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Introduction

This is the third Traceability Workshop organised in the context of the ECMDA
conference series. The two previous workshops have focused mainly on theoretical
and technical challenges of traceability in model-driven engineering. In this year’s
workshop, our goal is to put more focus on practical applications of traceability. This
is reflected in the workshop papers that represent a mixture of practical and
theoretical work,

We hope that the workshop papers act as catalysts for fruitful discussions both on
practical and theoretical solutions and challenges in model-driven traceability. What
are the current showstoppers for adopting traceability with respect to tools, processes,
languages, and mechanisms? This is one question we aim to get some insights on
during the workshop.

Acknowledgment: The organisation of the ECMDA-TW workshop was made
possible through the MODELPLEX' project (IST Project 34081).

— ECMDA Traceability Workshop Organising Committee, June 2007.

T This work is a result from the MODELPLEX project co-funded by the European
Commission under the “Information Society Technologies™ Sixth Framework
Programme (http://www.modelplex-ist.org/). Information included in this document
reflects only the authors” views. The European Community is not liable for any use
that may be made of the information contained herein.
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Improving Traceability in Model-Driven
Development of Business Applications

Andreas Rummler!, Birgit Grammel! and Christoph Pohl?

! SAP Research CEC Dresden,
Chemnitzer Str. 48, D-01187 Dresden, Germany
? SAP Research CEC Karlsruhe,
Vincenz-Priessnitz-Str. 1, D-76131 Karlsruhe, Germany
E-Mail: {andreas.rummler,birgit.grammel ,christoph.pohl}@sap.com
WWW: http://wwv.sap.com/research

Abstract. This paper gives an overview of the support for traceability
in an industrial context. The state of best practices are described and
shortcomings are identified. Furthermore the AMPLE project is intro-
duced, encompassing an overview on our approach towards traceability in
the context of Model-Driven Development (MDD) and Software Product
Lines (SPL}) in conjuction with Aspect-Oriented Software Development
(AOSD). AMPLE can be considered as a joint effort to tackle the short-
comings of current industrial practice. The paper is of positional nature
and outlines our work currently in progress.

1 Introduction

During the development stages of complex software systems many artefacts are
generated, either manually or in an automatic manner. The nature of these arte-
facts ranges from requirements expressed in text documents down to statements
in source code. Understanding the mutual dependencies and the logical relation-
ships among artefacts is a nontrivial task and becomes harder the more complex
a system is. The problem is not only of academic interest - it has also been per-
ceived in industry. According to an internal audit of customers of SAP, missing
traceability during the whole development cycle is the top-rated weakness.® In
addition, missing traceability information was explicitly mentioned as weakness
in 2005 in an external ISO certification audit.

In real world business applications traditional model-driven development ap-
proaches and software product line engineering techniques often do not reflect the
decomposition of system features well enough. For instance, compliance checks
of legal business regulations or late introduction of security properties often
crosscut the architectural design of a system. To overcome these issues Aspect-
Oriented Software Development {AQSD) technologies are gradually taking hold
in industrial software development [1, 2].

3 In 2004, 10 out of 11 customers criticized this.
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AOSD techniques aim to modularize crosscutting concerns, that are scattered
over the whole system into independent modules. These modules are called as-
pects. There is no clear mapping of aspects identified during the requirements
stage to later development stages. This is due to the fact, that aspects have
complex dependency relations, i.e. aspects are related to other artefacts within
one or more phases. Secondly tracing of aspects is aggravated through their
versatile nature, e.g. appearing or disappearing within a phase. This results in
increased complexity for the task of providing traceability in systems utilizing
AOSD techniques [3]. Model and code weaving techniques make decisions that
a tracing mechanism needs to take care of and needs to keep track of.

While traceability in MDD seems to be relatively well understood, traceabil-
ity in conjunction with AOSD techniques is a rather new field of interest. In
MDD several approaches have been implemented and are used in practice. To
mention one, traceability is supported in Query View Transformation (QVT), [4,
5], where instances of trace classes store the record of transformations. However,
in these approaches, traceability starts in the design stage. For this reason trac-
ing of artefacts created in earlier stages like requirements engineering to later
development stages is still poorly understood.

The remainder of this paper is structured as follows. First, we will give an
overview on the traceability support, which is currently implemented at SAP.
In section 3, we then continue to introduce the AMPLE project and state the
main objectives. In section 4, the focus is shifted to potential means and ways
of improving traceability in the context of AMPLE. Last, but not least a few
concluding remarks and acknowledgements are given in section 5 and 6 respec-
tively.

