evolve with time, the value of an iterative and incremental
process for evolving classifications is substantial.
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Abstract, Evolving customer needs is one of the driving factors in software
development. There is a need to analyze the impact of requirement changes in
order to determine possible conflicts and design alternatives influenced by these
changes. The analysis of the impact of requirement changes on related
requirements can be based on requirements traceability. In this paper, we
propose a requirements metamodel with well defined types of requirements
relations. This metamodel represents the common concepts extracted from
some prevelent requiremenis engineering approaches. The requircments
relations in the metamodel are used to trace related requirements for change
impact analysis. We formalize the relations. Based on this formalization, we
define change impact rules for requirements. As a case study, we apply these
rules to changes in the requirements specification for Course Management
System.

Keywords: change impact analysis, requirements traceability, requirements
metamodels

1 Introduction

Change management is a prerequisite for high-quality software development.
Changes may be caused by changing user requirements and business goals or be
induced by changes in implementation technologies. There is a need to analyze the
impact of requirement changes in order to determine possible conflicts and design
alternatives influenced by these changes.

The analysis of the impact of requirement changes on other requirements can be
based on requirements traceability. Requirements relations can be used as trace links
to determine the impact of requirements change. Current trace metamodels and
mechanisms consider relations between model elements mostly without assigning any
semantics. The lack of semantics in trace links causes imprecise results in change
impact analysis and explosion of impacts problem [3].

We propose a requirements metamodel with well defined types of requirements
relations. This metamodel represents the common concepts extracted from some
prevalent requirements engineering approaches. The requirements relations are used
to trace related requirements for change impact analysis. We formalize these
requirements relations. Based on this formalization, we define change impact rules for
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requirements. We aim at more precise analysis with these rules. As a case study, the
rules are applied to changes in the requirements specification for Course Management
System.

The paper is structured as follows. Section 2 gives details of the requirements
metamodel. Section 3 gives the formalization for the requirements relations and
consistency constraints. In Section 4, we describe the change impact rules derived
from the formalization of requirements relations. In Section 5, we give a case study to
illustrate the change impact analysis. Section 6 presents the related work. Section 7
concludes the paper and describes future work,

2 Requirements Metamodel

The requirements metamodel contains common concepts identified in existing
requirements modeling approaches [26] [12] [19] [14] [27]. The metamodel in Fig. 1
includes entities such as Requirement, Stakeholder and Relationship in order to model
general characteristics of requirements artifacts.
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Fig. 1. Requirements Metamodel

In this metamodel, all requirements are captured in a requirements model
(RequirementModel). A requirements model is characterized by a name property and
contains requirements instances of the Requirement entity. All requirements have a
unique identifier (D property), a name, a textual description (description property), a
priority, a rationale (reason property), and a status. Requirements may have additional
descriptions (AdditionalDescription entity) such as a use case or any other
formalization. Usually, requirements are classified as functional and non-functional
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requirements. Non-functional requirements may come from required characteristics of
the software (product quality requirements), the organization developing the software
(organizational requirements) or from external sources [22]. Requirements can be
related with each other. We recognize four types of relations: Refines, Reguires,
Conflicts, and Contains. These core relations can be specialized and new relations
may be added as specializations of the Relationship concept. The metamodel includes
the entities Stakeholder, TestCase, Glossary and Term. Test cases are not always
considered as parts of requirements specifications. However, they are important to
validate or verify requirements. Some metamodels [19] [27] consider test cases as a
part of the requirements specification.

3 Formalization of Requirements Relations

In this section, we give the definitions and formalizations of requirements relations in
Fig. 1. These formalizations make it possible to understand various types of
dependency between requirements provided by the requirements relations. This
understanding helps us to specify more precise change impact rules for requirements.
The relations in the requirements metamodel are defined and formalized as follows:

= Definition 1. Requires relation: A requirement R, requires a requirement R, if R, is
fulfilled only when R; is fulfilled. R, can be treated as a pre-condition for R, [27].

= Definition 2. Refines relation: A requirement R, refines a requirement R, if Ry is
derived from R, by adding more details to it [26].

= Definition 3. Contains relation: A requirement R, contains requirements R,..R, if
R, is the conjunction of the contained requirements R,..R,. This relation enables a
complex requirement to be decomposed into child requirements [19].

= Definition 4. Conflicts relation: A requirement R, conflicts with a requirement R, if
the fulfillment of R, excludes the fulfillment of R, and vice versa [25].

The definitions given above are intuitive and informal. In the remaining part of this
section we give a formal definition of requirements and relations among them in order
to derive sound change impact rules.

We assume the general notion of requirement being *“a property which must be
exhibited by a system” [8]. We define a requirement R as a tuple <P, S> where P is a
predicate (the property) and S is a set of systems that satisfy P, i.e. Vs S: P(s).

e Formalization of Requires
Let R, and R; are requirements such that R = <P\, §;> and R, = <P,, S;>. R, requires
R, iff for every s, € S, then s, € S,

From this definition we conclude that §; < S,. The subset relation between the
systems S, and S, gives us the properties of non-reflexive, non-symmetric, and
transitive for the requires relation.

61 of 120 ISBN 978-82-14-04396-9



» Formalization of Refines

Let R, and R; are requirements such that R; = <P, §,> and R, = <P,, S,>. We assume
that P, and P, are formulas in first order logic (there may be formalizations of
requirements in other types of logics such as modal and deontic logic [18]) and P; can
be represented in a conjunctive normal form in the following way:

P2=P1 74N Pz A A pm] A pn A Ch A q: A A qm-l AN qm

Letq', q's, ..., §'m1> q'm are the predicates such that q'; — g for i e 1..m
R, refines Ry iff Py is derived from P, by replacing every ¢; in P, with q'; ie 1.m
such that the following two statements hold:

(a) Pl =P1 A P2 A A P A Pn A q]l A qIZ N i qlm-] A q]m
(b) 3seS,:5e8,

From the definition we conclude that if P; holds for a given system s then P, also
holds for s. Therefore S, C S.. Similarly to the previous relation we have the
properties non-reflexive, non-symmetric, transitive for the refines relation. Obviously,
if R, refines R, then R, requires Ra.

= Formalization of Contains
Let Ry, R; and R; are requirements such that R, = <P, S;>, Ry = <P, S,>, and R; =
<P;, 8;>. We assume that P, and P; are formulas in first order logic and can be
represented in a conjunctive normal form in the following way:
Po=pi Ap2 Ao A Dt A P
P3=pml‘l A Pm+2 A A Pu-1 A Pn
R, contains R, and R; iff P, is derived from P, and P; as follows:
Py =P, A P; A P' where P' denotes properties that are not captured in P, and P
(i.e. we do not assume completeness of the decomposition [26])
From the definition we conclude that if P, holds then P, and P; also hold. Therefore,
S; € S; and §; C S, Obviously, the contains relation is non-reflexive, non-
symmetric, and transitive.

» Formalization of Conflicts
Let R, and R, are requirements such that R, = <P,, §;> and R, = <P,, S,>. Then,

R1 conflicts with R2 iff —3s:5€ 8, As€S,: B(s)A P(s). The conflicts relation is
symmetric.

It should be noted that the definition of requires is given in extensional terms as a
subset relation between the systems that satisfy the requirements. The definitions of
refines and contains are given in intensional terms, that is, they take into account the
form of the requirement specification as a predicate. If we would interpret refines in
an extensional way then we will conclude that regquires and refines are both
interpreted as a subset relation and therefore are equivalent. Apparently in our
formalization, refines and requires are different.

Several constraints for the consistency of relations can be specified based on the
formalizations of the relations for the requirements metamodel. These inconsistencies
are different from the conflicts relation between requirements. Inconsistencies, here,
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indicate that relations between requirements are violating their constraints. Some of
the constraints for the consistency of relations and their proofs (proof by
contradiction) are given below:

Constraint 1: (R, Refines R;) — — (R; Requires R;)

Proof: Let R, refines R; and suppose R, requires R,. According to the formalization
of the refines relation (R; Refines R,) — (R, Requires R;). The requires relation is
non-symmetric. Contradiction.

Constraint 2: (R, Requires Ry) — — (R Conflicts R,)

Proof: Let R, requires R,, then, by the formalization of the requires relation S; C S..
Suppose R, conflicts R,, then, by the formalization of the conflicts relation
—ds:se 5, AseS, :R(s) A F(s). Contradiction.

Constraint 3: (R, Requires R;) — — (R, Contains R,)

Proof: Let R, requires R,, then, by the formalization of the reguires relation §; C S,
Suppose R, contains R,, then, by the formalization of the contains relation S, C §,.
Contradiction.

Constraint 4: (R, Refines R;) — — (R, Contains R;)
Proof: Let R, refines R;. According to the formalization of the refines relation, q'l,

qlz, . qlm_[, qlm are the predicates such that qli — q; for i e 1..m . Suppose R,
contains R,, then, by the formalization of the contains relation P, = P» A P
Contradiction.

Constraint 5: (R, Refines R;) —» — (R, Contains R;)

Proof: Let R, refines R,. According to the formalization of the refines relation, q';,
q's ..., Q'm1s Q'm are the predicates such that q'; — q; for i e 1..m . Suppose R,
contains R, then, by the formalization of the contains relation P, = P, A P
Contradiction.

Constraint 6: (R, Refines R;) — — (R; Conflicts R»)
Proof: Let R, refines R,, then, by the formalization of the refines relation S, C §,.
Suppose R, conflicts R,, then, by the formalization of the conflicts relation

—ds:s €S, As €S, B(s) AP (s) . Contradiction.

Constraint 7: (R, Contains Ry) A (R Refines R;) — — (R; Refines Rj)
Proof: Let R, contains R» and R, refines R; then, by the formalization of the contains
and the refines relations:
(ﬂ) Pi=Py A P'
(b) 1:‘3=pl AP2A AP AP AQA QA oA Gmg A O
() Pi\=pi Ap2 A o APog ADn A qlf A qlg A A qlm_l A qlm where q'],
a's, ..., @'me1, q'm are the predicates such that g'; — q;for j e 1..m .
Suppose R; refines R;, then, by the formalization of the refines relation:
(@ Pi=pi AP A o AP AP AGAQRA oo Adm A G
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(b) P_".’=pl A] P2 /’\’ vo AN Ppag A Pn A qzl A (]22 /:\ e A qzm-l A q2m where qzl:
q2 -.-» @'m-1,  m are the predicates such thatq; — qiforie 1.m .
Since P, =P, A P', P, includes all predicates in P,. Contradiction.

These constraints above are derived from the formalization of the relations. There
may be other types of constraints which originated from domain. For instance, one
product quality requirement requires at least one functional requirement in the
requirements model since product quality requirements come from the required
characteristics of the software. These kinds of constraints are not explicitly stated in
the requirements metamodel in Fig. 1. These can be defined using the OCL (Object
Constraint Language) [30]:

-- all product quality reguirements require at least one functional
-- requirement
context ProductQualityRequirement
inv: fromSource->size(}>0 and
fromSource->forAll (rl|rl.oclIsTypeQf (Requires) and
rl.target->forAll (rqg|rq.ocllsTypa0f (FunctionalRequirement) )

oy W N

In [7], we propose a prototyping that can perform reasoning on requirements that
may detect implicit relations and inconsistencies on the basis of the formalization of
relations and constraints. We also propose an approach for customizing the
requirements metamodel in order to support different requirements specifications.
Furthermore, our approach for customization keeps the semantics of the core concepts
intact and thus allows reuse of tools and reasoning over the customized metamodel.
We express the metamodels as OWL [5] ontelogies. The composition operator is also
expressed in OWL since this language allows direct mapping from set operations to
language constructs. By using OWL we can use the reasoning capabilities of the
ontology tools. We specified OWL [5] ontologies for each metamodel with Protégé
[6] environment. Inference rules were expressed in SWRL [10]. The rules to check
the consistency of relations were implemented as SPARQL [24] queries. The
inference rules are executed by Jess rule engine [11] available as a plug-in in Protégé.
To reason upon the requirements, the user specifies them as individuals (i.e.,
instances) in ontology. The inference and consistency checking rules are executed on
this ontology.

4 Change Impact Analysis based on the Formalization of
Relations

In this section, we give change impact rules for requirements based on the formalism
of requirements relations. A change introduced to a model element can be in one of
two phases [4]: “4 proposed change implies that impact analysis should be performed
fo determine how change would impact the existing system, whereas an implemented
change implies that all impacted artifacts and their related links should be updated to
reflect the change”. In this paper, we aim at giving some rules to the requirements
engineer about the possible impacts of a proposed requirements change. For the

64 of 120 ISBN 978-82-14-04396-9



change impact analysis we also propose a distinction for impacted elements and
candidate impacted elements: “A candidate impacted element is the element identified
as possibly impacted by a proposed change and it should be checked”. Another
classification for impacted elements is direct/indirect impact. A direct impact occurs
when the model element affected is related by one of the dependencies that fan-in/out
directly to/from the changed model element [3]. An indirect impact occurs when the
element is related by the set of dependencies representing an acyclic path between the
changed and effected elements [3]. This type of impact is also referred as an N-level
impact where N is the number of intermediate relationships. We propose step by step
process to analysis the impacted elements. Requirements engineer first consider the
directly impacted elements by using the impact rules with tool support, then do the
changes in the impacted elements if needed. The previous indirectly impacted
elements in 2-level impact are directly impacted elements in the second step. N-level
impact analysis can be done by processing direct impact N-times in this way. These
classifications for impacted elements are orthogonal. Table 1 gives the classification
of impacted elements in the context of requirements modeling.

Table 1 Classification of Impacted Elements in the Context of Requirements Modeling

Directly Impacted Elements Indirectly Impacted Elements
Candidate All relations and requirements in 1- | All relations and requircments in N-level
Impacted Elements | level impact should be considered | (N > 1) impact should be considered to be
to be updated. updated.
Actual  Impacted | All relations and requirements in 1- | All relations and requirements in N-level
Elements level impact are impacted and they | (N > 1) impact are impacted and they
must be updated, must be updated.

