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ABSTRACT

This survey paper reviews the recent heuristic and metaheuristic solution methods for the well-known
capacitated vehicle routing problem and arc routing problem as well as several extensions of the basic
problems related to the supply side. Among the discussed extensions are time dependent travel times,
multiple use of vehicles, tactical fleet size and mix problem and location-allocation routing. An
introduction is provided for each topic and recent heuristic and metaheuristic solution techniques are
briefly discussed. For earlier approaches, we refer to previous survey articles. The Vehicle Routing
Problem (VRP) is one of the most well-known combinatorial optimization problems, and\holds a central
place in distribution management and logistics. The objective of the VRP is to deliver or supply a set of
customers with known demands on minimum-cost vehicle routes originating and terminating at a central
depot. Motivated by significant practical importance as well as considerable computational difficulty,
there has been a huge amount of research on VRP and its different practical extensions. The purpose of
this two-part survey is to review the recent heuristic solution methods for different multi-vehicle variants
of the VRP. We focus on papers written in 1995 or after that. For earlier methods, we refer to previous
survey papers. This first part reviews the methods for the basic capacitated vehicle routing problem and
arc routing problem, as well as different supply side related extensions such as the fleet size and mix
determination and the location of the support facilities. Extensions related to the demand side are
discussed in the second part of this survey
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1 Introduction
In Europe, the last decade has seen wide-ranging political and regulatory changes in several

markets like telecommunications and transportation. These changes led to stronger interactions
between the economies of the different European countries. On the other hand, demand has
increased rapidly over the last decades, leading to an increase in transportation volume.
Furthermore, according to forecasts, demand will continue to increase faster than the
transportation network. Thus, improvements in the efficiency of the transportation services are
desirable from both a macroeconomic and a microeconomic single company level. Freight
transportation, in particular, is one of today’s most important activities, not only measured by the
yardstick of its own share of a nation’s gross domestic product (GDP), but also by the increasing
influence that the transportation and distribution of goods have on the performance of virtually all
other economic sectors (Crainic and Laporte [1]).

Freight distribution operations are typically very complex, involving the interaction of
many loads with different origins and destinations, a geographically distributed network of
terminals with different facilities and capacities, a number of wvehicles with different
characteristics, drivers with their work rules and personal preferences, and customer requirements
such as time windows and storage and handling requirements. All these factors change rapidly in
a dynamic and stochastic environment. Managing these distribution operations is therefore a
challenging task, and sophisticated decision support tools are needed to improve efficiency.

Effective distribution management presents a variety of decision-making problems at three
levels. These levels are strategic, tactical and operational planning. Decisions relating to the
location of facilities, e.g. plants and depots are viewed as strategic, while the problems of fleet
size and mix determination are termed tactical. Finally on the operational level one has to make
various decisions concerning routing and scheduling of vehicles. Vehicle Routing Problems
(VRPs) are all around us in the sense that many consumer products such as soft drinks, beer,
bread, snack foods, gasoline and pharmaceuticals are delivered to retail outlets by a fleet of trucks
whose operation fits the vehicle routing model.

A typical VRP can be described as the problem of designing least cost routes from one
depot to a set of geographically scattered points (cities, stores, warehouses, schools, customers
etc). The routes must be designed in such a way that each point is visited only once by exactly one
vehicle, all routes start and end at the depot, and the total demands of all points on one particular

route cannot exceed the capacity of the vehicle. In practice, however, this basic model can be
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extended with various side-constraints, such as mixed pick-ups and deliveries, hard and soft time
windows, route duration constraints etc.

The complexity of the side constraints dealt with in the literature to a large extent
determines the applicability of academically developed methods and concepts to real-world
vehicle routing problems. The aim of this two-part survey paper is to give an overview of the
basic vehicle and arc routing problems, and some types of extended vehicle routing problems that
are important to industry. An introduction is given for each problem type, and the recent solution
techniques are briefly discussed. Given the high computational complexity of the routing
problems, we focus on heuristic and metaheuristic solution methods. This first part focuses on the
basic problems, i.e., the capacitated vehicle routing problem and arc routing problem. Some
relevant supply side related extensions are also briefly discussed. Demand side related extensions
are considered in the second part of the paper.

This article is organized as follows. In the next section we briefly introduce the basic
routing problems, i.e., the vehicle routing problem and the arc routing problem, where the
customers are modeled as arcs of the network instead of nodes. Section 3 is devoted to extensions
related to supply side such as heterogeneous vehicle fleet, time-dependent travel times, multiple

use of vehicles and location-routing models.