2 Tracebility Support inside SAP

The product development process inside SAP is backed up by an integrated pro-
cess model called Product Innovation Lifecycle (in the following abbreviated as
PIL). PIL subdivides the whole product lifecycle into several stages, reaching
from the initial idea to deployment and maintenance. The individual stages are
Invent, Define, Develop, Deploy and Oplimize and are shown in figure 1. Al-
though not explicitly shown in the mentioned figure, PIL is an iterative process,
i.e., phases may be passed several times.

The Invent-stage is the initial stage. Here ideas that could be interesting
to a specific market are collected, evaluated and categorized. Typical activities
during this stage incorporate the definition of market and solution requirements
and the analysis of how a potential product idea fits into the overall corporate
and solution strategies. The requirements originating from this stage are trans-
ferred to development actions in the succeeding Define-stage and realized in
concrete development projects in the third stage, the Develop-stage. This stage
incorporates all typical activities of a development process: From architecture
definition and high level planning over detailed design to implementation, inte-
gration and unit/acceptance test. The last two stages include the actual roll-out
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Fig. 1. Product Innovation Lifecycle Outline

to the customer and a continuous on site optimization, including corrections and
late changes.

PIL is supported by several tools, which as such are only partially available
as commercial products. There is tool support assigned to the planning stages; a
user is aided in his tasks in product portfolio management and product definition.
This covers the stages of Invent and Define. Here a coarse-grained view on a
certain product or product family is facilitated. Market requirements can be
grouped together into so-called portfolio cases and assigned to work packages.

More interesting in this context is the tool support for the next stage. This
incorporates project planning, execution, accounting, resource and time manage-
ment. The already defined work packages are assigned to newly created projects
which can be linked to actual software requirements for the purpose of providing
traceability. The idea behind this is to allow tracing of information from the
definition of a product to its delivery; requirements are meant to be arranged
in & way to enable their own management and the management of their inter-
dependencies. artefacts that are created to fulfill requirements are arranged in
a continuous path. At certain points along this path deliverables are provided;
the contained information inside is reused later on. The requirements them-
selves serve as anchors for traceable paths. To enable this, requirements must
be structured into coherent pieces, which can be interlinked. Such a formalized
outline reduces the danger of misinterpretation, which, of course, cannot be fully
eliminated.

The tool support provides templates for the creation of new requirement
specification documents. These documents are structured into a header, several
chapters and subchapters. The chapters contain requirements tables, that allow
the definition and linking of single requirements, the definition of identifiers,
types, trace-to statements and appropriate scope. These documents are finally
linked to projects where the actual activities are performed to fulfill the require-
ments. On the back-end a relation engine allows the linking of requirements to
test cases to ensure that a certain requirement is covered by one or more tests
in the final product.

9/68

o



e ~ Market ™ e
Q"“ﬁ""jii& ~Requirement -~ ) ' (\WD”‘@
—‘._. ‘-\ B

( " Market \//—‘\\
Requwemeni)  Work F’ac"i@
Project el
Software ™ //
Specification ) S Test Plan
A T
Test Case )
4 [ Sefvas | [ / |, TedtGae: )

| | Requirement i g
S B /(\ TestCase )
E’“ | Sl e
Requirement L R
8 L ,/TestCasa
oftware | ;
| Requlrernent s

/ Deslgn >(DES‘R
Object
;.__J__/ Object > o
ode
| Fragment

Design \ |
Object -
Architecture ——— | Fragment
.| Code

"| Fragment

Implementation

Fig. 2. Linking of artefacts in the Development Process

The result of each stage is a set of particular deliverables. Documenting the
transition between single deliverables could be done in a graphical way supported
by dedicated tools. At the moment this is not implemented, instead standard
office tools are used for these tasks. Examples are the manual creation of text
or spreadsheet documents. Some steps in this process are performed in a model-
based way, but are in fact still far away from a truly model-driven approach.

Looking at the full traceability picture (shown in figure 2) of the entire de-
velopment process, which is currently implemented, this incorporates the linking
of market requirements to software requirements specifications documents which
in turn are linked to their entailing software requirements. These software re-
quirements then can be linked to test cases. Further linking of requirements to
design and/or development artefacts, respectively the linking of those artefacts
to test cases is possible in general, but not sufficiently supported by tools. This
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is indicated in figure 2 by dashed lines and is subject to future work. In the cur-
rent state several interesting questions that arise during the development process
cannot be answered in an automatic and reasonable way:

— How can it be ensured, that the design which was produced by developers
really covers all requirements?

— Are the market requirements, which were defined on a very high and abstract
level, really implemented and how can this implementation be tested against
these requirements?