There are two types of changes in the requirements model:

o  Changes in the requirements entities
o A new requirement is added.
o A requirement is deleted.
o A requirement is modified (one or more of the predicates are deleted, or

new predicates are added, or both)

e  Changes in the requirements relations
o A new relation is added.
o A relation is deleted.
o A relation is modified (type of the relation is changed)

Modifying a requirement is mainly about changing the text of requirement which is
depicted by ‘description’ attribute of the Requirement entity in Fig. 1. There are other
attributes of the Requirement entity such as ‘name’, ‘priority’, ‘status’ and ‘reason’.
However, we do not take into account changes in these attributes of a requirement in
the paper. Since the Relation entity has only a type, changes in relations is only about
changing types of the relation. Table 2 pives the change impact rules for
requirements.
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Table 2. Change Impact Rules for Requirements

Case 1 Case 2 Case 3 Case 4
R1 contains R1 refines R2 RI requires R2 | R1 conflicts R2
R2 and R3
suba.| Rlis R2 and R3 are the R2 is not R2 is not R2 is not
deleted candidate impacted | impacted. impacted. impacted.
requirements. The refines The relation is The conflicts
The relation is relation is impacted and it relation is
impacted and it impacted and it must be deleted. | impacted and it
must be deleted. must be deleted. must be deleted.
subb.| R2is R1 and R3 are R1 is the candidate | R1 is the R1 is not
deleted candidate impacted | impacted impacted impacted.
requirements, requirement. requirement. The conflicts
The relation is The relation is The relation is relation is
impacted and it impacted and it impacted and it impacted and it
must be deleted. must be deleted. must be deleted. [ must be deleted.
sube. | R1is R2 and R3 are the R2 is not R2 is not R2 is not
modified | candidate impacted | impacted. impacted. impacted.
requircments. The relation is the | The relation is The conflicts
The relation is the candidate the candidate relation is the
candidate impacted | impacted relation. | impacted candidate
relation. relation. impacted relation,
subd,| R2is R1 and R3 are the R1is the candidate | R1 is the R1 is not
modified | candidate impacted | impacted candidate impacted.
requirements. requirement, impacted The relation is the
The relation is the The relation is the | requirement. candidate
candidate impacted | candidate The relation is impacted relation.
relation. impacted relation. | the candidate
impacted
relation.
sube. | NewR If R is a Product IfR is a Product IfR is a Product | If R is a Product
added Quality Quality Quality Quality
Requirement then Requirement then | Requirement Requirement then
R1,R2,andR3 are | RI,R2and R3are | thenR1,R2,and | R1,R2, and R3
candidate candidate R3 are candidate | are candidate
container container container container
requirements for requirements for R | requirements for | requirements for
R. R R.
sub f, | Relation | There is no There is no There is no There is no
between | impacted impacted impacted impacted
R1and requirement., The requirement. The requirement. The | requirement. The
R2is relations inferred relations inferred relations inferred | relations inferred
deleted from it are the from it are the from it are the from it are the
impacted relations. | impacted relations. | impacted impacted
relations. relations.
sub g.| Relation | Thereis no There is no There is no There is no
between | impacted impacted impacted impacted
R1 and requirement, The requirement. The requirement. The | requirement. The
R2is relations inferred relations inferred relations inferred | relations inferred
modified | from it are the from it are the from it are the from it are the
impacted relations. | impacted relations. | impacted impacted
relations. relations.
sub h.| New There is no There is no There is no There is no
relation impacted impacted impacted impacted
is added | requircment, requirement. requirement. requirement,
to R1
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It should be noted that we only consider direct impacts for the change impact rules
given in Table 2. We derive the change impact rules given in Table 2 from the
formalizations of relations. Due to space limitation, we only explain some of them in
the following.

Case 2 sub a: R, is deleted while R, refines R,

Impact: Let R, refines Ra, then, by the formalization of the refines relation q'l, qlg,
voes Q'me1> Q'm are the predicates such that q'; — q; for e 1..m . Deleting R; means
deleting the predicates of R, including q';, q's, ..., @'m1, @'m. This change does not
imply any impact on the predicates of R;. We conclude that R; is not impacted. Since
there should not be any dangling relation in the model, the refines relation is impacted
and it must be deleted.

Case 2 sub b: R; is deleted while R, refines R,

Impact: Let R, refines Ra, then, by the formalization of the refines relation q', g'a,
caiy C]]m_1, qlm are the predicates such that q]i — q; for i e 1..m . Since R, includes
more general predicates (q'; — q;), deleting the predicates of R, including p; and g;
may imply that the predicates (p; and g';) in R, are impacted, We conclude that R, is
the candidate impacted requirement. Since there should not be any dangling relation
in the model, the refines relation is impacted and it must be deleted.

Case 3 sub b: R; is deleted while R, requires R,

Impact: Since the definition of requires is given in extensional terms as a subset
relation between the systems that satisfy the requirements, for every s, € S; then s,
S> when R, requires R,. Deleting the predicates of R; may imply deleting or changing
some of the predicates of R;. We conclude that R; is the candidate impacted
requirement. Since there should not be any dangling relation in the model, the
requires relation is impacted and it must be deleted.

Case 1 sub ¢: R, is modified while R, contains R, and R;

Impaect: Let R, contains R, and Ry, then, by the formalization of the contains relation
P, =P, A P; A P'. Modifying the predicate P, affects either the equation or the
predicates P, or P;. We conclude that R, or R; are the candidate impacted
requirements and also the contains relation is the candidate impacted relation.

Case 2 sub c: R, is modified while R, refines R,

Impact: Let R, refines R,, then, by the formalization of the refines relation q',, qlg,
vers Q'm1s Q' are the predicates such that q; — q; for i e [..m . Changing the
predicates of R, (p;, q'}) does not affect the predicates of the more general requirement
R, but may have an impact on the refines relation. The refines relation may not be
valid anymore since the predicates of R, and R, may not ensure the formalism of the
refines relation. We conclude that R, is not impacted. The refines relation is the
impacted relation. It should be noted that we assume if there is a change in the general
and refined requirements, requirements engineer always start changing requirements
from the general ones.
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Case 3 sub c: R, is modified while R, reguires R,

Impact: Since the definition of requires is given in extensional terms as a subset
relation between the systems that satisfy the requirements, for every s; € S, then s;
S; when R requires Ry. According to this subset relation R has no implication on R,.
We conclude that R; is not impacted by modifying R,. Since the subset relation may
not be valid anymore, the reguires relation is the candidate impacted relation.

Case 4 sub d: R, is modified while R, conflicts R,

Impact: Since the definition of conflicts is given in extensional terms as an exclusive
disjunction relation between the systems that satisfy the requirements
(—3s:5e8, As5e§,: B(s)AP(s)), the changes in R, has no impact on R,. Since
the exclusive disjunction relation may not be valid anymore because of the change,
the conflicts relation is the candidate impacted relation.

Case 2 sub d: R; is modified while R, refines R,

Impact: Let R, refines Ry, then, by the formalization of the refines relation q'y, q's,
eers Q'm1, G'm are the predicates such that q'i = q for ie 1.m . Modifying the
predicates of R; (p;, q;) may have an impact on the predicates of R, (p;, q';) since there
should be implication relation (q'; — q;) between refined predicates of R, & R,. Or
the refines relation may not be valid anymore. We conclude that R, is the candidate
impacted requirement and refines is the candidate impacted relation.

Case 1 sub d: R, is modified while R contains R; and R;

Impact: Let R, contains R, and R;, then, by the formalization of the contains relation
Py =Py A P; A P'. Modifying the predicate P, affects either the equation or the
predicates P, or P;. We conclude that R, and R; are the candidate impacted
requirements and also the contains relation is the candidate impacted relation.

5 Case Study Course Management System

In this section we apply the proposed approach in a case study. An existing
requirements specification document is represented as a model instance of the
requirements metamodel in Section 2. We also compared the benefits of our approach
for change impact analysis with the benefits of having limited type of relations
provided by some commercial tools such as IBM Rational RequisitePro. RequisitePro
provides only two relations between requirements: traceFrom and traceTo. The
relations in our requirements metamodel (e.g., the refines relation) must all be
mapped to one of those two relations, The case study is about the requirements for
Course Managements System. This system supports the basic facilities such as
enrolling for a course, uploading roster and course materials, grading students,
sending e-mails to students. The system supporis three types of end users:
administrator, student and lecturer. Fig. 2 gives the requirements model of the partial
requirements specification of the course management system. Requirements for the
model can be found in the appendix. Due to the page limitation and to simplify the
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case study, we do not give the whole requirement specification in Fig. 2 and
appendix.
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Fig. 2. Partial Requirements Model for the Course Management System Requirements
Specification

We have three change scenarios (deleting Req6, modifying Req9 and Reql1) in the
requirements model given in Fig. 2 for the following requirements:

Req6. The system shall maintain a list of events the students can be notified about.

Req9. The system shall notify students about the events of the lectures they are
enrolled for.

Req11. The system shall allow lecturers to send e-mail to students enrolled for the
lecture given by that lecturer.

These are some of the change scenarios and impacts of the changes according to
the change impact analysis given in Table 2:

Change 1: Deleting Req6

Impact: For the change in Req6, we consider the outgoing and incoming relations

(Req6 requires Req4, Req3 requires Req6, Req7 requires Req6) of Reg6 and the

requirements (Req4, Req5, and Req7) related to Req6. According to the change

impact rules given in Table 2, we determine the following impacts:

e Req6 requires Req4 (Case 3 sub a): Since the required requirement is not
impacted by deleting the requiring requirement, Req4 is not impacted. There
should not be any dangling relation in the model. Therefore, the requires relation
is impacted and it must be deleted.

e Reql requires Req6 (Case 3 sub b). Since the requiring requirement is the
impacted requirement by deleting the required requirement, Req5 is impacted. It
can not be satisfied by the system without specifying and satisfying Reqg6.

e Req7 requires Req6 (Case 3 sub b): Req7 is impacted. The requires relation is
impacted and it must be deleted.
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The directly impacted elements for change I are Req5 and Req7. The second step is
to determine indirectly impacted elements by change I. The indirectly impacted
elements in the first-step are directly impacted in this step.

e In the first step, we determine that Req5 is impacted by deleting Req6. When we
analyze the impact Req5 can not be satisfied without satisfying Reg6. We also
decide to delete Req5. According to this change, we have the following impact:

o Req’ requires Reqd (Case 3 sub a): Req4 is not impacted. The requires
relation is impacted and it must be deleted.

o  We also determine that Req7 is impacted by deleting Req6. Req7 can not be
satisfied without satisfying Req6. We also decide to delete Req7. We have the
following impact:

o Req7 requires Req8 (Case 3 sub a): ReqR is not impacted. The requires
relation is impacted and it must be deleted.

o Req9 refines Req? (Case 2 sub b): Req? is the candidate impacted
requirement. The refines relation is impacted and it must be deleted.

When we analyze the direct impacts of change ! in RequisitePro, we do not have a

distinction for types of relations. Therefore, we can not eliminate some of the related

requirements to Req6. We identify all requirements (Req4, Req5 and Req?7) related to

Req6 as impacted requirements.

Change 2: Modifying Req9. We have the following requirement by modifying Req9:
Req9. The system shall notify students about the events of school activities and
lectures they are enrolled for,

Impact: For the change in Req6, we consider the outgoing and incoming relations

(Req9 refines Req7, Req9 requires Reql0) of Req® and the requiremnents (Req7 and

Reql0) related to Req9. We determine the following impacts:

°  Req9 refines Req7 (Case 2 sub ¢): Since the refined requirement is not impacted
by modifying the refining requirement, Req7 is not impacted. Modifying the
predicates of Req9 does not affect the predicates of the more general requirement
Req7 but may have an impact on the refines relation. The refines relation may not
be valid anymore since the predicates of Req9 and Req7 may not ensure the
formalism of the refines relation. The refines relation is the candidate impacted
relation.

e Req9 requires ReqlQ (Case 3 sub c¢): Since the required requirement is not
impacted by deleting the requiring requirement, Req10 is not impacted. Since the
subset relation between Req9 and ReqlO derived from the formalization of
requires may not be valid anymore, the requires relation is the candidate
impacted relation.

The candidate directly impacted elements for change 2 are the requires and refines

relations. The second step is to determine indirectly impacted elements by change 2.

When we analyze the modification of Req®, we determine that these two relations are

not impacted actually. Since we do not have any directly impacted requirements and

relations, there are no indirectly impacted requirements and relations.

In RequisitePro, we identify all requirements (Req7 and Reql0) related to Reg? as
impacted requirements when we analyze the directly impacted elements. We can not
identify the candidate impacted relations because we do not have the semantics of
relations.
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Change 3: Modifying Reqll. We have the following requirement by modifying
Reql1: The system shall allow lecturers to send e-mail and sms messages to students
enrolled for the lecture given by that lecturer.

Impact: For the change in Reqll, we consider the outgeing and incoming relations

(Reql1 requires Reql0, Reql3 refines Reqll) of Reqll and the requirements (Reql0

and Reql3) related to Reql 1. We determine the following impacts:

o Reqll requires ReqlQ (Case 3 sub c): Since the required requirement is not
impacted by deleting the requiring requirement, Req10 is not impacted. Since the
subset relation between Reqll and ReqlO derived from the formalization of
requires may not be valid anymore, the requires relation is the candidate
impacted relation.

® Reqi3 refines Reqll (Case 2 sub d): Modifying the predicates of Reqll may
have an impact on the predicates of Reql3 since there must be implication
relation between refined and refining predicates of Ry & R,. Or the refines
relation may not be valid anymore. Reql3 is the candidate impacted requirement
and refines is the candidate impacted relation.

The candidate directly impacted elements for change 3 are Reql3 and requires &

refines relations. When we analyze the modification of Reqll, we determine that

Reql3 is impacted and we should add the feature of sms messages sending to Reql3.

Refines and requires relations which we identified as candidate impacted relations are

still valid for change 3. The new Reql3 is the following: The system shall allow

lecturers to send e-mail and sms messages to students in the same group.

The second step is to determine indirectly impacted elements by change 3. Since the
only impacted requirement is Reql3, we analyze the impacted elements for Reql3:
o Reql3 requires Reqi2 (Case 3 sub c¢): Since the required requirement is not
impacted by deleting the requiring requirement, Reg/2 is not impacted.
requires relation is the candidate impacted relation.