2 The Basic Routing Problems
One of the best known routing problems is the Traveling Salesman Problem (TSP). In TSP a

number of cities have to be visited by a salesman who must return to the same city where he
started. In solving the problem one tries to construct the route such that the total distance traveled
is minimized. In the m-TSP problem, the m-salesmen have to cover the given cities and each city
must be visited by exactly one salesman. Every salesman starts from the same city, called depot,
and must return at the end of his journey to this city again. The vehicle routing problem is the m-
TSP, where a demand is associated with each city or customer, and each vehicle has a certain
capacity that cannot be exceeded. It can be said that vehicle routing problems are all around us in
the sense that many consumer products such as soft drinks, beer, bread, snack foods, gasoline and
pharmaceuticals are delivered to retail outlets by a fleet of trucks whose operation fits the vehicle
routing model. In this section we describe the two basic vehicle routing problems: the capacitated
vehicle routing problem and the arc routing problem. Most practical applications can be
considered as extensions of these basic problems. Therefore, a lot of research has been directed to

solve these problems effectively.
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2.1 The Capacitated Vehicle Routing Problem and Open Vehicle routing Problem

The capacitated Vehicle Routing Problem (VRP) is defined on an undirected graph G = (V,E)
where V={0,...,n} is a vertex set. £ = {(i, N jel,i< j} is the edge set. Vertex 0 is a depot
while the remaining vertices are customers. With each vertex of J/{0} is associated a non-

negative demand ¢; and with edge (i, f) is associated a non-negative cost or length c;. The VRP

consists of designing m vehicle routes of least total cost, each starting and ending at depot, such
that each customer is visited exactly once, the total demand of any route does not exceed the
vehicle capacity O, and the length of any route does not exceed a preset bound L. The VRP was
first formulated by Dantzig and Ramser [2]. Lenstra and Rinnooy Kan [3] showed that the VRP
with or without side-constraints is an NP-hard combinatorial problem. Hence, exact algorithms
are useful only for tiny problems. For real-life problems, heuristics are much more appropriate.
Heuristics are often much faster than exact methods, but there is no guarantee of optimality in the
solutions found.

Several families of heuristics have been proposed for the VRP. These can be broadly
classified into two main classes: classical heuristics developed mostly between 1960 and 1990,
and metaheuristics whose growth has occurred in the last decade. Most standard construction and

~ improvement procedures in use today belong to the first class. These methods perform a relatively
limited exploration of the search space and generally produce solutions of reasonable quality
within modest computing times. Moreover, most of them can be easily extended to account for the
diversity of constraints encountered in real-life contexts. Therefore they are still widely used in
commercial packages. In metaheuristics, the emphasis is on performing a deep exploration of the
most promising regions of the solution space. These methods typically combine sophisticated
neighborhood search rules, memory structures, and recombination of solutions. The quality of
solutions produced by these methods is usually much higher than that obtained by classical
heuristics, at the cost of longer computing time.

Basically, two types of heuristics can be distinguished: initial and improvement heuristics.
Initial heuristics generate a feasible solution to the VRP, given the data on customers, depot,
vehicles and side-constraints. Principally three main groups of initial heuristics can be
distinguished: route-construction heuristics, two-phase heuristics and heuristics based on exact
algorithms. The most famous and used initial heuristics are those of Clarke and Wright savings
[4], Solomon’s cheapest insertion [5] and the sweep mechanism of Gillett and Miller [6].
Recently, Altinel and Oncan [7] suggested a new enhancement of the classical Clarke and Wright
savings heuristic that considers customer demands in addition to distances. The authors report 2—

5% relative improvements, although at the cost of higher computing time. Campbell and
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Savelsbergh [8] demonstrate implementation strategies for insertion heuristics to handle
complicating constraints, often faced in real-life problems, efficiently. The considered constraints
include time windows, shift time limits, variable delivery quantities, fixed and variable delivery
times and multiple routes per vehicle. An initial solution to the VRP can be enhanced through the
application of an improvement heuristic. These procedures try to improve a feasible solution by
relocating and/or exchanging stops within or between routes. For details, we refer to r-opt
exchanges of Lin [9], Or-opt exchanges of Or [10], 4-opt* exchanges of Renaud et al. [11], string
relocation schemes of Van Breedam [12], edge exchanges of Kindervater and Savelsbergh [13], A-
interchange mechanism of Osman [14], 2-opt* exchanges of Potvin and Rousseau [15], ejection
chains of Rego [16], compounded large neighborhoods of Ergun et al. [17] and Agarwal et al.
[18], and the surveys by Laporte et al. [19], Beasley et al. [20] and Funke et al. [21]. Funke et al.
[21] present also an analysis of different neighborhood structures that shows how the properties of
the partial moves and the constraints of the VRP influence the choice of an appropriate search
technique.

Global optimization heuristics, on the contrary, succeed in leaving the local optimum by
temporarily accepting moves that cause a worsening of the objective function value. These
heuristics are often called metaheuristics because the procedure used to generate a new solution
out of the current one is embedded in a heuristic that determines the search strategy. As far as we
are aware, six main types of metaheuristics have been applied to the VRP: 1) simulated annealing,
2) deterministic annealing, 3) tabu search, 4) genetic algorithm, 5) ant systems and 6) neural
networks. For details, see excellent surveys by Laporte et al. [19], Gendreau et al. [22], Cordeau et
al. [23, 24] and Tarantilis et al. [25]. So far tabu search heuristics have proved to be amongst the
most successful. See for example Gendreau et al. [26] and adaptive memory programming
methodology of Rochat and Taillard [27]. The adaptive memory concept is applied also in
Tarantilis and Kiranoudis [28] and Tarantilis [29] where the search is based on memorizing and
attempting to combine attractive node sequences that have appeared frequently during the search.
The created partial solutions are then completed with a savings heuristics and improved with a
tabu search and 2-opt and vertex swap and relocation heuristics. Barbarosoglu and Ozgur [30]
used the tabu search to solve real-life distribution of electronic household commodities. The
applied algorithm is fairly simple, employing small standard neighborhoods and no
diversification. Toth and Vigo’s [31] efficient granular tabu search is based on retaining edges
whose length does not exceed a given granularity threshold. Golden et al. [32] suggest a new
metaheuristic that combines a similar granularity principle as of Toth and Vigo [31] with the
record-to-record principle of Dueck [33] and savings and relocate and exchange heuristics. Li et