— Have artefacts been developed in one or more stages, such that they cause
a behaviour which is not covered by the requirements specification or even
is unwanted?

These questions can be answered on a fine-grained level by experts involved
in the development process, but not by people dealing with a coarse-grained
view. Therefore, tools are needed that are able to give reasonable answers to
these questions or at least help people in finding those answers. The current
tool support inside PIL is based on conventional development methodologies,
which do not cover new approaches like AOSD but may help in easing the task
of tracing artefacts. This is where the AMPLE project comes into play, which is
described in more detail in the next section.

3 The AMPLE Project

AMPLE stands for Aspect-Oriented, Model-Driven Product Line Engineering?.
The project is funded by the European Union and incorporates nine project
partners, being from the field of academic science as well as industry, the latter
including SAP. The overall aim of the project is to develop a methodology for the
design of Software Product Lines (SPLs) that offers improved modularisation
of variations to support their traceability across the entire SPL lifecycle. To
achieve this a novel combination of AOSD and MDD techniques is applied. The
focus is on providing a holistic treatment of variability by not only addressing
variability at each stage in the SPL life cycle but also managing variations in
associated artefacts such as requirements documentation, manuals and reports.
Furthermore, AMPLE aims to bind the variation points in various development
stages and dimensions into a coherent variability framework across the SPL
engineering life cycle thus providing effective forward and backward traceability
of variations and their impact. This makes it possible to develop resilient yet
adaptable software product line architectures for exploitation in industrial SPL
engineering processes.

The objectives of AMPLE cover all stages of the development process from
the early stages of requirements analysis and engineering over design to imple-
mentation. Most interesting in this context is a separate work package with the
goal to develop aspect-oriented models representing the interfaces between re-
quirement analysis-design, design-implementation and implementation-execution

* The website for the project can be found at http://www.ample-project.net
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phases in order to provide an abstract view of the refinement of the software prod-
uct line in order to maintain forward and backward traceability of the variations.
Along the associated infrastructure and methodologies for software product line
engineering for smooth transition to industrial software product line engineering
processes should be developed.

4 TImproving Traceability in AMPLE

Within the AMPLE project SAP is involved — to a large degree — in research
on traceshility. Questions originating from industry practice should be inves-
tigated further to come to practicable solutions. Besides the general goals in
AMPLE, namely improving transition from model-based to model-driven devel-
opment and the modularization of cross-cutting concerns into reuseable aspects,
SAP is especially interested in synergies arising from the combination of SPL
engineering approaches in existing SAP solutions with model-driven approaches
and of course in the traceability of all modelled artefacts across the whole soft-
ware lifecycle. Although traceability has been recognized as an important issue
in SPL engineering, reliable and industrial-strength tool support is missing, from
the commercial side as well as in form of academic prototypes.

Traceability refers to the linking of different artefacts on the same and on
different abstraction levels and the ability to follow those links. artefacts may
include documents, stakeholders, modelled objects or code fragments. It can be
easily noticed, that these vary in nature and structure. artefacts may be divided
into different kinds of subgroups: As an example, documents may be classified
as requirements, within a glossary, use cases or source files. In addition, links
between artefacts may also be of different kinds, the semantic meaning of links
may include refine, implement or substitule.

A recent survey of general approaches on traceability done in the AMPLE
project found several open problems and shortcomings in existing techniques:

— SPL engineering approaches are not capable of providing traceability be-
tween artefacts on different abstraction levels, i.e. between market require-
ments and software requirements [6], [7], [8]-

— Although linking between software requirements and test cases is already
applied in industry, the applied techniques are usually tailored to special
cases and are not applicable within a general context.

— Tracing information about product derivation is a complicated task. This
information may include configuration data, build information or version
numbers, which is scattered over project files with proprietary data formats.
In addition available tool support in general is poor.

— There is no integrated connection between traceability tooling and software
configuration management systems.

— Change impact and coverage information is not available end-to-end for
crosscutting concerns, subtle changes at both ends of the development stages
may impact artefacts in the whole product line [9], [10].
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— It is impossible to analyse generated artefacts for potentially unwanted side-
effects.

These problems are to be addressed in the AMPLE project. There are ap-
proaches to Aspect-Oriented Requirements Engineering (AORE) [11,12] that
can help address some of these shortcomings. For instance relationships, depen-
dencies and interactions among existing requirements can be identified at early
stages of the development lifecycle. However, AORE approaches do not explicitly
define mechanisms for mapping information gathered at the requirements level
to later development phases. There is a need for defining mapping guidelines,
rules, and heuristics for mapping of entities and trace information across the en-
tire development lifecycle. Asset repositories are also required that may collect
and maintain product line assets and the mapping rules, guidelines, and heuris-
tics. In addition, there is a need for a traceability meta-model defining which
trace information, i.e., assets, concerns, relationships, dependencies, behaviours,
compositions and mappings, needs to be captured and managed.