In our approach, we can eliminate Reql0 as not impacted but this requirement
should be checked in RequisitePro since we identify all requirements (Reql0 and
Req13) related to Reql1.

6 Related Work

Several authors address change impact analysis in the context of requirements
modeling. In [27], a metamodel and an environment based on requirements are
described. The tool supports graphical requirements models and automatic generation
of Software Requirements Specifications (SRS). Their tool supports checking
constraint violations for requirements models. However, they do not give any formal
definition for their requirements relations and they do not support change impact
analysis upon requirements and their relations.

Some authors [9] [23] use UML profiling mechanism for goal-oriented
requirements engineering approach. Heaven et al. [9] introduce a profile that allows
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the KAOS model [26] to be represented in UML. They also provide an integration of
requirements models with lower level design models in UML. Supakkul et al. [23] use
UML profiling mechanism to provide an integrated modeling language for functional
and non-functional requirements that are mostly specified by using different
notations. None of these study the formalization of relations and change impact
analysis for requirements.

Ramesh et al. [20] propose models for requirements traceability. Models include
basic entities like Stakeholder, Object and Source. Relations between different
software artifacts and requirements are captured instead of relations between
requirements.

In [21], an approach is proposed to define operational semantics for traceability in
UML, which capture more precisely the intended meaning of various types of
traceability. They claim that it will enable richer tool support for managing and
monitoring traceability by making use of consistency checking technology. They
define the semantic property of a traceability relationship with a triplet (event,
condition, actions). Although they do not focus on a specific domain, their results are
valid for change impact analysis on requirements models. Walderhaug et al. [29]
propose a generic solution for traceability that offers a set of services that is meant to
cover both specification and appliance of traceability. Their solution is specified as a
trace metamodel with guidelines and templates. Van Gorph et al. [25] illustrate the
need for developer tolerance of inconsistencies. This motivates the use of fine-grained
consistency constraints and a detailed traceability metamodel. They are interested in
managing inconsistencies between different model artifacts. However, they do not
provide any techniques to determine the impacts within 2 model. Albinet et al. [1]
explain how to define requirements according to a proposed requirements
classification and they present tracing mechanisms based on the SysML UML 2.0
profile. They describe their methodology in order to take into consideration the
expression of requirements, and their traceability along the software life-cycle.

Maletec et al. [17] describe an XML based approach to support the evolution of
traceability links between models. They use a traceability graph to detect the
dependency between model elements. However, they do not discuss change impact
analysis. Luqi [16] uses graphs and sets to represent changes. Ajila [2] explicitly
defines elements and relations between elements to be traced with intra-level and
inter-level dependencies. Impact analysis based on transitive closures of call graphs is
discussed in Law [13]. We have the transitive closure for requires, refines and
contains relations between requirements. Lindvall et al. [15] show tracing across
phases again with intra-level and inter-level dependencies. They also discuss an
impact analysis based on traceability data of an object-oriented system. However,
they do not support their analysis with formalism.

Change impact analysis for software architectures has been studied by Zhao et al.
[28]. They use a formal architectural description language to specify and graphs to
represent the architectures. They restrict their analysis to the architectural level and
not for analysis level.
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7 Conclusion

In this paper, we proposed a change impact analysis technique based on formalization
of requirements relations within the context of Model Driven Engineering. We gave a
requirements metamodel with well defined types of requirements relations. This
metamodel represents the common concepts extracted from some prevalent
requirements engineering approaches. The requirements relations in the metamodel
were used to trace related requirements for change impact analysis. Using the
formalization of these relations allowed us providing proofs of more precise rules for
change impact analysis.

We applied our approach in a case study based on a requirements specification for
course management system. We were able to determine candidate impacted
requirements and relations with a better preciseness. Since we applied the approach to
a limited number of requirements, the results may not be very convincing. However,
applying it to a number of requirements like 300 requirements will make the benefit
of our approach more explicit. On the other hand, we are aiming at a tool that
provides semi-automatic support for change impact analysis based on the presented
rules. Such a tool may use a Prolog engine to notify the requirements engineer about
candidate and actual impacted elements by using these rules.

Determining the impact of requirements changes on inferred relations in [7] with
tool support is another future work in evolution dimension. For the evolution of
requirements, we also want to analyze the impact of requirements changes in
architectural and detailed design. We need trace models in order to link requirement
models to design models. These trace models will enable us to determine possible
impacts of requirements changes in design models.
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Appendix: Requirements for Course Management System

Reql. The system shall allow end-users to provide profile and context information
for registration.

Req2. The system shall provide functionality to search for other people registered in
the system.

Req3. The system shall provide functionality to allow end-users to log in the system
with their password,

Req4. The system shall support three types of end-users (administrator, lecturer and
student).

Req5. The system shall allow lecturers to set an alert on an event.

Req6. The systemn shall maintain a list of events the students can be notified about.

Req7. The system shall notify the students about the occurrence of an event as soon
as the event occurs.

Req8. The system shall actively monitor all events.

Req9. The system shall notify students about the events of the lectures they are
enrolled for.

Req10. The system shall allow students to enroll for lecturers.

Reql1. The system shall allow lecturers to send e-mail to students enrolled for the
lecture given by that lecturer.

Reql2. The system shall allow assigning students to teams for each lecture.

Req13. The system shall allow lecturers to send e-mail to students in the same group.

Req14. The systemn shall allow lecturers to modify the content of the lectures.

Req15. The system shall give different access rights to different types of end-users.

Req16. The system shall support two types of end-users (lecturer and student) and it
shall provide functionality to allow end-users to log in the system with their
password.
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Abstract. Traceability is an important challenge for software organizations.
This is true for traditional software development and even more so in new
approaches that introduce more variety of artefacts such as Model Driven
development or Software Product Lines. In this paper we look at some aspect of
the interaction of Tracesbility, Model Driven development and Software
Product Line.

Keywords: Product line, traceability, object-oriented, aspect-oriented.

1 Introduction

Traceability of artefacts elicits the means of understanding the complexity of logical
relations and dependencies existing among artefacts that are generated during the
software development lifecycle. Numerous kinds of artefacts are generated at the
individual development stages, ranging from requirement artefacts to design elements
down to source code fragments. With the inception of model-driven software
development the scope of artefacts has been diversified by introducing models
coneerning, business processes, system requirements, architecture, design, tests, etc.
Since software development is ever facing the challenge to minimise development
costs, advancing fields of Software Product Line (SPL) engineering and generative
programming have been fostered. This in turn raises the need for more intricate
traceability solutions, which in addition to classical end-to-end traceability, have to
support for the traceability of variabilities and commonalities in the SPL. One of the
main objectives of the European project AMPLE' is to bind the variation points in

1 http://ample.holos.pt/
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various development stages and dimensions into a coherent variability framework
across the SPL engineering life cycle thus providing forward and backward
traceability of variations and their impact.

In this paper we present various perspectives of the AMPLE project on traceability
for Model Driven, SPL engineering. The remainder of this paper is organized as
follows. Section 2, introduces basic concepts of SPL engineering and contextualize
traceability in it. Section 3, proposes a categorization of traceability links for SPL.
Section 4, discusses how to deal with uncertainty and tracing the rational of decisions
during the SPL development process. Section 5, looks at fine grained traceability links
when mixing Model Driven development and SPL. Finally, Section 6 presents our
conclusions and future work.

2 Software Product Line

The software industry is in crisis. It is unable to produce software at the pace required
by the market: Projects are delayed, they fail to meet quality requirements, their
budget is exceeded, expected functionalities are not delivered. SPL comes as an
answer to this situation. It promises to deliver software faster, with higher quality and
at a lower cost [1]. In this section we will introduce the basic concepts of SPL and
how SPL and traceability interact.

2.1 Basic Concepts

The key to SPL promises (faster, better, cheaper) is to target, not a single system,
but a family of similar systems all tailored to fit the wishes of a particular market from
a constrained set of possible requirements. SPL is about producing software for a well
defined market, from a base software architecture, with a predefined set of options,
called variation points. To achieve higher quality more rapidly, it is based on reuse: of
the software architecture and of the software components that may be plugged into it.
Although the initial architecture and software components may be costly to develop,
successive applications inside the family are cheaper and cheaper as they reuse most
of what was build for the previous applications [1]. The SPL paradigm uses two
processes and two main focuses (see Figure 1): (i) Problem Space focuses on defining
what problem the family of applications, or an individual application in the family,
will address; (ii) Solution Space focuses on producing the sofiware components to
solve that problem; (iii) Domain Engineering is responsible for establishing the
software family platform, first by identifying typical requirements of the problem
space and where they will be authorized to vary, second by developing the software
architecture that address these requirements and the software components that fit into
the architecture, and; (iv) Application Engineering is responsible for deriving
individual applications from the requirements of a customer (inside the set of
authorized variations) and composing this application from the family architecture
and the available components.

Although the two were conceived separately, Model Driven Development is a
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natural candidate to fit in the general framework of SPL: One may develop a meta-
model that can be transformed in different applications according to the wishes of the
customer [2,3]. The general solution is described in Figure 1. First, in domain
engineering, one defines a meta-model of the problem (top left), specifying the
concepts that may be used in the creation of a solution --an application—, and a feature
model (model of all the features available). Second, still in domain engineering, but in
the modelling of the solution (top right), one defines transformation rules to generate
code from the application model (when it will be available). Obviously the future
application model must conform to the meta-model of the product line. In addition,
manually written software components (source code) can also be created that are
intended to be combined with the automatically generated code later. Third, in
application engineering (bottom left), one defines a model of a particular application
(conforming to the meta-model defined in domain engineering). One also selects the
features that should be implemented in this particular application. Finally, in the
solution space (bottom right), the application is automatically derived from the model
by applying the transformation rules.

Problem Solution
) space space
=]B 2 2
nginearing #S'?é v",‘:ﬁff” \‘ ..I
App_(icatiun —§ @Eﬂ J 7
engineering| you  Feature HUC_;:_M

Fig. 1. How MDD fits in the two processes and two spaces of SPL.

2.2 Traceability for SPL

Traceability is recognized by all to be highly important for SPL engineering. On top
of traditional concerns for traceability, SPL has to deal with variability and with two
development processes. Variability is the description of all possible variation points in
the family products, and all the variants, the available options for each variation point,
Traceability appears as a key asset to manage this complexity. Variability is seen as
the one fundamental aspect of SPL, and specific to it, that needs to be traced.

The difficulties linked to traceability in SPL are [4]: (i) there is a large number and
heterogeneity of documents, even more than in traditional software development; (ii)
one needs to have a basic understanding of the variability consequences during the
different development phases; (iii) one needs to establish relationships between
product members (of the family) and the product line architecture, or relationships
between the product members themselves; and (iv) there is still poor general support
for managing requirements and handling complex relations.

We could not find much tool support, neither available for industrial use nor in
form of research prototypes in academia. Traceability means to link several artefacts
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at different levels and the rationale of this link. One has to link documents,
stakeholders and the rationale behind the links. Since software development and more
specifically SPL development is a complex task one has to trace many objects of
various kinds with different structures. In [5] a general presentation of the traceability
needs and the integration in a SPL are proposed. The traceability requirements are: (i)
it should be based on the semantics of models used in the SPL infrastructure; (if) it
should be customized to capture relevant trace types; (iii) it should be capable to
handle variability; (iv) a small set of traces is better; and, (v) it should be automated
when possible.

Berg et al. [6] view software engineering for single (traditional) systems in two
dimensions, one for the development process and the other for levels of abstraction.
All development artefacts can be placed somewhere in these dimensions. Variability
adds a third dimension that explicitly captures variability information between
product line members. This approach establishes a conceptual variability model which
provides the appropriate mapping between all variation points in the two dimensional
space (development process and levels of abstraction).

Ajila and Ali Kaba [7] use traceability to manage the SPL evolution. They identify
three sources of changes in product line: (i) changes in an individual product; (ii)
changes in the entire product line; and (iii) repositioning of an architectural
component from individual product to the product line. The authors also analyse more
precisely the reasons and the nature of changes in SPL development. The dimensions
of analysis can be: motivations that led to the change (extemal or internal) and
changes in the management process.

In [8] Moon and Chae propose a meta-modelling approach to trace variability
between requirements and architecture in SPL. They define two meta-models for
requirements and architecture integrating variability. These matrices contain
information computed from the software structure and the variability points. Three
kinds of relationships are provided: (i) between artefact constituents and trace matrix;
(ii) between artefact constituents and models, and; (iii) between artefact constituents
and specifications.

We will now present several propositions to treat traceability in Model-Driven
SPL. Not all of them are specific to SPL, but all of them will be applied to this context
in the AMPLE project.

3 Categorization of Traceability

As pointed out by the Center of Excellence for Traceability [9], the precise semantic
of traceability links is poorly understood, and there is possibly a wide range of
semantics. This is aggravated by the fact that it may not be desirable (or even
possible) to create a closed set of semantic kinds of links. If one casts into stone the
kinds of semantic links, then one loses flexibility for user-defined links that might be
necessary to meet different project or company needs. But not predefining the link
semantics, would greatly complicate automatic and elaborate treatment. We chose to
develop a two layered solution with a high level abstract categorization, that we hope
is general enough to fit all purposes; and a lower level, more detailed categorization,
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that may be too specific in some specific situations. This is still a research issue and
we have no definitive answer yet.

3.1 Dimension of Traceability

Traditional (non SPL) software engineering (e.g. [10, p.59], [11, p.526], [12]) defines
two forms of traceability: vertical and horizontal. Unfortunately, different authors
swap the respective definitions of vertical and horizontal! In this paper, we will call
them intra and inter traceability. fnfer traceability refers to relationships between
different levels of abstraction: from requirements to models to implementation. fntra
traceability refers to relationships between artefacts at the same level of abstraction:
between related requirements, between models, between software components, etc,
To this initial framework, SPL engineering introduces a third dimension, orthogonal
to the two other ones to deal with variability and its implications (See also [6]).
Traceability links are required to relate variation points (options) to their variants
(choices), variants between themselves (when one choice constrains another one),
variation points between themselves, low level artefacts to variation points or
variants, and finally, choices made at the application engineering level to options
offered at the domain engineering level. Finally, since dealing with configuration
management is also a goal of the AMPLE project, we include a fourth dimension,
evolution, for relationship between the various versions and revisions of a given
artefact,

Note that there may be interactions between the different dimensions. For example,
intra and inter traceability links may evolve between two versions of the SPL. This
indicates that inra and inter traceability links may themselves be related by evolution
traceability links. Variability traceability links are also subject to evolution over time.
Finally, intra and inter traceability links may also be subject to variability traceability.
For example, if two artefacts have an intra or inter traceability link in the domain
model, and if both appear in the corresponding application model, then they should
exhibit the same intra or inter traceability link in the corresponding application model.
In summary, we may propose a hierarchy of dimensions: Evolution traceability may
also apply to infra, inter or variability traceability relationships (and not only on
artefacts). Fariability traceability may also apply to infra or inter traceability
relationships. All other interactions between two dimensions are considered
meaningless.