al. [34] continue the work and introduce a new set of very large-scale problems up to 1200
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customers. In Li et al. [34] also 2-opt neighborhood is used. The idea of granularity is applied also
in Park et al. [35] who describe a fast path-exchange-type local search that uses edge lengths to
restrict the search to promising moves. The unified tabu search of Cordeau et al. [36] has shown
good performance in a number of different vehicle routing problems through allowing
intermediate infeasible solutions. The neighborhood used is the well-known GENI-heuristic of
Gendreau et al. [37].

The genetic algorithm of Prins [38] is based on standard construction heuristics for
creating the initial population, and well-known order crossover and arc and node exchange local
search heuristics. The results are concluded to be within 0.08% from the best known. Baker and
Ayechew [39] apply also well-known local searches during the search, but a part of the initial
population of the GA is created randomly, and the classical 2-point crossover is used for
recombination. The authors report results within 0.5% from the best-known with reasonable
computation times. In the hybrid genetic algorithm of Berger and Barkaoui [40] the search is
performed through combinations of large neighborhood search principle, edge and vertice
exchanges, and Solomon’s [5] cheapest insertion heuristic. The authors report average results
within 0.5% from the best-known using competitive computing times. Kubiak [41] and
Jaszkiewicz and Kominek [42] present a genetic local search method with distance preserving
recombination operators with respect to similarity measures of solutions. The operators are based
on preserving edges, vehicle assignments or clusters of customers common in both parents. The
local search part makes use of the standard savings and 2-opt heuristics and a sector relocation
procedure. The key element in the proposed approaches is the use of global convexity tests that
allow finding the solution features that are essential for solution quality. In the evolution strategies
of Mester et al. [43] the search is mainly driven by mutation based on a remove-insert mechanism
and a composite of standard improvement heuristics. In addition, two embedded decomposition
schemes are proposed to speed up the search. The authors report solutions within 0.1% of best-
known solutions to a set of CVRP benchmarks. Mester and Brédysy [44] present an improved
version of the method of Mester et al. [43]. The improved method combines the evolution
strategies with guided local search metaheuristic [45], resulting in iterative two-stage procedure.
The suggested method yields the best-known solution to 70 out of 76 tested benchmark instances.

Reimann and Doerner [46] report also excellent results by applying an Ant System, based
on the savings heuristic of Clarke and Wright [4], decomposition of the solutions to smaller
subproblems, and on the application of 2-opt local search to ants’ solution. The best results are
concluded to be within 0.06% from the best known. For a parallel implementation of the
algorithm, we refer to Doerner et al. [47]. Bell and McMullen [48] suggest also an efficient ant

system. Its key components are usage of multiple ant colonies, candidate list strategies for
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customers considered for routes and 2-opt improvement heuristic. The downside of the heuristic is
high variability of results: in some cases results are over 10% worse than the best-known. Another
very simple ant colony algorithm is described in Mazzeo and Loiseau [49].

For the other recent approaches, see Renaud et al. [S0] who proposed a quick heuristic
based on creating 1- or 2-route petals to service all customers within a given sector, and
combining the created routes by solving a set partitioning problem. Girard et al. [51] describe a
simple perturbation heuristic that applies only suggested new weighted Clarke and Wright savings
heuristic and 2-opt and 3-opt improvement heuristics. The solutions are perturbed by randomly
splitting routes. The authors report solutions within 0.97% of the best-known solutions. Baker and
Sheasby [52] extended the generalized assignment heuristic by simple local search and by
adjusting the seed positions to reduce the optimal objective value for the generalized assignment
problem. In Campos and Mota [53] a generalized assignment heuristic or savings heuristic (Clarke
and Wright [4]) is used to create an initial solution that is subsequently improved with relocations
or exchanges of single customers, guided by tabu search. A variant that uses the information
produced by a branch-and-cut scheme to produce subsets of customers served by the same vehicle
is proposed as well. Zeng et al. [54] suggest a simulated annealing metaheuristic with ruin and
recreate local search. On each iteration, a certain number of nodes are removed from the solution.
The removed nodes are then inserted back by solving an assignment problem with the well-known
Hungarian algorithm. The method appears to be quite fast and the reported results lie within 1.1%
from the best-known on the average.

Tarantilis and Kiranoudis [55] propose a modification of the deterministic annealing based
on well-known local search neighborhoods, and combine it with a spatial decision support system
to tackle a real-word VRP in the Athens area. The role of the decision support system is to check
addresses, guide the development of vehicle routes, and analyze and represent the solution. Baker
and Carreto [56] introduce a visual interactive approach where the user is allowed control of the
routes and GRASP heuristics used for the search. The authors report results within 1% from the
best-known solutions, resulting from interactive sessions of 15 minutes. Irnich et al. [57]
introduce an efficient technique, called sequential search, for scanning neighborhoods within local
search algorithms. The key idea is to systematically decompose moves, which allows pruning
within local search based on associated partial gains. The authors report substantial speedups.
Pisinger and Ropke [58] present a unified heuristic capable of solving several variants of vehicle
routing problem. The search is based on adaptive large neighborhood search that adaptively
chooses among a number of removal and insertion heuristics to intensify and diversify the search.
For CVRP the authors report results within 0.11-2.4% from the best-known with competitive

computing times. Kytdjoki et al. [59] present a very efficient variable neighborhood search
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heuristic that is specifically aimed at solving very large-scale problems. The search is based on
seven standard improvement heuristics. In addition, a simple guided local search strategy and
several new implementation strategies are used. The authors report competitive results for
problem instances up to 20 000 customers within reasonable CPU times.