The approach followed in the AMPLE project relies on the modularization
of cross cutting concerns at model level. Starting already at the stage of re-
quirements engineering will foster traceability. To be able to track dependencies
between AQ and non-AQ artefacts along the development cycle, defining ex-
plicit aspect interfaces seems advantageous. Earlier work on aspect-aware inter-
faces [13] and Extensicn Join Points [14] confirms this idea. The intrusive nature
of AO techniques is reduced in its intensity by defining aspect interfaces that
partly abandon the obliviousness property but make the contract between the
to-be-extended system and the extending aspects more explicit. Although this
primarily improves maintainability, it also enhances traceability. The challenge
is to apply this concept not only at code level but also in design models or even
in requirements engineering.

Tirst experiences in combining aspect-oriented principles with model-driven
software development yielded promising results. This work was based on open-
ArchitectureWare [15, 16]. Work in progress will leverage on these experiments
on aspect interfaces, extend this approach and incorporate support for tracing.

Ongoing work consists of the definition of a metamodel for variability in SPL
including the support of AO concepts and appropriate tracing information. Based
on this metamodel a tool chain is designed that supports the definition of SPL,
product generation and full support for tracing relationships and dependencies
among automatically generated or manually created artefacts. A suitable use
case that is currently implemented consist of a complete example originating
from SAP’s core business. Here, the ideas and concepts elaborated in the AMPLE
project are examined and evaluated from a very practical perspective.

5 Conclusion

Enabling traceability of artefacts throughout all stages of the development cycle
of a software system has been recognized as a crucial task. But there is a large gap
between needs and best practices in industry on one side and published solutions
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from academic research on the other. This article gives an introduction to work
related to traceability in the AMPLE project, which intends to solve some of
the problems related to this field of research. Inside AMPLE, SAP follows an
approach where explicit extension points are defined that can be complemented
by appropriate aspects to moderate the highly intrusive nature of AO techniques.
Following such an approach will remove the ‘obliviousness’ of aspect orientation
up to a certain degree, but is to the authors’ opinion the only way to achieve
greater acceptance of these techniques in an industrial context. A developer is
now forced to take care of potential aspect-oriented extensions to the code he is
creating. In addition this concept should not only be utilized in implementation
but also raised to the levels of modelling or even requirements engineering. This
will increase maintainability and along with that traceability in general, but
especially vertical traceability among artefacts on the same abstraction level.
Based on this approach a tool chain is developed that includes complete support
of traceability from one end of the development process to the other.
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Abstract. Traceability in software engineering has been handled mostly has a
documentation activity. This paper describes a reactive approach to traceability
using MDD as general orientation and QVT as a transformation language. A
conceptual model is presented defining some of the key concepts of a reactive
traceability framework, Also the semantics of these key concepts is explained.
Some examples are given of the framework’s artefacts.

Keywords: Reactive traceability, MDD, QVT, UML, RT-MDD

1 Introduction

An information system involves a set of active artefacts that cooperate towards a
common goal. These artefacts are present in multiple views, regarding the abstract
layer we take as a viewpoint. For instance, a system may be described by its
functions, data structures and technologies, among other features, Documentation is a
part of the solution, just as the formulation of a problem may be considered part of its
solution.

Nowadays information systems are growing in complexity, i.e., in terms of the
number of artefacts and relations between them. Development of new applications
and maintenance of the existing ones should be accompanied by tools and
methodologies which minimize the risk of introducing a state of incoherence between
the artefacts. When this problem is not tackled the reality shows that programming
code evolves with no or minor relation with models. In large applications, when
models are almost completely outdated the system is in risk of becoming
unmaintainable.

Traceability, is used in many different contexts from food industry to software
development and maintenance. We focused our work in traceability between artefacts
of models and code (Fig. 1). The requirements traceability [11] was left outside the
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solution for now, but this issue may be integrated in the future work, as other types of
traceability.

Traceability deals with keeping records of relations between artefacts of the same,
or different abstract levels. We propose the term reactive fraceability as a
characteristic of a system that not only keeps information of the relations, but also can
react to and prevent changes to artefacts or its relations (traces). The goal of the RT-
MDD (Reactive Traceability Model Driven Development) framework is to maintain a
state of coherence between the artefacts of the system,
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Fig. 1. Traceability and MDA (bolder arrows defines focus of this paper).