3.2 Taxonomy of Traceability

There are quite a few approaches for inter and intra tracing intraditional systems
[22],[23]. But these approaches do not fulfil the needs of SPL due to dependencies
existing: (i) from core assets (domain engineering) to products (application
engineering); (ii) between commonality and variability at different abstraction level;
(iil) for core assets used by multiple products in a family of products. During the
development of a SPL, numerous entities, artefacts, and models are created during
both domain engineering and application engineering [16][17]. This makes it complex
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to maintain and evolve the large number of intricate trace dependencies.

To facilitate trace maintenance and evolution in SPL, we propose to move away
from simple associative trace links to links that capture the semantics of the
relationship between the traced artefacts. We define a semantics-based dependency
taxonomy wherein the dependency information: captures intricate information about
the traces; promotes better understanding of the trace relationships; justifies the
rationale for existence of a particular trace link, and; determines the significance of a
trace link and help determine its consequence or impact on tracing information during
SPL evolution. The taxonomy describing various facets of a dependency is influenced
from conventional requirements engineering approaches, SPL concepts, and work on
dependencies by [21]. We also investigated two case studies: HealthWatcher [18][19]
and MobileMedia [20]. From these studies we structured the dependency links around
two characteristics: nature and granularity The nature of a dependency describes the
fundamental categorization of the trace formed and helps define the significance of
the dependency (which may vary from domain to domain) holding at the same level
of abstraction (intra), higher to lower abstraction (inter), or between core assets and
product(s). The nature of dependency can be categorized as: Goal, Conditional,
Service, Task, Temporal, and Infrastructure. A more detailed discussion on nature of
dependency taxonomy is presented in [19]. The gramularity of a dependency
elaborates on the trace by providing a better insight into the fundamental
categorization of the trace (nature of dependency) formed at the same level of
abstraction (intra), higher to lower abstraction (inter), or from core assets to products.
The granularity of dependency helps identify the number of entities impacted directly
orfand indirectly when a requirement, design, or implementation is evolved. The
granularity of dependency can be categorized as: Refinement, Composition,
Constraint, Multiplicity, Behavioural, and Structural,

We now discuss a brief trace scenario from the SmartHome industrial case study to
showcase the dependency taxonomy. The SmartHome application bridges different
technologies in a house like central heating, security system, household appliances
through mobile phones and/or personal computers to retrieve the status, set or modify
the control/setting of the devices. Qur example scenario describes traces amongst the
artefacts in application domain. The climate control system for managing the central
heating ensures that the temperature a user (owner) has specified for the house is
maintained. The desired temperature is maintained by automatically turning the
central heating on/off when the specified temperature is reached. The nature of
dependency for the requirement forms a (service, conditional) dependency with the
HeatingComponents and Thermometer components at architectural level. Service and
conditional dependency is formed as the Thermometer component gets the
temperature of the house and the HeatingComponent turns the central heating on/off if
the temperature is above or below the specified temperature range. The granularity of
dependency is (behavioral) as the HeatingComponent reacts to the data output from
the Thermometer component. The example shows the dependency model help extract
end-to-end trace information between the loosely and/or tightly coupled requirements
and architecture providing the system analyst an understanding of how requirements
are being realized at architecture level.
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4 Traceability in the Presence of Uncertainty

Independent of the categories of traceability and their nature and granularity, we
propose to attach additional information to traceability links: The rational for its
creation and the confidence we have in this rationale.

During software development, a large number of design decisions must be
resolved. Typically, for each design issue several candidate solutions are considered.
The rationale behind these design decisions is frequently based on assumptions made
about diverse relevant criteria related to these candidates, calculating the alternatives’
overall quality, and choosing the most appropriate solution. Ideally, the information
used for taking such decisions would be of perfect quality, i.e. clear and accurate,
However, in practice it is very difficult to attain accurate information at the moment it
is required. As important decisions are taken in early phases of development, software
architects will only have a partial and abstract view of the final, complete system. As
a result, the design activities generally are performed with assumptions on relevant
system characteristics that only partially provide the information with the desired
quality. The rationale for design decisions is naturally subject to uncertainty.

Uncertainty plays a role in any system that needs to evolve continuously to meet
the specified or implicit goals of the real world [13]. But while SPL engineering is
based on the principles of reuse and variability management, the development of
SPLs can suffer from uncertain information. As product line architectures are used
over a prolonged period of time, they become subject to unforeseen evolution and
maintenance. Moreover, the requirements definition and architectural design phases
typically will be prone to uncertain inputs, as the product line is intended to support a
versatile product family in volatile markets with changing demands. As a result of the
variety of product families, the complexity of product line architectures and the
longevity over which these must be maintained and evolved, it can be argued that the
impact of uncertainty on product line development can be even more sever than
traditional software systems.

As seen in section 2.1, the evolution of SPL artefacts in the problem space and the
solution space, both in domain engineering and application engineering levels, can
profit from model-driven techniques. The flexibility of model transformations offers
ample means to address evolution of product lines. For example, model-driven
approaches can automate the generation of trace links between source and target
artefacts involved in a transformation [14]. Nonetheless, the application of MDE
approaches does not resolve all problems caused by evolution and uncertainty in SPL
development. MDE artefacts are subject to evolution. Change requests may cause the
evolution of metamodels, models and model transformations. Moreover, the definition
and realization of a model-driven approach can suffer significantly when uncertainty
in the available information is not recognized and addressed accordingly.

Under this perspective, traceability of design decisions in SPL development is an
important and relevant issue, as these are key points where uncertainty influences the
design process. For performing traceability in the presence of uncertainty, the focus of
handling uncertain information in particular should be on the rationale used to resolve
design decisions. By identifying the uncertainty that exists in design decision rationale
and modelling it accordingly in the decision process, its negative influence can be
minimized. Further, tracing information on design decisions facilitates the

83 of 120 ISBN 978-82-14-04396-9



understanding of the impact of the uncertainty on the development of the SPL.
Tracing the rationale of decisions improves the understanding of the important
contextual factors that impact the quality of the SPL and variability management.

To this end, we have defined a meta-model that conceptualizes the kinds of design
decision rationale in which we are interested, such as problem, alternatives, quality
attributes, context and arguments. This meta-model comprises elements from
argument-based rationale methods, problem-solving approaches and quality
evaluation methods, Moreover, the meta-model accommodates the representation of
uncertainty in the assumptions made by the developers while taking design decisions.
Uncertainty is represented by utilizing techniques from fuzzy set theory.

The rationale behind each relevant design decision can be a model instantiated
from the design decision rationale meta-model. Such models are themselves also
considered as traceable artefacts. Therefore, the traces related to or from design
decision rationale instances are stored along with inter or intra traceability
relationships. For example, the design decision rationale can be traced to other
decisions, or from and to other artefacts, such as requirements and architectural
models. In this way, we are able to analyse the influences of uncertainty in the design
rationale, while performing traceability for the sake of, for example, change impact
analysis and root-cause analysis.

5  Traceability and Fine Grained Variability

We saw in Section 2.1 how, in the Model Driven, SPL approaches [2,3] a particular
application is defined as a model conforming to the meta-model of the product line.
The application must also choose available features from a feature model. By default,
this approach does not allow fine grained selection of features, an application either
has or not a feature. We call large variation a characteristic that affects the whole
application [15]. For instance, properties such as localization (English or German), or,
in a Smart Home system, a large variation could express that the house can have
automatic lights (this would imply that afl the lights in the houseare managed
automatically). In contrast to this, we also define the concept of fine variation [15]. A
fine variation is a characteristic that may be applied to specific elements of the
application model. For example, in a Smart Home system, a fine grained variation
could express that specific rooms of the house have the feature automatic light, but
not all of them. Note that, large variations can be treated as special case of fine
variation where all the elements of the model individually have the feature of interest.

The gain in flexibility of fine variation comes at the cost of more complex models
and meta-model, with many new artefacts, model-to-model transformations, etc.
Maintaining and evolving all the relations between individual elements and their
features would require detailed management of traceability at a fine grained level. To
manage this additional complexity, we defined a constraint models as part of the
problem space modelling, during domain engineering [15]. This constraint model
expresses what features may be linked (with fine variation) to what element of the
meta-model. The constraint model also restrict the possible bindings by bounding
possible cardinality and specifying properties that the element should have when
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bound to the feature (for example, room that have automatic light requires some
sensor). The actual binding of an element of the application to a feature occurs at the
application engineering level, during the meodelling of the problem. This is the
moment where possible bindings described in the constraint model are created (or not)
between actual elements of the application (concept in the model of the application)
and the features offered in the feature model. Each binding defined in the application
model is automatically checked against the restrictions expressed in the constraint
model. The transformation of the application model to implementing code is realized
by transformation rules.

Fine grained variability works in three dimensions of traceability: The specification
of binding constraints between meta-concepts and features is an intra traceability, as
both are at the same level of abstraction (during domain engineering, as part of the
problem space modelling); binding of a concept to a feature is a variability
traceability as the concepts appear during application engineering whereas the
features are specified at the domain engineering level. Finally, the implementation of
a given binding between a concept and a feature is an inter traceability.

6 Conclusion and Future Work

There is no doubt that traceability is a fundamental discipline of modern software
development. As new development approaches emerge, such as Software Product
Lines (SPL) engineering, the challenges of traceability, still not complete tackled, are
increased. For example, SPL engineering increases the range of artefacts (variability
model, variation points, variants). Model Driven Development (MDD) is another
approach that also introduces new artefacts (meta-models, transformation rules).

In this paper, we looked at the AMPLE project, which is interested in the
interaction of MDD and SPL with respect to traceability. We proposed a
categorization mechanism for traceability links that offers to level of semantic: at the
higher level we have four general traceability dimensions; at the lower level we
propose finer grained semantic categories that may be specific to Model Driven, SPL
engineering. We also discuss the problem of tracing development decision in the
presence of uncertainty. Finally, we proposed a fine grained traceability mechanism
between a domain meta-model and a product line variability model.

AMPLE is a project in progress and we started to implement these ideas in a
traceability framework (described in another paper presented at this workshop). Other
actions include creating industry case study to test our tools.
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Abstract. Traceability enables the maintenance and evolution of soft-
ware product lines as a whole as well as of specific products.

In generel, traceability during software product development can be
achieved by storing all product related artifacts in a configuration man-
agement system. But, the available systems are designed for single soft-
ware products and are not able to support engineering of multiple prod-
ucts based on product lines. Current systems do not offer traceability
that enables comprehensive reasoning ahbout the evolution of the rela-
tionships between artifacts, associated features and the derived products.
To enable traceability, we propose to use feature models as the primary
means to organize and structure the artifacts of software product lines
(SPLs). In our approach, each version of an artifact is associated with
a specific version of a feature and feature dependencies are explicitly
managed. By making a product line’s feature model and product config-
urations first class entities of a configuration management system com-
prehensive traceability in SPLs is enabled.

1 Introduction

Software product line (SPL) engineering facilitates production of families of ap-
plications [1]. In SPLs features that are common to multiple products are identi-
fied and managed. The dependencies between the features are also captured and
describe constraints on the combinations of features. The features are then used
in the implementation of different concrete products, where each product repre-
sents a valid combination of features. The goal of SPLs is to enable a controlled
reuse and evolution of features common to multiple products.

An open challenge when developing SPLs is to enable controlled evolution
of product lines [2]. Changing requirements will require adaptation of a product
line's features and, hence, affect deployed products as well as products still under
development. In general, successful evolution of SPLs requires comprehension of
the impact of changes. For example, if a product has a (security) bug, it is neces-
sary to identify all products (deployed and under development) that are affected.
Also, if a feature is added or removed it is necessary to assess the impact on all
products, e.g., to determine if an already deployed product can be maintained
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using the current product line or if an older version of the product line needs
to be used. Hence, comprehensive traceability and support for reasoning about
changes in SPLs is required to determine how changed requirements affect exist-
ing products. Existing approaches only support the management of artifacts and
configurations for single applications. These systems do not support reasoning
about changes based on the evolution of features, their interdependencies and
the dependencies to products.

To enable comprehensive reasoning about the relations between features,
products and a product line as a whole, we propose to use feature models at the
core of configuration management systems for SPLs; i.e., to use feature models
to structure a SPL’s artifacts. Feature models [3] are an established notation to
specify a product line’s commonalities and variabilities, but were not yet used
as part of configuration management systems.

The remainder of this paper is organized as follows. In the next section,
we discuss a small product line used to exemplify the following discussions. In
Section 3, we discuss versioning of SPLs using feature models. In Section 4,
related work is presented. Section 5 summarizes this paper.

2 Product Line Evolution

To illustrate problems that arise during software product line evolution, we
present a small product line and discuss its evolution. The product line is used to
build glossary products, i.e., applications for managing lists of terms and their
definitions. The glossaries vary w.r.t. data storage techniques and the method
of user interaction. A glossary is either stored in a database or using a flat file.
User interaction with the glossary is possible using a desktop GUI or a web-
based interface. Based on the product line, several products can be built, e.g., a
DemoGlossary and an EnterpriseGlossary. Figure 1 depicts the feature model
of the product line, the features of the products, and an excerpt of the develop-
ment artifacts that realize the product line.