Jozefowiez et al. [60, 61] study a bi-objective CVRP. In addition to distance, also balance
of the tour lengths is considered simultaneously. The authors suggest a parallel evolutionary
algorithm that utilizes island model and elitism for diversification and intensification. The results
are post-optimized with a tabu search and Or-opt neighborhood. Thammapimookkul and
Charnsethikul [62] deal with real-word ATM routing probfem with two objectives: total travel
time and time of the longest tour. A modification of Clarke and Wright savings and exchange
heuristics are applied to the problem.

Sariklis and Powell [63] consider a variant of the CVRP, called Open VRP (OVRP). The
major difference to CVRP is that in OVRP each route is a Hamiltonian path instead of
Hamiltonian cycle. This difference is due to the fact that the vehicles do not return to the starting
depot or, if they do so, they must travel their trip until now backwards. In several problems there
is a limit set for the total travel time of vehicles, and the primary objective is to minimize the
number of vehicles, followed by distance minimization. The problem is of particular importance
for planning fleets of hired vehicles. The authors suggest a two-phase method based on clustering
and reassignment of customers between clusters. Branddo [64] study the same variant and
suggests a tabu search metaheuristic. The initial solution is generated with nearest neighbor and
insertion heuristics and the same heuristics are used also within the tabu search together with the
US procedure of Gendreau et al. [37]. Another tabu search approach with different neighborhood
structure is presented in Fu et al. [65]. Tarantilis et al. [66] suggest a threshold accepting
metaheuristic [67] that makes use of standard 2-opt, relocate and exchange neighborhoods. The
search is started from a solution where each customer is served by a separate vehicle. The
reported results for benchmark problems outperform previous methods. In addition, a case study
from Athens is reported. Pisinger and Ropke [58] report also very competitive results for OVRP

with their large neighborhood search method described above.

2.2 Arc routing
In Arc Routing Problems (ARPs), the aim is to determine a least cost traversal of all edges or arcs

of a graph, subject to some side constraints. Compared to more common node routing problems,
customers are here modeled as arcs or edges. Such problems arise naturally in several applications
related to garbage collection, mail delivery, snow clearing, meter reading, school bus routing,

police patrols etc. In addition a number of industrial applications such as laser beam plotting
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(Ghiani and Improta [68]) and task sequencing (Anily et al. [69]) have recently been described.
ARPs have received far less attention than so-called node or vertex routing problems common in
collection and delivery operations. A good treaty of the relevant theory for the ARP with variants
and solution methods can be found in Dror [70]. For recent surveys on ARPs, see Eiselt et al [71,

72], Assad and Golden [73] and Dror [70].

One of the most typical side constraints is the capacity constraint for the vehicles. The
corresponding arc routing problem is called Capacitated ARP (CARP). It can be characterized as
follows: A set of customers has to be served by a fleet of vehicles operating from one or more
depots. Each vehicle starts and ends its route at the depot it is assigned to. Furthermore, it has
given capacities with respect to time and quantity. Additional side constraints may also exist.
Important variants of the ARP are the Chinese Postman Problem (CPP), where arc traversal may
be duplicated, and the Rural Postman Problem (RPP), where only some edges are required. Ghiani
et al. [74] present a survey of some recent algorithmic developments for the RPP and CARP and
describe some heuristics for the problems.

Recently Hertz et al. [75] proposed an efficient tabu search algorithm for the CARP. The
approach is called CARPET and it is based on four simple procedures that are used to transform
between RPP and CARP and reverse the order of subtours. The RPP solutions are generated with
Frederickson’s [76] algorithm. Another tabu search application can be found in Greistorfer [77].
Mittaz [78] developed a Variable Neighborhood Search (VNS) that is based on CARPET for the
directed RPP. The author concludes that for larger instances VNS is better than CARPET in terms
of solution quality, and also faster. Genetic Algorithm (GA) was first applied to the CARP in
Lacomme et al. [79] with good results. ) Beullens et al. [80] report very good results with a

Guided Local Search (GLS).

Amberg et al. [81] consider CARP with multiple centers. The objective is to find routes
starting from the given depots such that each required arc is served, capacity constraints are
satisfied and total travel cost minimized. The authors propose a heuristic transformation of the
problem into a multiple center capacitated minimum spanning tree problem with arc constraints,
and a route-first-cluster-second algorithm for determining initial feasible solution as well as tabu
search and simulated annealing-based improvement procedures for the transformed problem. The

CARP with vehicle and site dependencies (CARP-VSD) is described by Sniezek et al. [82].

The CARP-IF variant arises when there are Intermediate Facilities for unloading the
vehicles that are disjoint with the depot. A typical example is waste disposal or road gritting.