The feature model notation we use is cardinality based [4], e.g., the UI fea-
ture in Figure 1 has a feature group that allows the selection of one or two of
its child features. The product line is implemented using a component based
approach, in which each feature is implemented by a component that can be
deplayed individually. In general, different techniques can be used to implement
variabilities and bind specific implementations in the products [5, 6]. In our case,
the variabilities are bound in the Main. java class during application startup.
The corresponding product’s configuration file is read and the components that
implement the required features are instantiated. The same technique is used to
implement product specific extension. For example, the EnterpriseGlossary
provides a mechanism for branding the glossary with a company’s logo, which
is then shown next to the title of each entry. This is achieved by instantiating
a LogoDecorator component that uses adaption mechanism provided by the
underlying framework to add the logo.
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class GUIRenderer {
void render{IEntry entry) {
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| Products " . !
Product Specific Artifacts
I DemoGlossary EnterpriseGlossary e
Features Features LogoDecorator.java |

— Web class LogoDecoratar {
- GuUl volid render{lEntry entry) {

// decorate the displayed entry}
—— DB }

— GUI
File

Fig. 1. Overview of the glossary product line

Now, we consider a change scenario, in which the specification of the glossary
product line is extended to include user authentication. This change is reflected
in the feature model through an Authentication feature, that is added as an
optional sub-feature of the UI feature. This change impacts: (1) the implemen-
tations of the GUI and the Web features. These features must offer respective
authentication screens that ask for user credentials; (2) product specific imple-
mentations, for all products that incorporate the additional feature. Assuming,
for example, that the EnterpriseGlossary incorporates the Authentication
feature. As a result, the product’s logo decoration mechanism must be validated
against the new GUI and Web implementations.

This example demonstrates that changes of the feature model can directly
influence the implementation of features as well as products. Traceability is re-
quired to ensure that the product line as a whole remains consistent in the
presence of such changes.

3 Feature-Driven Versioning

To support software product line evolution and maintenance, we propose to use
feature models [3, 7] to organize the artifacts of a product line w.r.t. the features
they realize. In general, features do not always correspond to artifacts in a one-
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to-one mapping [6, 8]. For example, conditional compilation approaches encode
several variabilities in a single source-code artifact. Qur feature-driven versioning
approach is based on the assumption, that a mapping between features and
artifacts depending on multiple features is possible. Artifacts that implement
functionality related to multiple features are associated to the common parent
of these features. In the glossary product line, for example, the artifacts that
encode functionality for both the Web and the GUI feature, are then managed
under the UI feature. Moreover, well modularized applications, i.e., applications
where concerns are well separated, naturally support a mapping between features
and artifacts.

To enable feature-driven versioning, we have developed a configuration man-
agement system with a version model, that enables versioning of features, prod-
ucts and artifacts. Furthermore, the model relates these versions to enable trace-
ability. For example, changes in the feature model are assessed regarding their
impact on products and artifacts. Thus, the traceability information enables the
controlled evolution of the product line.

Artifacts are managed by associating each feature/product with an artifact
repository. Inside each repository a versioned container, denoted as feature/prod-
uct container manages all artifacts that belong to a specific feature/product
version. Inside such a container artifacts are developed incrementally using the
check-in/check-out facilities provided by traditional configuration management
systems. For example, the Main. java file in Figure 1, is checked out, a bugfix is
implemented, and then checked in again, all inside a single version of a feature
container. A container’s version is incremented whenever breaking changes are
made in the specification of the underlying feature/product. For example, the
addition of an Authentication feature, as discussed in the previous section,
increments the container versions for the Web and GUT features, since they must
include respective user authentication screens.

Figure 2 depicts the version information of the glossary product line in it's
initial state as presented in Figure 1. A feature’s version information is com-
posed of the logical version and the container version. The logical version de-
notes the number of evolutionary steps that affected a feature. The container
version denotes the version of a feature’s container. The resulting versioning
model incorporates the following version information:

A Feature logical version: The generation of a feature w.r.t. affecting feature
model changes.
B Feature container version: The overall state of the functionality provided

by a feature.
C Artifact version: State of an artifact associated to the respective feature

container.

In the following, we discuss our versioning model in detail w.r.t. all in-
volved entities, i.e., features, artifacts, and products. In addition to features and
products our approach also supports versioning for feature groups and product
groups. Feature groups form the connection between parent and child features
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Fig. 2. Initial versioning of the glossary product line

in feature modeling. A product group denotes a set of products that share spe-
cific features. For example, the set of products that share the DB feature denotes
all products, which specifically include the DB feature and leave the rest of the
variability open. This approach facilitates a multi-step configuration process for
products, where each step becomes more explicit concerning the included fea-
tures [7]. In feature-driven versioning, we allow artifacts to be associated with
features, feature groups, products and product groups. However, in the following
discussion, we only discuss the association between artifacts and features, since
the other allowed associations are treated in the same manner.

3.1 Feature Logical Versioning

In our approach, we version each feature w.r.t. the feature model. This means
that a feature’'s version changes logically, if we add, remove, or change child
features. A child feature is connected to the parent feature through a reference
in a feature group. Therefore, we have defined a versioning mechanism, that
versions feature groups, and propagates version increments from a feature group
to the parent feature. Each feature contains one or more feature groups, and the
logical version of a feature is incremented if a feature group is added, removed, or
if the logical version of a contained feature group is incremented. Accordingly,
a feature group's version is incremented, when changes occur in a referenced
feature or if the cardinality constraint for valid feature selections changes.

In addition to changes resulting from child features, the logical version is
incremented, if the specification of a feature changes. This also results in a new
feature container version, which is discussed in detail in the next section.

The version model always propagates increments of logical versions up to
the root feature of the feature model. Figure 3 depicts the increments in logical
versions for adding an Authentication feature as described in the introduc-
tory change scenario. Note, that the logical versions of features (groups) are
incremented automatically.
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Fig. 3. Incrementation of feature’s logical versions

The proposed versioning model enables reasoning about a feature’s change in
isolation, i.e., it is possible to identify how often a feature has changed and when
a feature has changed without requiring an understanding of the evolution of
the product line as a whole. This provides local reasoning, in the sense that, for
example, the changes in the UI feature increment the Glossary feature, while
the subtree of the Storage feature remains unaffected. Especially, if different
stakeholders are responsible for the implementation of a set of features, they can
see which features have changed and whether their subtree was aflected. This
information is immediately recognizable, regardless of the size of a subtree, since
the version of the topmost feature in the subtree remains the same.

3.2 Feature Container Versioning

The feature container version denotes the version of a feature w.r.t. the spec-
ification of its functionality. Whenever the specification is changed, the imple-
mentation provided for a feature must be adapted. Hence, the respective feature
container version must be incremented. Changes in a feature’s specification may
be directly related to changes in the feature model, but can also occur indepen-
dently. For example, the specification of the GUI feature can change and prescribe
the use of a new widget library. Each increment of a feature container version
also increments the logical version of a feature, which propagates to the logical
version of the root feature, thus denoting that the SPL as a whole has changed.
When a container version is incremented, the contained artifacts are virtu-
ally copied to the new version of the container. A trace link is kept to provide
traceability of the artifact versions across different feature container versions.
Figure 4 depicts a version increment of the GUI feature’s container. The
changes to contained artifacts are illustrated exemplarily, by copying the arti-
fact GUIRendered. java to the new container version and resetting the artifacts
version information to the initial value of 1. In the feature model, the new
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container version results in incremented logical versions for the GUI, UI and
Glossary features.
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Fig. 4. Incrementation of feature’s container versions

The container approach to versioning a feature's artifacts provides the basis
for SPL maintenance. Let’s assume that an error must be corrected in the initial
implementation of the GUI feature. The traceability information can be used to
identify all products in all versions that include the initial version or successor
versions of the GUI feature. Thus, all relevant products can be identified, fixed
and then redeployed.

3.3 Product Versioning

Support for product versioning is necessary to enable comprehensive traceability
between product versions and the features’ versions used in the implementation
of a product.

A products version reflects the specification of a product. The specification
determines the included features and their versions, as well as the product spe-
cific functionality. Hence, if during the development of a product the set of
selected features changes or il a feature’s logical version changes the product’s
version is updated. If these changes are not relevant for a product, it’s version
is not affected. Additionally, a product’s version is updated when the specifica-
tion of the product changes; i.e., if its functional or non-functional requirements
change.

To identify the versions of selected features, a product is associated with
the logical version of the feature model’s root feature. Since version increments
in the feature model always propagate up to this root feature, the version of
the root feature identifies all other feature versions. Thus, no recordkeeping for
every version of every feature selected in the product is required. Associating a
product with the root feature’s version then expresses, that the product is valid
for the constraints in the respective feature model version.
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To trace which product versions were deployed and delivered to customers
each product is associated with a deployment version. The deployment version
identifies which product version was delivered and when it was built.

To store a product’s specific artifacts a product is also associated with a
versioned container. The container’s version is directly dependent on the prod-
uct version. Whenever a new product version is created its container version is
incremented. The containers are linked to determine which version of an artifact
was used as the foundation for the development of a later product version.

Figure 5 depicts the changes of the DemoGlossary and the Enterprise-
Glossary products from the initial version of the glossary product line to the
latest version, that includes the Authentication feature and the related imple-
mentation changes. The specification of the EnterpriseGlossary is changed to
include the Authentication feature. In addition, the specification is changed to
incorporate a branding mechanism into the authentication screens, thus result-
ing in a total of two increments of the product version. Furthermore, the initial
EnterpriseGlossary version was deployed as version 1.0, while the changed
product was deployed as version 2.0.
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| Feature lviode | Froducts i

c
1 {1
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1.0 B i
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Fig. 5. Incrementation of product versions

3.4 Realization

Our proposed feature-driven versioning approach is realized based on the Sub-
version[9] configuration management system. All artifacts related to one fea-
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ture/product are managed by one Subversion repository. Each version of a fea-
ture/product container is mapped to one Subversion branch. On top of Sub-
version we have implemented the necessary logic to relate feature and product
versions, to manage their dependencies, and to relate them to artifact reposito-
ries. This enables traceability between features, products and artifacts.

4 Related Work

The evolution of software product lines is already discussed in [10-13]. However,
none of them focus on feature models in particular nor on combining versioning
models with traceability between features, products and artifacts.

In [10] the authors propose to utilize traceability information for support-
ing software product line evolution. The authors argue about the necessity for
traceability relationships in software product lines in general and propose to
use impact analysis to determine & generalized change set. This change set is
to be monitored by interested stakeholders to assess the risk of changes for the
software product line.

Using configuration management systems to provide adequate support for
software product lines has been the topic of [11-13]. In [11] the author presents
the specific requirements of configuration management for product lines. In the
works of [12] and [13] it is proposed to utilize configuration management systems
as the basis for an automated product derivation process. Their approaches
envision systems, that construct products from common artifacts and allow to
change these artifacts in the implementation of products. These changes can be
later reincorporated to the common artifacts in the product line on an automated
basis.

Advanced approaches in software configuration management systems allow
feature-based configuration building [14], i.e., selection of artifacts and config-
urations based on system features such as supported operating system. These
approaches do not account for the larger context of software product lines, where
changes also occur to the features and their relationships.

5 Conclusion

In this paper, we have presented a versioning model that enables traceability
between features, products and artifacts in the context of software product line
evolution. Qur feature-driven versioning approach can be used as a basis for
managing evolving software product lines. The provided traceability information
ensures consistency and maintainability of software product lines.

Acknowledgments

This work is supported by European Commission grant IST-33710: Aspect-
Oriented, and Model-Driven Product Line Engineering (AMPLE}, 2006 - 2009.

95 of 120 ISBN 978-82-14-04396-9



References

3]

(=1

11.

12,

13.

Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2005)

. Svahnberg, M., Bosch, J.: Evolution in software product lines: Two cases. Journal

of Software Maintenance 11(6) (November 1999) 391-422
Kang, K., Cohen, 5., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis FODA Feasibility Study. Technical report (1990)

. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature

models and their specialization. Software Process: Improvement and Practice 10(1)
(2005) 7-29

- Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software

product lines. In: WICSA ’01: Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA’01), Washington, DC, USA, IEEE Computer
Society (2001)

. Gacek, C., Anastasopoules, M.: Implementing product line variabilities. SIGSOFT

Softw. Eng. Notes 26(3) (May 2001) 109-117

Czarnecki, K., Helsen, 8., Eisenecker, U.: Staged configuration through specializa-
tion and multilevel configuration of feature models. Software Process: Improvement
and Practice 10(2) (2005) 143-169

. Muthig, D., Patzke, T.: Generic Implementation of Product Line Components. In:

NODe °02: Revised Papers from the International Conference NetObjectDays on
Objects, Components, Architectures, Services, and Applications for a Networked
World, London, UK, Springer-Verlag (2003) 313-329

CollabNet, I.: Subversion (2007) http://subversion.tigris.org/.

. Ajila, 5.A., Kaba, A.B.: Using traceability mechanisms to support software product

line evolution. In: Information Reuse and Integration, IRI 2004, IEEE (November
2004) 157-162

Krueger, C.W.: Variation Management for Software Production Lines. In: SPLC
2: Proceedings of the Second International Conference on Software Product Lines,
London, UK, Springer-Verlag (2002) 37-48

Laqua, R., Knauber, P.: Configuration Management for Software Product Lines.
In: 1. Deutscher Software-Produktlinien Workshop, Fraunhofer TESE (2000)

van Gurp, J., Prehofer, C.: Version management tools as a basis for integrating
Product Derivation and Software Product Families. In: 10th Software Product
Line Conference. (2006)

. Zeller, A., Snelting, G.: Unified versioning through feature logic. ACM Trans.

Softw. Eng. Methodol. 6(4) (October 1997) 398-441

96 of 120 ISBN 978-82-14-04396-9



A Model-Driven Traceability Framework to
Software Product Line Development

André Sousa!, Uird Kulesza!, Andreas Rummler?, Nicolas Anquetil®, Ralf
Mitschke!, Ana Moreira!, Vasco Amaral', Jodo Araiijo’

! CITI/DI/FCT, Universidade Nova de Lisboa, Portugal,
als12171@fct.unl.pt, {uira,amm, ja,vasco.amaral}@di.fct.unl.pt
? BAP Research, Dresden, Germany,
andreas .rummler@sap.com
3 Ecole des Mines de Nantes, INRIA, France,
nicolas.anquetil@emn.fr
1 TU Darmstadt, Germany,
mitschke@st.informatik. tu-darmstadt.de
WWW: http://wwv.ample-project.net

Abstract. In this paper, we present a model-driven traceability frame-
work to software product line (SPL) development. Model-driven tech-
niques are adopted with the aim to support the flexible specification of
trace links between different kinds of SPL artefacts. A traceability meta-
model is defined to support the flexible creation and storage of the SPL
trace links. The framework is organized as a set of extensible plug-ins
that can be instantiated to create customized trace queries and views.
It is implemented based on the Eclipse platiorm and EMF technology.
We illustrate a concrete instantiation of the framework to support the
tracing between feature and use cases models.

Key words:Product lines, multi-agent systems, object-orientation, aspect-
orientation, traceability.

1 Introduction

Software product lines (SPLs) methods and techniques [1-4] aim at producing
software system families with high levels of quality and productivity. A system
family [5] is a set of programs that shares common functionalities and maintain
specific functionalities that vary according to specific systems being considered.
A software product line (SPL) [1] can be seen as a system family that addresses a
specific market segment. In order to improve the productivity and quality of SPL
development, the proposed methods and techniques motivate the specification,
modeling and implementation of a system family in terms of its common and
variable features. A feature [2] is a system property or functionality that is rel-
evant to some stakeholder and is used to capture commonalities or discriminate
among systems in SPLs.
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The development of SPLs [6] is typically organized in terms of two main pro-
cesses: domain and application engineering. The domain engineering focuses on:
(i) the scoping, specification and modeling the common and variable features
of a SPL; (ii) the definition of a Hexible architecture that comprises the SPL
common and variable features; and (iii) the production of a set of core assets
(frameworks, components, libraries, aspects) that addresses the implementation
of the SPL architecture. In application engineering, a feature model configu-
ration is used to compose and integrate the core assets produced during the
domain engineering stage in order to generate an instance (product) of the SPL
architecture.

Despite the advantages and benefits of current SPL methods and techniques,
most of them do not provide automatic mechanisms or tools to address the
traceability between the produced artefacts in both domain and application en-
gineering processes. This is fundamental to guarantee and validate the quality
of SPLs development and to allow a better management of SPL variabilities.
On the other hand, current traceability tools do not provide support to address
the new artefacts (variability models) or processes (domain and application en-
gineering, product management) of SPL development. As a result, they do not
allow the explicit management of SPL common and variable features along all
the development process.

In this context, this paper proposes a model-driven traceability framework
for SPL development. Our framework aims to support forward and backward
tracing of SPL artefacts using model-driven engineering techniques. It proposes
to support the automatic management and maintenance of trace links between
SPL artefacts of domain and application engineering. It is implemented as a flex-
ible framework in order to allow its customization to different SPL traceability
scenarios.

The remainder of this paper is organized as follows. Section 2 gives an
overview of a survey of existing traceability tools developed in the context of
a joint project. Section 3 details our model-driven traceability [ramework to
software product line development by presenting the traceability metamodel
adopted, the framework implementation architecture and the instantiation of
the framework to support the tracing between features and use cases. Section 4
discusses implementation issues and further steps of the framework development.
Section 5 presents related work. Finally, Section 6 concludes the paper.

2 Analysis of Existing Traceability Tools

A survey on existing traceability tools was conducted in the context of the AM-
PLE project [7]. The objectives of this survey were to investigate the current
features provided by existing tools in order to assess their strengths and weak-
nesses and their suitability to address SPL development. The tools were evalu-
ated in terms of the following criteria: (i) management of traceability links; (ii)
traceability queries; (iii) traceability views; (iv) extensibility; and (v) support
for Software Product Lines (SPL) and Model Driven Engineering (MDE). We
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believe that these criteria are crucial for this kind of tools since they provide the
basic support to satisfy traceability requirements (creation of trace information
and querying it) and other important concerns regarding the evolution of these
tools and SPL development. These are explained in detail as follows.

The management of traceability links criterion was adopted to analyze the
capacity of each traceability tool to create and maintain trace links (manual or
automatic) and which kind of trace information is generated. The traceability
queries criterion analyses which searching mechanism to navigate over the arte-
facts and respective trace links is available from the tools, varying from simple
queries to navigate over the related artefacts to more sophisticated queries that
support coverage analysis and change impact analysis. The traceability view cri-
terion characterizes the supported views (tables, matrix, reports, graphics) that
each tool provides to present the traceability information between artefacts. The
extensibility criterion evaluates if any tool offers a mechanism to extend the tools
functionalities or to integrate with any other software development tools. Finally,
the support for SPL and MDE criterion indicates if a tool adopts any mecha-
nism to aid in the development of software using these new modern software
engineering techniques.

The conclusions that were drawn from our survey were that none of the
investigated tools had built-in support for SPL development, and a vast majority
of them are closed, so they cannot be adapted to deal with the issues raised by
SPL. The surveyed tools were also not developed for the Eclipse platform, and
only a few had some sort of mechanism to support software development in that
environment |8, 9]. TagSEA is the only tool thet was developed as an Eclipse
plug-in, allowing the developer to insert specific tags in source files providing
some traceability support. However, TagSEA is still in an experimental state
and does not cover traceability up to a degree that is desirable.

There is some recent progress in providing traceability support for prod-
uct lines. Two of the leading tools in SPL development, pure::variants [10] and
GEARS [11] have defined some extensions to allow integration with other com-
mercial traceability tools. Pure::variants includes a synchronizer for CaliberRM
and Telelogic DOORS that allows developers to integrate the functionalities pro-
vided by these requirements and traceability management tools with the variant
management capabilities of pure::variants. Similarly, GEARS allows importing
requirements from DOORS, UGS TeamCenter, and IBM /Rational RequisitePro.

However, these external tools (e.g. DOORS, RequisitePro) handle traceabil-
ity for traditional systems. Apart from their individual wealknesses (see Table 1),
they all lack the ability to deal explicitly with specificities of SPL development,
for example, dealing with variability. They do not provide advanced and specific
support to deal with change impact analysis or requirement/feature covering in
the context of SPL development.

Table 1 summarizes some key aspects of the evaluation of the tools that may
be integrated with pure::variants or GEARS. In terms of trace links manage-
ment, the tools only allow defining them manually, but they offer the possibility
to import them from other existing documents, such as, MS-Word, Excel, ASCII
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and RTF files. CaliberRM and DOORS allow the creation of trace links between
any kinds of artefacts. RequisitePro focuses only on the definition of trace links
between requirements.

The RequisitePro provides functionalities to query and filtering on require-
ments. CaliberRM allows querying requirements and trace links. DOORS pro-
vides support to query any data on the artefacts and respective trace links.
Regarding advanced query mechanisms, Caliber RM allows detecting some in-
consistencies in the links or artefacts definition, and DOORS offers impact anal-
ysis report and detection of orphan code. The traceability tools offer different
kinds of trace views, such as, traceability graphical tree and diagram, and trace-
ability matrix. All of them also allow navigating over the trace links from one
artefact to another.

In terms of extensibility, CaliberRM allows specifying new types of reports
and DOORS allows creating new types of links and personalized views. The
three tools also provide support to save and export trace links data to external
database through ODBC. DOORS integrates with many other tools {design,
analysis and configuration management tools). None of the investigated tools
has explicit support to address SPL, MDD or AOSD technologies.

RequisitePro CaliberRM DOORS |
Manual Manual Manual + Import
(i) aE MR Between  require-|Complete life-cycle [Complete life-cycle
= || ments
Query & filter|Filter on require-|Query & Fflter on
i . on  requirements|ments & links any data (including
(15} Quierics attributes links)

s Links incoherence [Impact analysis, or-
phaned code
Traceability ma-|Traceability ma-|Traceability ma-
trix, traceability [trix, traceability|trix, traceability
tree diagram, reports  |tree

= ~ Creation of new
type of links

Trace data saved|Trace data saved|Integrates w/ > 25
w/ ODBC w/ ODBC tools (design, text,
CM, ...)

(v)SPL and MDE ||Not Supported Not Supported Not Supported
Table 1. Summary of the comparison of three requirement traceability tools according
to our evaluation criteria (see text for explanation)

(iii) Views

(iv) Extensible

3 A Model-Driven Traceability Framework to SPL

In this section, we present and discuss the main topics regarding our SPL trace-
ability framework. We initially describe the traceability metamodel adopted by
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our framework (Section 3.1). Next the framework’s architecture is presented, as
well as the class diagram for the main modules (Sections 3.2 and 3.3). Finally, an
instantiation of the framework allowing the management of trace links between
features and use cases is also shown (Section 3.4).

In this section, we present and discuss the main topics regarding our SPL
traceability framework. The framework’s architecture is presented, as well as the
class diagram for the main modules. Finally, an instantiation of the framework
allowing the management of trace links between features and use cases is also
shown.

3.1 Traceability Metamodel

The traceability metamodel which is the basis of the framework discussed in
this article is shown in Figure 1. It is centered on the assumption that all trace
information can be represented by a directed graph.
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Fig. 1. Traceability Metamodel

The main elements of the metamodel are the following:

— A TraceableArtefact represents a (physical) artefact that plays a role in the

development cycle. The granularity of such artefact is arbitrary, it may rep-
resent a requirement, an UML diagram, an element inside a diagram, a class
or a method inside a class. An artefact is unambiguously identified by a lo-
cator (resourceld), which describes where this artefact is located (such as in
a file or a directory) and how it may be accessed.
Tracelink is the abstraction for the transition from one artefact to another.
An instance corresponds to a hyperedge linking two artefacts in the trace
graph. A transition is always directed; therefore a from-to-relation between
artefacts is created by a trace link (between source and target artefacts).
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— During the process of tracing information about the design of a software
system, different artefacts of different types must be taken into account. For
this reason each TraceableArtefact has an instance of TraceableArtefact Thpe
assigned. This type separates artefacts from each other. Artefact types may
be grouped in a hierarchical manner, which mimics the concept of multiple
inheritance, known from object orientation.

— Analogous to the type of an artifact, each link has a type because the re-
lationship between two artefacts may differ. Examples for such types would
be contains, depends of or is generated from. For this reason each instance
of TraceLink is assigned to an instance of TraceLinkType.

— The existence of an artefact or the relationship from one artefact to another
may be justified in some way. Not all artefacts and transitions would require
such a justification, for example a “contain” transition is rather self explana-
tory. The attachment of additional information to artefacts and links can be
modeled by attaching a TraceContest to relations and/or artefacts.

— Links of a certain type may only be valid between artefacts of a certain type.
A link of type “contains” may be valid between a Method and a Class, but
not between two Architectural Models. The narrowing of validity area of link
types is modeled via the introduction of the elements ScopeArea and Scope.

3.2 Traceability Framework Overview

Our traceability framework aims to provide an open and flexible platform to im-
plement trace links between different artefacts from SPL development. In order
to address this aim, the framework is being designed and implemented based
on the use of model-driven techniques. The traceability metamodel, described in
Section 3.1, allows specifying different kinds of trace links between SPL artefacts.
All the trace links stored must follow the guidelines established by this meta-
model. The framework requires the definition of a variability model to allow the
tracing of SPL common and variable features along the domain and application
engineering stages. The variability model is used in our approach as the main
reference to trace the SPL artefacts. However, the design of the framework is
generic, so it may be applied outside SPL development.

The following main functionalities are provided by our framework to support
the tracing of SPL artefacts: (i) creation and maintenance of trace links between
a variability model and other existing artefacts (UML models, source code, etc);
(ii) storage of trace links using a repository; (iii) searching of specific trace links
between artefacts using pre-defined or customized trace queries. Trace queries
can be executed over the trace links in order to select interesting traceability
information to help the SPL development or evolution; and (iv) flexible visual-
ization of the results of trace queries using different types of trace views, such
as, tree views, graphs, tables, etc.

The architecture of the proposed traceability framework is being defined in
terms of four main modules. Each of them is directly responsible to implement
the framework main functionalities. Figure 2 shows the traceability framework
architecture with its respective modules:
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1. Trace Register - this module provides mechanisms to create and maintain
(update, remove and search) trace links between a variability model and
other artefacts;

2, Trace Storage - defines the storage mechanisms to persist the trace links
between SPL artefacts;

3. Trace Query - this module allows to create and submit queries to search
specific trace links previously stored; and

4. Trace View - it is used to specify visual representation of trace links between
artefacts resulted from a submitted trace query.

Figure 2 also shows how the different framework modules are connected. The
Trace Register and Query modules use the services provided by the Trace Storage
module to store and search the trace links between SPL artefacts. The Trace
Query module can invoke basic trace link queries methods provided by Trace
Storage. Each trace query returns a set of trace links of interest between the
artefacts under tracing. After the execution of a trace query, the Trace Query
calls the Trace View module to allow the visualization and navigation over the
resulted trace links and respective artefacts.

3.3 Traceability Framework Structure

The traceability framework is structured as an object-oriented framework that
defines an infrastructure to provide basic services to search and store trace links
and it also offers a set of extension points to create specific SPL traceability
functionalities (trace queries and views). Figure 2 shows the general structure of
the framework. The TraceRegister, TraceQuery and Trace View abstract classes
represent the extension points of the framework main components depicted as
UML packages. Each of them must be instantiated and customized to address
specific traceability scenarios in SPL development. Next we give an overview of
these framework classes.

The TraceRegister abstract class must be specialized to create specific ways
to create and store trace links between artefacts. The executeRegister() ab-
stract method is implemented with this purpose. The trace links are stored using
the persistence mechanisms provided by the Trace Storage module. The frame-
work does not specify the concrete ways that the trace links must be obtained.
This functionality can be provided, for example, by specifying a strategy to
automatically identify possible trace links between artefacts or by providing a
graphical interface (e.g. check boxes) that enables the SPL developers to create
explicitly the trace links. The FeaturesFEzxiractor and ArtefactsEztractor abstract
classes must also be specialized to provide specific ways of extracting features
and other desired software artefacts. For instance, if the user wants to extract
requirements from a certain requirements modeling tool, then an appropriate
class inheriting from AriefactsEztracior must be created and the corresponding
getSoftwareArtefacts () abstract method must be implemented, which will be
responsible for parsing the input file and extracting the desired elements.
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The TraceQuery abstract class establishes the general structure to imple-
ment traceability queries. It uses the services from the Trace Storage module
to search trace links of interest. After that, it delegates the resulted trace links
from its query to an associated trace view class by calling the showResults()
method. The trace views are implemented as subclasses of the Trace View class.
This mechanism of submitting a query and presenting the results in the chosen
view is implemented by the method executeQuery() in the TraceQuery ab-
stract class. The current implementation of the Trace Storage module provides
basic traceability services to retrieve and query basic trace links between specific
artefacts. Our proposal in the framework is to create more advanced traceability
queries (such as, requirements/feature coverage, change impact analysis, product
variants tracing) from these basic ones.