Ghiani et al. [83] describe this problem, and give procedures for two sets of lower and upper
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bounds. The refuse collection problem for a part of Lisbon is described with a rich model in

Mourgo and Almeida [84] and heuristically solved to produce near-optimal solutions.

Clossey et al. [85] consider a variant with turn penalties, and Gendreau et al. [86] show
how arc routing can be applied to a real-world problem. The clearing of snow on roadways can be
modeled as a type of postman problem, with the addition of many real-world based side

constraints. A survey of this problem is in Campbell and Langevin [87].

3 Supply side extensions
Less attention has been directed at extensions dealing with the supply side of a VRP.

Nevertheless, a heterogeneous fleet of vehicles, most often in accordance with site-dependencies,
are minimal requirements for practical applications. An important side-constraint is the maximal
route time for the truck driver for instance due to specific industry regulations. The complexity of
the VRP is increased when multi-compartment vehicles are considered. Recently, some attention
is given to time-dependent travel times. The importance of this topic increases with the growing
traffic saturation of highways and metropolitan areas. Finally, the combined problem of location-

allocation of facilities and routing is briefly discussed.

3.1 Heterogeneous fleet of vehicles and usage of trailers
Although often assumed in theory, a trucking firm’s vehicle fleet is rarely homogenous. Vehicles

differ in their equipment, carrying capacity, age and cost structure. The need to be active in
different market (e.g. container and bulk transport) causes firms to buy vehicles with a container
chassis, dump installation etc. Vehicles of different carrying capacity allow a dispatcher to
maximize capacity utilization by deploying smaller vehicles in areas with a lower concentration of
customers. Moreover, it is also possible to service customers requiring small vehicles because of
accessibility restrictions. The differences in equipment, carrying capacity and the fact that
vehicles might differ in age, causes them to have a different cost structure. In contrast to
traditional VRP, in Fleet Size and Mix Vehicle Routing Problem (FSMVRP) the vehicles are
assumed to have heterogeneous capacities and acquisition costs. The objective is to minimize both
routing costs and vehicle costs. Practical applications of FSMVRP include deliveries to grocery
stores, pet food and flour delivery problem and the mail collection problem. In the literature one
can separate several variants of the problem according to how the variable costs and fleet size are
issued. For good reviews on the classical approaches for FSMVRP, we refer to Salhi and Rand

[88] and Osman and Salhi [89].
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The early solution approaches for FSMVRP include adaptations of the Clarke and Wright
[4] savings heuristic, giant tour algorithms and two-stage general assignment based heuristic. For
more details, see for example Dullaert et al. [90]. Salhi and Rand [88] developed a seven-phase
heuristic based on matching demand and vehicle, eliminating, combining and splitting routes, and
moving customers between routes. Osman and Salhi [89] improved the approach by Salhi and
Rand [88] by considering also moves that were seen as infeasible in the previous approach using
tabu search. Gendreau et al. [90] used also a tabu search heuristic that is based on the well-known
GENIUS generalized insertion heuristics (Gendreau et al. [37]) and adaptive memory (Rochat and
Taillard [27]) that works as a pool of partial solutions. Ochi et al. [92] present a hybrid
metaheuristic that uses parallel genetic algorithms and scatter search coupled with a
decomposition-into-petals procedure. Han and Cho [93] introduce a generic intensification and
diversification search metaheuristic that incorporates concepts from the threshold accepting, the
great deluge and the intensification and diversification strategies. Wassan and Osman [94] present
a reactive tabu search metaheuristic with several neighborhood generation mechanisms and
special data structures for efficiency, and Renaud and Boctor [95] describe an extension of the
basic VRP algorithm of Renaud et al. [50] to heterogeneous fleet case. Lima et al. [96] hybridize a
genetic algorithm with GENIUS [37] and A-interchange [14] heuristics. The authors report 8 new
best-known solutions for a set of 20 benchmarks.

Tarantilis et al. [97,98] suggest threshold accepting [67] algorithms to fixed fleet FSMVRP
where the number of vehicles of each type is fixed and equal to a constant. The local search is
performed with 2-opt and vertex relocate and exchange moves. Li et al. [99] adapt the record-to-
record travel algorithm of Li et al [34] to the same fixed fleet problem. The differences between
the methods appear small but on the average Li et al. report the best performance.

Liu and Shen [100] designed the first initial heuristics for the FSMVRP with time
windows (FSMVRPTW), where the customers have a certain time window in which the service
must begin (for more details on routing problems with time windows, see the second part of this
paper). Their parallel savings heuristics are inspired by Solomon’s [5] sequential insertion
heuristics. Instead of linking routes, one route is inserted into another. Dullaert et al. [90] extend
Solomon’s [5] sequential insertion heuristic 11 with vehicle insertion savings, based on Golden et
al. [101] and report significantly better results.

Mechti et al. [102] consider a real-life mail collecting optimization in an urban area. The
problem is modeled as FSMVRP with Time Windows FSMVRPTW. The authors introduce a new
type of tabu search approach, where on each iteration the best move is selected among a large
variety of possible moves. The method varies between local moves involving only one route and

global moves that change the solution structure more dramatically. The authors also present quite
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comprehensive literature review. Similar approach and also an exact algorithm are presented in
Mechti et al. [103].

Gerdessen [104] study the VRP with trailers (VRPT), where one has to determine optimal
deployment of a vehicle fleet of truck-trailer combinations and present construction and
improvement heuristics for the problem. Truck-trailer combinations may encounter maneuvering
problems at certain customer sites. Therefore the opportunity is introduced to leave the trailer at a
parking-place and visit some customers with the truck only. Interesting application areas for the
VRPT are the distribution of dairy products and compound animal feed among farmers. Chao
[105] describes a tabu search heuristic coupled with the deviation concept found in deterministic
annealing and well-known node and arc exchange neighborhoods. The initial solution is solved by
combining relaxed generalized assignment for assigning customers to different types of routes
(depending on whether or not trailer is with truck), and a cheapest insertion heuristics for
constructing the tours. Scheurer [106] presents two new clustering-type construction heuristics
and a tabu search heuristic with swift and swap neighborhoods and candidate list strategies. The
search is intensified through restarts from the current best solution. The best-known solutions are
reported to all VRPT benchmarks. Tan et al. [107] study a VRPT variant that considers the
availability of trailers, time window constraints and multiple objectives. An effective evolutionary
algorithm with specialized genetic operators, fitness sharing, variable-length representation and a
route merging heuristic is suggested for the problem.

Bodin et al. [108] consider a similar problem in sanitation routing context, where the
tractors move large trailers between locations and a disposal facility. The trailers are so large that
the tractor can only transport one trailer at a time. The objective is to service all trips such that the
number of tractors and nonproductive time are minimized. The authors call the-problem Rollon-
Rolloff VRP (RRVRP) and present mathematical programming formulation and four heuristics.
The heuristics are based on solving set covering and bin packing problems over specific trip types,
dynamic programming, simple cheapest insertion combined with route improvement procedures
and adaptation of Clarke and Wright [4] algorithm. The same problem is discussed earlier in De
Meulemeester et al. [109], who propose two simple heuristics. The first heuristic is the parallel
version of the Clarke and Wright [18] savings algorithm for the VRP. The second heuristic is

based on the solution of a transportation problem that is used to provide a lower bound.

3.2 Time-dependent travel times
Most available routing models assume that the travel times are constant throughout the day. In

real-world conditions, however, the travel times are subject to variations over time. These



SINTEF 15

variations may result from predictable events (e.g., congestion) or from unpredictable events like
accidents or vehicle breakdowns. Therefore a solution to a problem assuming constant travel
times may be suboptimal. And if customers requested service in tight time windows and/or if the
scheduled route contains little slack, the stochastic nature of travel times can even make the
schedule infeasible. Therefore, when designing routes, a dispatcher has to consider the stochastic
nature of travel times. The interest in time dependent travel times has grown proportionally with
the increasing traffic congestion problems. In addition, the importance of time-dependent travel
times is largely dependent on the scale of the VRP. The smaller the scale on which to perform the
routing, the more important it is to obtain an accurate planning. Discarding time dependent travel
speeds in metropolitan areas can result in an underestimation of the total routing time.

The Time Dependent VRP (TDVRP) is a VRP for which the travel time between two
nodes depends on the distance between the points and the time of the day. The time-dependency
accounts for variations in travel speed caused by congestion etc. All other data is static and
known. It is to be noticed that triangle inequality does not hold anymore for the TDVRP. The
objective is often to minimize the total time of the routes.

Ratliff and Zhang [110] present methods to approximate driving speed as a piecewise
linear function of the distance traveled, and provide also comprehensive literature review on the
related approaches. Wunderlich et al. [111] propose a heuristic prediction technique for
decentralized route guidance architectures to identify time-dependent link travel times that are
then communicated to drivers to create faster paths, consistent with the forecast. Fleischmann et
al. [112] present a general framework for the implementation of time-varying travel times in
various vehicle routing algorithms. In addition, computational results obtained with savings and
insertion heuristics with 2-opt are reported using real traffic data from Berlin. Taniguchi et al.
[113,114] consider variable travel times in their time-constrained probabilistic model with
multiple trips per day for each vehicle. Dynamic traffic simulation coupled with a genetic
algorithm is used to test the model and quantify the benefits of considering the uncertainty of
travel times.

Ichoua et al. [115] adapt the tabu search heuristic of Taillard et al. [116] and test it both in
static and dynamic context. The authors conclude that fixed approximation of the real travel times
is not competitive with usage of time-dependent heuristic. The authors consider the travel time
equivalent to estimating the travel speed, and create a model that divides the horizon into several
time periods, and satisfies the “first-in-first-out”-property. Donati et al. [117] adapt the multiple
ant colony system, originally developed for VRP with time windows by Gambardella et al. [118]

for the time dependent variant of the problem. The authors also introduce new segment exchange
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and relocation local search procedures that allow searching for the feasible moves in constant

time. Results are reported with both benchmark and real data.

3.3 Multiple use of vehicles
One drawback of the standard VRP definition is that it implicitly assumes that each vehicle is

used only once over a planning period, such as working day. In several contexts, it may be
possible to assign several routes to the same vehicle and thus use fewer vehicles. Especially in
situations, where the vehicle capacity is relatively small and the number of vehicles is given,
multiple use of vehicles is the only option.