3.4 Framework Instantiation: An Example

In this section, we present an instantiation of our framework that addresses the
tracing between feature and use case models. Qur aim is to illustrate how the
framework can be used and extended to address concrete scenarios of traceability
in SPL development. All the framework extension points, presented in Section
3.2, are illustrated in this instantiation.

The feature and use case models used to specify the commonalities /variabilities
and requirements of a SPL were created using the following plug-ins: (i) the Fea-
ture Modeling Plug-in (FMP) [12] - that allows to create feature models and (ii)
the MoPLine tool [13] - a model-driven tool being developed in the context of
the AMPLE project to support the process of domain analysis of SPLs.

Figure 2 shows the classes codified during the process of instantiation of our
traceability framework. Two concrete extractor classes (FMPFeaturesExtractor,
MoPLineUseCasesExtractor) were defined to get the information about the use
cases and features defined for a specific SPL. These extractors parse the model
files produced by the FMP and MoPLine plug-ins and retrieve the list of features
and use cases encountered there. Figure 2 also shows the Feature To UseCaseTrac-
eRegister class that represents an instance of the TraceRegister abstract class.
It is used to create trace links between features and use cases.

Figure 3(a) shows the visual representation of the FeatureToUseCaseTrac-
eRegisler. As we can see, it presents the features and use case (and respective
steps) that were collected from the FMP and MoPLine models. The Feature-
ToUseCaseTraceRegister allows defining specific trace links between the SPL
feature and entire or partial steps of use cases. After the software engineer de-
fines the trace links, this information is persisted using the services provided by
the Trace Storage module.

In this framework instantiation scenario, we created different trace queries
and associated views. Figure 2 shows two subclasses of TraceQuery: TraceByFea-
tureQuery and TraceByProduct VariantQuery. The first one is used to trace the
use cases that are connected to a specific {feature. The other one is used to obtain
the set of use cases related to a set of features that represents a product from a
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Fig. 2. Traceability Framework Architecture and Instantiation Scenario - Tracing from
Feature to Use Case

SPL. Both these trace queries can be associated to the FeatureToUseCaseTree-
View class that represents a specialization of the TraceView class.

Figure 3(b) shows the visualization of an instance of the FeatureTo UseCase-
Tree View that shows the results of tracing a set of features representing a prod-
uct., The different use cases associated to those features is showed in the tree
view graphical component. Although in this framework instantiation example,
we have only illustrated the tracing from features to use cases, it is also possible
to define trace queries and views to show the tracing from use cases (or other
SPL development artefact or model) to features.

4 Implementation Issues and Further Steps

In this section, we present and discuss preliminary lessons learned from our
development experience of the SPL traceability framework.

4.1 Framework Implementation on Top of the Eclipse Platform

The Eclipse has been chosen as the main platform to implement our traceability
framework. The justification behind is easily explained: an established MDD-
based technology already exists in this environment, called Eclipse Modeling
Framework (EMF) [14]. The EMF provides a base platform for model-driven
development. On top of this framework, several reusable components that are
interesting in this context are also provided, such as, EMF Query, EMF Search
and Teneo.

105 of 120 ISBN 578-82-14-04396-9



£ Trace Links Definition Window

[T e Ryt

| & 1 CeatoThato &

[Ju Sendimein

09 senditataby trsd
| F[0® Cestzrenrhztofom
! 8 Vet

‘ ! e

| 0 Sewfetoby st
i = 19 Labalfhcts
[1® Deste froto atar

C18 Urkbtoto o Adaess Bak Erery

(= [CI®)

& Teatures Ia Lise Cates View

+ [ Deete fhotn Atm D
1= Priglay Froto fu ooy Cof i -] ]
D‘E] s . |* P Dsine Fhota At
‘ I - § Cin ol Pt A
‘ = T bsplay Phots fon Incumeg Cal

T Ches

© Displey Photo of Incomeg Cat

|# I tenregcal

[ o tmal Tranater

| 3 % o5 Tande

| = ¥ ftao imsfaig

| % o i Platy vt Ads ess Dok Bty
+ ¥f VewFhota

=15

B2 searth cafers 1D stdess bosk | 7 ¥ tabelstorn

[Fl'® Aesdcsirin ‘ = i vt Abums

[ Seachfongtota of 2dkess boch eresy | = W Dekete Foes
| = o Astemete

B8 Howpteton dygin
[]® cenernea
[J% Ferore thats frem abn
= [J@ i phatstoadvess ook Ervry |
& addtemts A |

— L

© AddFte to Ak
! e

Fig. 3. (a) FeatureToUseCaseTraceRegister class and (b) FeatureToUseCaseTreeView

The traceability metamodel which is at the core of the framework has been
implemented using EMF. It is a representative implementation of the OMGs
EMOF standard. Other technologies used, obviously, have to be integrated with
EMF.

A traceability framework has to be able to handle arbitrary sized sets of data
- for this reason, it is fundamental to be supported by a database. Eclipse Teneo
is used as the abstraction layer between the EMF and the actual database layer
to persist EMF model instances. Teneo already supports storage, caching and
retrieval of EMF object, although the layer is currently at version 0.8, which
means it has not reached its final release state.

Queries on top of EMF models are formulated using EMF Query, which
provides a Select-From-Where mechanism that allows basic statements to be
executed quite easily. This provides the basis for more advanced queries explained
in the next section.

On top of the implementation of the Trace Storage module, a collection of Ul
services can be provided for users and developers. In section 3.3, we have illus-
trated specific instances of the TraceRegister, TraceQuery and Trace View classes
that were used to trace from features to use cases. We are currently organizing
these specific subclasses to define a set of customizable classes that facilitates
the process of development of new register, query and views. An example is the
implementation of a tree view that allows tracing from features to any other
SPL artefact. It is being defined based on our development -experience on the
tree view presented in Figure 3(a).
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4.2 Advanced Traceability Queries

Basic traceability queries, as explained in section 3 are only a part of function-
ality required. Although basic traceability queries may be used to answer simple
questions (i.e. which artefacts have been derived directly from a certain artefact),
users are most likely not interested in such queries. Rather, more advanced ques-
tions derived from the concrete traceability real cases reside in the foreground.
In this context, we are currently working in three kinds of advanced queries that
are of particular interest of the AMPLE project:

— Regquirements/Feature Coverage: query that some certain feature is really
covered in the applied architecture and/or in the source code of the system.
This could also be extended to test cases;

— Change Impact Analysis: discover possible side effects when changing a cer-
tain artefact. Such analysis is interesting in forward and backward direction:
What would be the result of a change of some requirement on the actual
architecture? What would be the impact on some feature of the substitution
of a certain component by another one?

— Product Variants Tracing: perform a trace to all included artefacts in a cer-
tain product. This is closely related to Orphan Analysis, where artefacts
should be discovered that are included in some product variant, which pro-
vide functionality that is not really needed in that variant.

We rely on the assumption, that such advanced queries may be composed
entirely of a set of basic queries. While basic queries may be expressed in a
dedicated query language, a frontend for the advanced query module may be
a dedicated user interface guiding a user through the querying process, thus
providing an easier access to the application.

5 Related Work

We have previously discussed the results presented in a traceability tools sur-
vey (Section 2). The conclusions drawn from this survey were that the existing
traceability tools do not provide a sufficient support to address the traceability
problem in SPL development. Even though some extensions have been devel-
oped, and integration with existing SPL tools, the functionalities provided by
these tools are not sufficient for SPL development. They lack specific queries for
product lines, which combine variability information with other dimensions of
software development. For instance, there is no support for detection of feature
interactions (a common problem in SPL) or tracing of product variants. The
fact that the majority of these tools are closed for external development, and
therefore cannot be adapted or extended, makes them incapable of completely
satisfying the needs of software product lines.

‘We have presented a proposal for a traceability framework to address trace-
ability in software product lines. Our approach is based on the work by Pohl et
al. [4], which consists of establishing trace links between variability elements and

107 of 120 ISBN 878-82-14-04396-9



software artifacts. The major benefit of our framework is that all the software
product line models (variability model, requirements model, etc) are variation
points in our approach. The user can select which models to use during de-
velopment, without being imposed with a specific metamodel. Our framework
facilitates the ability to trace from features to any other artifact of software
development (requirements, code, etc). This is achieved by using the traceabil-
ity metamodel (Section 3.1), to store all the necessary trace information. This
metamodel is generic enough to be applicable to a variety of scenarios, including
SPL development. On top of the services provided by this repository we have
defined a set of abstract classes and interfaces to allow the instantiation of our
framework for different SPL scenarios.

6 Conclusions and Future Work

In this work, we presented a model-driven framework to SPL traceability. The
main aim of our framework is to support forward and backward tracing of SPL
artefacts using model-driven engineering techniques. We have been developing
our framework in the context of the AMPLE project.

We presented our proposal for a traceability framework to address trace-
ability in for product lines. Finally, we illustrated the current architecture and
implementation of the framework, and provided an example of an instantiation
that supports the definition of trace links between features and use cases. Im-
plementation, open issues and further development steps were also discussed.

We are currently working in the evolution of the framework to address other
different scenarios of traceability in SPL development, such as: (i) tracing from
features to architectural, design and implementation models/artefacts; (ii) anal-
ysis of feature interactions; and (iii) feature covering and change impact analysis.

Acknowledgements: The authors are partially supported by EU Grant IST-
33710: Aspect-Oriented, Model-Driven Product Line Engineering (AMPLE).
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Abstract. In our previous work we proposed Model-Driven Performance
Engineering (MDPE) as a methodology to integrate performance engi-
neering into the model-driven engineering process. MDPE enables do-
main experts, who generally lack performance expertise, to profit from
performance engineering by automating the performance analysis process
using model transformations. A crucial part of this automated process
is to give performance prediction feedback not based on internal mod-
els, but on models the domain experts understand. Hence, a mechanism
is required to annotate analysis results back into the original models
provided by the domain experts. This paper discusses various existing
traceability methodologies and describes their application and extension
for MDPE by taking its specific needs into account.

1 Introduction

Model-Driven Engineering (MDE) is a technique for dealing with the ever-
increasing complexity of modern software systems. It places models of software—
often expressed using domain-specific languages (DSLs)—at the heart of the de-
velopment process. This enables developers to view and design a software system
from a much higher level of abstraction than the code level, allowing them to
cope with much higher levels of complexity. Additionally, the use of DSLs allows
domain experts to be involved in the development of a software systems. This
can increase the quality of software as the domain requirements can be taken into
account more directly and accurately. For example, the authors of [1] describe
how DSLs can be used to develop so called Composite Applications that access
services provided by a SAP Business Suite system. This is supported by indus-
trial tools, such as the Composition Environment (CE) [2] that applies MDE
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for the development of Composite Applications, enabling experts in a domain to
build new applications based on pre-provided modules.

However, a difficulty with MDE lies in supporting extra-functional require-
ments in the software system. As generic solutions that guarantee certain non-
functional properties under any circumstance are typically difficult to provide,
developers need expertise regarding specific non-functional properties and how
to support them in application design. This expertise is typically lacking with
domain experts. Additionally, the high-level of abstraction beneficial to the devel-
opment of complex applications, can also make it difficult to provide reasonable
estimates for non-functional properties of the resulting system.

Therefore, there is a need for a better support for non-functional properties
within MDE. Performance is one such important property, which has been re-
searched in the context of MDE [3,4] and is also the focus of this paper. We
have previously proposed Model-Driven Performance Engineering (MDPE) [5],
an extension of MDE that allows performance analysis models to be derived
from development models at each level of abstraction. However, so far, the re-
sults of such an analysis still require performance engineering expertise to be
interpreted. In particular, the performance engineer must understand the spe-
cific analysis or simulation technique used and be able to translate back the
results from this analysis into properties of the original development models. In
this paper, we investigate how this feedback of results can be automised in the
context of MDPE, such that domain experts can benefit from analysis results
without consulting performance engineers.

Trace information about all of the various transformations that together make
up MDPE is the most important asset required for implementing result feed-
back. Therefore, in this paper, we will discuss various approaches to collect and
maintain such trace information. We will then discuss which of these techniques
is most appropriate in the context of MDPE and show how we have applied
it to implement result feedback for MDPE. The contribution of this paper is,
therefore, twofold: a) It presents a technique for feeding performance analysis
results back into original development models, and b) to the tracing community
it presents a case of application of tracing and a discussion of the benefits and
drawbacks of a number of tracing techniques in a specific application context.

The remainder of the paper is structured as follows: We begin in Section 2
with a brief overview of MDPE including a description of where tracing infor-
mation is required. Then, in Section 3 we describe the implementation of the
feedback mechanism and also discuss which tracing technique is most suitable
for this purpose. Section 4 describes related work and Section 5 concludes the

paper.

2 Background

Performance engineering is used in software development to meet performance
requirements in the design of a software system. Applying performance engineer-
ing is, however, costly since it requires performance experts, who understand the
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formalisms that performance analysis and simulation tools use, to be consoli-
dated. For this reason, it is often neglected or only done in the very beginning of
system design. Consequently, the performance is only measured on the running
system—which often leads to redesigns and reimplementations of (parts of) the
system.

In Model-Driven Engineering (MDE), software is designed stepwise, by re-
fining models until the concrete implementation is realized. Model-Driven Per-
formance Engineering (MDPE) [5] proposes to do performance engineering at
each of these refinement steps to discover design flaws early in the development
process. Furthermore, it proposes to use model-driven techniques to automate
performance engineering itself. To this end, we propose a semi-automatic gener-
ation of performance models based on development models (e.g. UML models)
using model transformations. To have a sufficient cost-benefit this is also a step-
wise process: basic analysis can be done automatically on each refinement level
while more detailed analysis requires manual input to the generated performance
models and therefore more performance expertise. Thus, MDPE takes two or-
thogonal dimensions of refinement into account: One dimension to refine the
performance models, and another dimension to refine the development models
in a traditional MDE process.