The vehicle routing problem with multiple use of vehicles is a variant of the standard
vehicle routing problem in which the same vehicle may be assigned to several routes during a
given planning period. Taillard et al. [119] describe a tabu search heuristic for this problem. The
proposed method is made up of three parts. It first generates a large set of good vehicle routes
satisfying the VRP constraints. It then makes a selection of a subset of these routes using an
enumerative algorithm. Finally, it assembles the selected routes into feasible working days using
several applications of a bin packing heuristic. Branddo and Mercer [120] propose also a tabu
search for multi-trip vehicle routing problem. The method combines nearest neighbor and

" insertion concepts with two-phase tabu search and standard neighborhoods of reinserting a
customer of exchanging a pair of customers. Brand&io and Mercer [121] used similar heuristic to
tackle real-life distribution problem faced by British biscuit manufacturer with multiple trips per
vehicle. Petch and Salhi [122] suggest a multi-phase constructive heuristic that first constructs
many feasible VRP solutions with a savings heuristic and then assigns routes to vehicles using a
bin packing heuristic. The obtained solutions are improved with a set of standard improvement
heuristics such as 2-opt, 3-opt and relocate. Olivera and Viera [123] propose an adaptive memory
algorithm where new solutions are constructed periodically using a data in the memory and

" improved by a tabu search metaheuristic that allows infeasible intermediate solutions. The initial
solution is constructed with a sweep algorithm and the tabu search works with the US procedure
[37] and a new assignment heuristic. The authors report more feasible solutions to the benchmarks

than previous papers.

3.4 Location Routing and Location-Arc Routing
While distribution management is traditionally divided into the long-term subproblem of location

and the short-term subproblem of routing, it has been shown in the last decades that an integrated
approach is more efficient. This is due to the fact that the two subproblems are inter-related in
practice. This integrated approach is named location-routing. The Location Routing Problem

(LRP) can be defined as follows: A feasible set of potential facility sites and locations and
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expected demands of each customer are given. Each customer is to be assigned to a facility which
will supply its demand. The shipments of customer demand are carried out by vehicles which are
dispatched from the facilities, and operate on routes that include multiple customers. There is a
fixed cost associated with opening a facility at each potential site, and a distribution cost
associated with any routing of vehicles that includes the cost of acquiring the vehicles used in the
routing, and the cost of delivery operations. The cost of delivery operations is linear in the total
distance traveled by the vehicles. The LRP is to determine the location of the facilities and the
vehicle routes from the facilities to the customers to minimize the sum of the location and
distribution costs such that the vehicle capacities are not exceeded. A number of issues related to
the problem perspective have to be considered in practice. Examples of such issues are:
stochasticity, number of facilities, planning horizon, time windows, vehicle and facility capacities,
multiple objectives etc.

Location routing models are especially useful for systems where the time horizon for the
facility location decisions is not very long, and location costs are comparable to the routing costs.
Some application areas include distribution in food and drink industries, delivery to retail shops,
delivery of newspapers, distribution of various consumer goods and services, engineering and
waste collection.

The heuristic solution methods applied to the LRP can be divided in location-allocation
first, route second (locate facilities first, then allocate users to facilities, and define the routes in
the end), route first, location-allocation second (set of customers belonging to a vehicle route are
first determined, routes are then constructed and facilities are located), savings and insertion
heuristics, improvement/exchange procedures, use of route length approximation and tree-tour
heuristic. Min et al. [124] present an excellent survey and explore promising research
opportunities. Other reviews can be found in Laporte [125], Salhi and Fraser [126] and Salhi and
Sari [127]. Berman et al. [128] provides a broad overview of the developments for location-
routing problems for which the number and possibly the location of customers are described by a
priori probability distributions.

Min [129] proposed both exact integer programming approach and location-allocation-
first, route second heuristic with clustering for static real-world application. Bruns and Klose
[130] propose a location-allocation-first, route second heuristic for LRP. a hierarchic
agglomerative clustering method based approach is used to get an initial estimate of delivery
costs, and the location subproblem is solved using a Lagrangean heuristic based on the relaxation
of supply and capacity constraints. The routing subproblem is then solved with conventional tour
construction heuristics combined with some improvement procedures. Similar study is reported in

Klose [131].
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Renaud et al. [132] describe a competitive tabu search heuristic. It constructs an initial
solution by assigning each customer to its nearest depot and solving the resulting VRPs by mean
of the improved petal heuristic (Renaud et al. [50]). Cordeau et al. [133] propose a tabu search
heuristic for multi-depot VRP. The used insertion scheme borrows from Gendreau et al. [37]. The
approach allows intermediate infeasible solutions, and it employs a diversification scheme based
on a penalized function. Cordeau et al. [36] applied a similar tabu search approach for the Multi-
Depot Vehicle Routing Problem with Time Windows. Polacek et al. [134] tackle the same time-
constrained variant and report very good solutions to all instances with a variable neighborhood
search algorithm. The initial solution is constructed with a greedy allocation heuristic and
improved with variants of CROSS- and 3-opt heuristics using a threshold accepting [67] type
acceptance criterion. Nagy and Salhi [135] develop a new estimation formula for route length
approximation and propose a nested heuristic approach, where location is the master problem and
routing is a subproblem. A tabu search approach with three simple neighborhoods for changing
depot composition is proposed for master problem and subproblems is solved with heuristic of
Salhi and Sari [127]. Tuzun and Burke [136] develop a two-phase tabu search based on simple
local search moves and savings algorithm by Clarke and Wright [4] for the LRP and Crevier et al.
[137] present an effective tabu search metaheuristic with adaptive memory framework. Their
model considers also inter-depot routes. Pisinger and Répke [58] report very competitive results
for standard benchmarks with their adaptive large neighborhood search heuristic, described in
Section 1.