To define a process independent of development and performance analysis
formalisms, we use a tool-independent performance metamodel. Development
models from the MDE process are transformed into an instance of this meta-
model: a Tool-Independent Performance Model (TIPM). Such a TIPM can be
transformed into different performance analysis models called Tool-Specific Per-
formance Models (TSPMs). These models are then employed by specific perfor-
mance analysis tools using the same performance view-point on the system as
common data base.

The TIPM offers a solution that is independent of any specific performance
modelling concept, such as layered queuing models [6], stochastic petri nets [7],
etc. Hence, an MDPE user is able to compare the capabilities of several per-
formance modelling concepts without, undergoing the error prone and time con-
suming task of defining the interfaces to the development modelling language
in use [8]. Additionally, MDPE is independent of the performance analysis tool
actually used, such as AnyLogic, etc., which simplifies the industrial application
of MDPE. Finally, as a result of the TIPM we are able to support multiple kinds
of development models, such as UML maodels, but also proprietary models used
within SAP for the purpose of business behaviour modelling,

In [5] we presented a transformation from UML models to AnyLogic sim-
ulation models. This paper concentrates on the opposite direction: the tracing
of results, collected by running the simulation models, to the UML models. To
support this, the TIPM metamodel contains the concepts of monitors that can
be filled with analysis results.

An excerpt from the metamodel is shown in Figure 1. The left side of the
figure defines concepts that hold information about the structure of the studied
system. These concepts—Scenario, Step, PathConnection, Resource and refine-
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Fig. 1. The TIPM metamodel defines concepts to describe a system (left) and analysis
results (right).

ments of those (not shown in the figure)—are based on the Core Scenario Model
(CS8M) introduced by Woodside et al. [9] and have basically the same seman-
tics as defined there. The right side contains the concept of Ezperiments and
Monitors, in addition to the concepts borrowed from the CSM. Those are used
to indicate which kind of performance analysis should be performed and where.
For the latter, different kinds of monitors can refer to different kinds of elements
in a TIPM, which they observe. Their properties are only filled by the utilised
analysis tool after an analysis has been performed.

In the figure, three different monitor types are defined: A LatencyMonitor
holds information about the latency between two steps (entry and exit). A uti-
lization measured for a resource can be placed into a UtilizationMonitor. A
CountingMonitor observes how often a step is executed.

Like the transformation to a performance model, the tracing from a perfor-
mance model is also a two-step process. In the first step, the simulation tool
provides data to fill the monitors of a TIPM. Then this information can be used
to update the development models from which that TIPM was generated. The
following section discusses both steps in detail.

3 Extending MDPE with Traceability

Figure 2 provides an overview of our proposed architecture to extend MDPE
with traceability. As shown in the figure, two steps, named as Tool2TIPM Trac-
ing and TIPM2DevelopmentModel Tracing, are required in order to implement
synchronization between performance analysis tools and development models. A
description of both steps is provided in the following subsections.

3.1 Synchronization between Performance Analysis Tools and
TIPMs

The tracing of simulation results back to a TIPM concentrates on filling the
properties of monitor elements in the TIPM (cf. right side in Figure 1). These are
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Fig. 2. Tracing architecture for MDPE as Block Diagram [10]

initially not set, because they are explicitly provided as containers for feedback
information. The performance analysis tool, which is responsible for providing
the result data, has to know about the monitors and their properties. This has
to be taken into account, when transforming a TIPM into a TSPM.

As an example of such performance analysis tool we used AnyLogic devel-
oped by XJ Technologies [11]. It is a multi-method simulation tool, which in-
cludes basic services that can be used to create simulation models using dif-
ferent methods—discrete-event, system dynamics or agent-based modeling—and
allows combining these methods in one model. The object-oriented model design
paradigm supported by AnyLogic provides modular and incremental construc-
tion of large models. The simulation engine is based on Java technology, which
makes it possible to use functionality provided by the Java runtime library in
simulation models.

AnyLogic supports developing custom object libraries that can include model
objects developed with the tool itself together with Java objects and third-party
libraries written in Java. An AnyLogic library can be attached to a model devel-
opment environment and its objects can be used in other simulation models. In
order to support simulations based on TIPMs, we developed a special AnyLogic
library that includes objects which behave corresponding to concepts from the
TIPM metamodel and collect data about the simulated model during its ex-
ecutions. To generate AnyLogic simulation models, two transformations were
developed using the Atlas Transformation Language (ATL) [12]. The first one
converts a TIPM into a structure of AnyLogic library objects as anticipated
by AnyLogic. It generates all required objects together with additional objects
required to connect everything into a working model. This structure includes
all AnyLogic objects and connections between them that have to be present
in the model. The second transformation applies XML formatting to make the
structure readable by the AnyLogic tool, effectively leaving the MDE technology
space.

To enable the actual feedback, we have implemented a small service to which
a simulation tool like AnyLogic can send information. In this way, the simulation
tool itsell does not require any MDE specific knowledge. It is sufficient to send a
message to a designated port containing the information which TIPM (identified
through its filename) and which property in which monitor to fill {(addressed
through their unique names). When receiving such a message, the service updates
the corresponding TIPM with the provided information.
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Monitors are also defined as objects in our AnyLogic library. Their main
functionality is to collect the required result data during execution of the sim-
ulation model. Type and scope of the information collecting is defined in the
TIPM: Parameters of monitors are transformed to parameters of library objects
together with information on how to connect to the service listening for result
data. As mentioned, the AnyLogic simulation engine can use a wide variety of
features provided by Java; This was used to realise the connection to the service.
After a model’s execution, AnyLogic connects to the specified port and provides
result data. Assuming, for instance, that AnyLogic has measured a latency of
11.88 ms for a certain sequence of steps, it can set the latency value of the
corresponding LatencyMonifor to 11.38.

3.2 Synchronization between TIPM and Development Models

For the tracing between development models and TIPMs a solution is required
to trace between two modeling languages where one, defined by the TIPM meta-
model, is known, but the other, used for defining the development models, may
vary. Our current MDPE prototype, however, only supports UML models as de-
velopment, models. In the future we require support for other (domain-specific)
languages, such as SAP proprietary languages for business process modeling as
shown in [1], as well.

In the following, different options to implement tracing between development
models (of arbitrary metamodels) and TIPMs are analysed and one is selected.
Afterwards, we exemplify the actual feedback process on UML development mod-
els using the chosen traceability methodology.

A straightforward option is the usage of bi-directional transformations, such
as provided by the Query View Transformations (QVT) [13] relations language.
Initial tool support has been published in [14]. We claim that this solution is
tracing by design—in the sense that there is no need to care about tracing after
the implementation of a transformation. However, it is more effort to develop
bi-directional transformations than uni-directional ones as the transformation
developer always has to keep both directions in mind. Thus, bi-directional are
not an option for MDPE because we do not want to complicate the development,
of transformations between development models and TIPMs.

As another option, the transformation developer can provide a definition of
how tracing information between development models and TIPMs are estab-
lished after the transformation was performed. The Epsilon Conparison Lan-
guage (ECL) [15] enables comparison of models of arbitrary metamodels, Hence,
a transformation developer could use ECL to write a comparison specification
using ECL that identifies correspondences between a development model and a
TIPM. The disadvantage of this approach is that it currently requires manually
writing comparison rules for each single transformation or, in other words, for
each type of development model that should be supported. An approach sup-
porting the definition of ECL rules in parallel with defining the transformations,
could significantly reduce reduce the indicated overhead but is not available at
the moment.
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The approach we claim as most useful for the MDPE process is based on
Higher-Order Transformations as available and described by Jouault [16] for
the Atlas Transformation Language (ATL) [12]. Higher-Order Transformations
are transformations that are used to transform one transformation A to a new
transformation Ax. This approach is used in [16] to automatically extend rules
within ATL transformations with code for additional information generation.
This code creates a tracing model when the transformation is executed, This
tracing model conforms to a traceability metamodel, which is defined in [16]
by extending the Atlas Model Weaver (AMW) [17] metamodel. This approach
is not traceability by design as there is the need to consider tracing after im-
plementing a transformation. However, the additional effort is simply executing
a Higher-Order Transformation which has only to be defined for each applied
transformation language but not for each single transformation. Additionally,
the application of the Higher-Order Transformation can be integrated in the
transformation tooling,

In our implementation, we execute the transformation provided by [16] to ex-
tend our current UML2TIPM transformation with tracing capabilities. Figure 3
depicts how, for instance, the rule “DeviceObject” is extended with traceability
model generation capabilities. Hence, if the extended UML2TIPM transforma-
tion is executed, not only a TIPM but also a tracing model is generated.

€ ‘vememay 52 (@ *umzrin_wehTrecng.al 1 20
rule DeviceChject( 2l || rnile pevicecbject ¢ -
from l from

i: UNL!Device 1 : UlL!Device
to I 0 R 28y
o: TIPN!ActiveResource ( ‘ o : TIFK!lictiveResource |
name <- 'hctiveResource ! | name <- 'ActiveResource_' + i.name,
+1,name, i multiplicicy <- 1,
mulciplicicy <-1, | schedulingPolicy <- cthislodule,
=chedulingPolicy <-thi=Hodule. I defaultSchedulingPolicy
defaultSchedulingPolicy } ).
) | __trecelink : Trace!Tracelink |(
} 1 name <- 'Devicelbject',
‘ sourceLlements <- Sequence {_ LinkEnd_ i},
targetElements <~ Sequence {__LinkEnd o},

] | model <- thisliodule,_ wvmodel

i ! )

! _Lln}cEndmL : Trace!TracelinkEnd |

4] | element <- _ elementRef i

i B

E L -
« | _rJ | | e ! ‘»r’

Fig. 3. Comparison between one ATL rule before (left) and after the HOT (right)

The tracing model enables us to annotate simulation results serialized by the
monitor model elements in the TIPMs back to the original development maodels,
Therefore, an Eclipse plug-in has been developed which iterates all monitors
of a TIPM. Monitors are associated with Steps and Resources in the TIPM as
described in subsection 3.1. It is the purpose of the plug-in to use the generated
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tracing model in order to get the related development model element for the
TIPM Step or TIPM Resource, the monitor is attached on.

For instance, if a LatencyMonitor is associated with the Steps “Initial Node_1”
(as entry) and “Final Node_1" (as exit), the plug-in would analyze the trace links
within the tracing model in order to get a reference to the UML Activity Di-
agram elements that were sources for the UML2TIPM transformation. In the
case of the two Steps “Initial Node_1” and “Final_Node_1” we get references to
an InitalNode and a FinalNode in an UML Activity Diagram.

The actual annotation of the simulation result stored in the LatencyMonitor,
which has been used as in the example in subsection 3.1, to the development
models follows in a second step: The latency (71.98 ms) is annotated to the UML
Activity containing the InitalNode and the FinalNode to which the trace links
point. It has been mentioned that we do not only need to support UML models
as development models but also other modeling languages such as proprietary
languages used within SAP. A general solution for annotation is not possible
since we have to take development language specifics, such as the mechanism
used for the actual annotation of simulation results, into account. Therefore, we
encapsulated the logic implementing the development language specific annota-
tion of performance analysis results in one module, and the logic implementing
the development language independent access of the TIPM and Tracing Model
in another module.

In order to realize loose coupling between the modelling language specific part
and the modelling language independent part, we used the standard extension
mechanism provided by the Eclipse platform.

Thus, we implemented one Eclipse plug-in which implements the development
language independent part of the TIPM to development model tracing, and
provides an Eclipse Extension Point to be implemented by the development
language specific Eclipse plug-in. We implemented such a plug-in in order to
annotate the AnyLogic simulation results from the TIPM monitors back to UML
models via the SPT profile [18].

By combining our transformation and tracing solutions, we created a proto-
type, which we successfully applied on examples. An issue often discussed when
it comes to applying such transformation chains with tracing is information loss.
For the application presented in this paper, however, we did not encounter any is-
sues with transformation loss. Clearly, information is not preserved by our trans-
formations; but that is intended, since only selected information is carried from
development to transformation models and a different kind of information—the
analysis results—are carried back.

4 Related Work

Our work has been strongly influenced both by needs arising from industrial
practice and by previous work in the academic literature. Here, we briefly discuss
some of the influences from the literature.
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Grassi and Mirandola with their work in the area of component-based software-
performance engineering were the first, in our knowledge, to present the notion of
using model transformations in the MDA context for generating analysis models
([19], for example) for analysing performance. They propose refining a second
line of models from the most generic models in parallel to those models meant for
eventually generating executable code. In contrast, we propose to generate a new
analysis model whenever it is needed, basing it on the most current development
model available. Other authors have also proposed using model transformations
for constructing analysis models. A more detailed discussion can be found in [5].

Our approach is much closer to work performed by Sabetta et al. [20], who
present a new technique for transforming development models into analysis maod-
els using so-called abstraction-raising transformations. This work could be used
as an extension of our work, although we would need to extend their specific
transformation technique to support tracing in the way we need it.

Our TIPM metamodel is closely related to Woodside’s work on CSM [9]. In
fact, the TIPM metamodel is an extended version of CSM. Qur main extension
is the addition of the concept of monitors that enable us to indicate the specific
performance properties of interest. As we have seen, these monitors play an
important role in feeding information back into the development model as they
will contain the analysis results. Based on the CSM, Woodside has gone on to
build PUMA (8], a system quite similar to the work presented here. Feedback to
development models is quoted as future work in [8], however.

5 Conclusion

We have presented the implementation of a performance analysis result feed-
back mechanism for MDPE based on Higher-Order Transformations for ATL.
This technique helps developers to understand and experiment with performance
effects of design decisions without the need for performance expertise. All that
is required is the provision of basic performance annotations in the development
madels. In cases like the SAP case cited above, even this can be avoided by pro-
viding catalogues of available components already pre-annotated with correct
performance data.

With the basic MDPE framework in place, we now need to perform experi-
ments to support our claim that the result feedback is actually useful to domain
experts. Such experiments will be performed in the experimentation phase of the
MODELPLEX project and may lead to corresponding adjustments to MDPE.
Also, in this context we will be implementing support for further input languages
and simulation engines.
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