Su [138] proposes a basic genetic algorithm with random crossover and mutation
operators, determining simultaneously the location of distribution centers and fleet size and
routing policy. Filipec et al. [139] propose a genetic algorithm coupled with - well-known GA
operators for TSP to solve non-fixed destination multi-depot VRP, where vehicles originate and
terminate at different depots. The authors also set a maximum limit for customers served by one
route to increase the reliability of supply. The genetic algorithm consists of three phases:
clustering, radial routing and building the complete link structure. Thangiah and Salhi [140]
suggest using a genetic algorithm to adjust special geometric shapes that are then used to cluster
customers into separate sets. The routes for each set are created with an insertion heuristic, and the
obtained solution is post-optimized by swapping and reallocating customers between routes and
depots, and combining and splitting routes.

Sumichrast and Markham [141] consider a problem of delivering raw materials to plants,
where the objective is to minimize both transportation and material costs, assuming the different
sources have different prices. Clarke-Wright savings heuristic combined with procedures to

exchange sources and depots between routes, as well as a lower bound obtained from a relaxed



SINTEF 19

binary formulation are presented. Chen et al. [142] introduce a model that combines routing,
scheduling and dispatching for daily deliveries in a real-life oil delivery problem. The solution
approach consists of three layers (atomic, molecular and individual) and each layer consists of
several local search operations with different objectives. Also metaheuristics, such as tabu search
and simulated annealing as well as global search, which is realized by a recursive procedure are
used to guide the move/exchange operations. Chan et al. [143] study multi-depot, multiple vehicle
LRP with stochastically processed demands, generated by a queuing network at each service
region. The study was motivated from real-life medical-evacuation case study from U.S Air
Force. A three-dimensional space-filling curve-heuristic is proposed for the stochastic model, and
its performance is evaluated using deterministic model solved by extended savings heuristic by
Clarke and Wright [4].

Salhi and Fraser [77] present an integrated system that tackles simultaneously the location
and routing problem for a variant with multiple depots and heterogeneous fleet. Modifications of
two previously proposed heuristics by Salhi and Atkinson [144] for the location problem and by
Salhi and Sari [127] for multi-depot routing problem are used. The latter is based on
determination of borderline customers and others that are easy to allocate to right depot. Wu et al.
[145] consider also the LRP with heterogeneous fleet but with limited number of vehicles. They
propose an iterative procedure that solves sequentially the subproblems of location-allocation and
vehicle routing. For the location-allocation problem, a space-filling curves heuristic is proposed.
Correspondingly, the VRP is solved with a cluster-first route-second approach, and solutions to
both problems are improved with iterative improvement heuristics, guided by a simulated
annealing algorithm. Lim and Fan [146] introduce a model where the number of homogeneous
vehicles assigned to each depot is fixed. A new one-stage approach that integrates the assignment
of customers with routing is proposed. The routing is done first with a draft-routing method and
then with a more detailed routing method.

Wasner and Zipfel [147] develop an integrated hub location routing model with backhauls
and report a case study from Austria. The model considers also the hub-hub transports in addition
to number and location of hubs. The suggested hierarchical heuristic solution method is based on
simple add and drop procedures and a series of feedback loops. Lin and Kwok [148] explore a
multi-objective model with multiple routes per vehicle. Both tabu search and simulated annealing
metaheuristics with standard simple neighborhoods are applied and tested with both real and
simulated data. Cappanera et al. [149] study the problem of locating obnoxious facilities (dump
sites, nuclear reactors, chemical industrial plants etc.) and routing obnoxious materials. The
problem is decomposed to location and routing subproblems that are solved with two Lagrangean

heuristics. The solutions of the heuristics are then improved with an effective Branch and Bound
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algorithm. Liu and Lee [150] propose a mathematical model for a variant that takes inventory
control decisions into consideration. The suggested heuristic solution method is based on route-
first location-allocation second approach and random exchanges of depots. Liu and Lin [151]
consider a similar model and propose a hybrid of tabu search and simulated annealing for its
solution. The local search moves are based on add and drop procedures.

Location-Arc Routing Problems (LARPs) are encountered in contexts where it is
necessary to simultaneously determine a traversal of a subset of edges and arcs of a graph and to
also locate facilities on the graph. The main LARP applications arise in the areas of postal
delivery, garbage collection and road maintenance. Ghiani and Laporte [152] present a survey on

the main LARP applications and algorithms.

As in the case of LRP, most LARP heuristics use a decomposition of the problem into its
main subcomponents: facility location, allocation of customers to vehicle routes and routing.
Ghiani et al. [74] propose an route first, location-allocation second heuristic in which RPP
solution is first determined by means of Frederickson’s [76] heuristic. They then simultaneously
locate facilities and construct feasible routes by determining an optimal partitioning of the RPP
solution into a set of feasible routes. Ghiani et al. [83] propose a slightly different approach for the
solution of the CARP with intermediate facilities. In the first step they obtain a feasible CARP
solution by means of the CARPET heuristic of Hertz et al [75]. Then they introduce facilities in
the CARP solution to make it feasible for the LARP.
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