Automated transformation of models-to-models, models-to-code, as well as code-
to-models, is becoming a reality [19, 20, 21]. These transformations generate output
artefacts from source artefacts. The relation between input and output artefacts of a
transformation is just one, and obvious, type of semantic relations among others.
Object Management Group QVT (Queries, Views and Tranformations) [3] is aimed to
standardize not only transformations with models but also other operations with
models, like queries and views. Our approach takes QVT as a starting point to
accomplish the construction of automated transformations between models and
implements a way of maintaining traces between artefacts (models and code) as well
as reacting to changes for the sake of system coherence,

Our proposal is aligned with OMG standards and recommendations like UML [5]
and QVT [3]. Even if QVT by itself has not a complete implementation, it is however
a starting point to different approaches and products like Tata ModelMorf [10] or
Compuware Optimal] [7]. Other concurrent approaches to QVT include ATL [8],
Mistral [6] and EML [18].

Gorp’s [12] consistency is a similar concept to coherence in this paper. The vision
of traceability in a MDD perspective is shared with other initiatives, such as those in
[14, 15, 16].
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The paper is structured as follows. Section 2 proposes the conceptual model of a
traceability solution and defines traceability from a systemic approach. Section 3
identifies different types of dependency relations between artefacts. Section 4 relates
transformations with traceability and explains how QVT define traces. Section 5
describes some important features of the traceability solution prototype implemented.

2 Artefacts and Traceability

The relevant information for traceability (Fig. 2) corresponds to artefacts, which are
products generated or crafted by tools used in a development process. In this context
an artefact may be any piece of code, or model object, with relevant properties
regarding traceability; for instance, an UML class, a C# method, or a SQL Server
table definition.

Metamodel H defines > contains >
ke
*
Artefact
Trace [« ] - -
> 1.* " Synchronization |1.*
Decision
1.*
.| Synchronization
. 1__*
1.* = < changes Action 1
Event )
* triggers >

Fig. 2. Conceptual model of the reactive traceability framework.

The artefact can be any object used, modified or made in the context of the
development environment, included in the system, and accessible by the reactive
traceability solution. Artefacts should be defined through of a metamodel.

For a programming language to be included in this solution it must have a
metamodel, even if not covering all possible concepts, if irrelevant to the level of
traceability needed. Our approach uses MOF to express metamodels. Artefacts may
be transformed in other artefacts, using some kind of transformation process available
(fully automatic, assisted or manual) and traces are maintained when a transformation
occurs. Of course, transformation is just one of different possible types of semantic
relations between artefacts. Considering legacy systems, a transformation may not be
possible if the code cannot be changed. In cases like this, maybe it is necessary to
record manually different relations expressed (e,g, considering a table, named client,
in the legacy system related to a UML class, named entity in a class diagram). As a
consequence, there is a need of other types of dependency relations, other than
transformations.
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3 Dependency Relations and Traces

Different dependency relations are possible between artefacts. We can identify two
types of classification: a) concepfual level and b) semantic coupling. In a) we can
consider artefacts in different conceptual levels [4] (vertical traceability), in the same
level (horizontal traceability) and within the same model or in different ones (intra
and inter-model traceability) as seen in Fig. 1.

Each dependency relation can also be characterized by the level of coupling that
exists between the artefacts. Let us define the equivalence relation between two
artefacts of a model, or from different models, as when they have the same
representation of the same concept. In this context same representation stands for
having the same data that identifies the concept, even if the artefacts are in different
levels of abstraction, or artefacts.

Model 1 Model 2
- Person Person Equivalent
g Artefacts
O | Name Name
BirthDate BirthDate
Person Human Non-equivalent
o ¢ Artefacts
o
¥ N?.l’l]ﬂ N?me Non-Coherently
BirthDate BirthDate Related Artefacts
Non-equivalent
E Person Human ot
= N_ame N:‘lme Coherent
BirthDate BirthDate Artefacts
Person is Human is
alias of alias of
Human Person

Fig. 3. Dependency relations between models,

Considering Fig. 3, there are three cases which illustrate differences between
dependency relations. In Case [ the two artefacts are equivalent, as they have the
same representation of the concept Person, considering different models. In Case 2
the classes have different names so they are not equivalent. In the same case we can’t
say if they are coherent or not, as there is no information in the models relating the
two classes. In Case 3 the two concepts are coherent, with added simplified
information to each class, as there is a semantic relation between the two artefacts.
The semantic relation is not always trivial to observe, considering complex legacy
applications, different natural language names to concepts, or even different
programming and design paradigms. In real work coherence is more difficult to
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maintain than the other two relations. It is however the kind of relation that is
necessary to deal with if reactive traceability is to be maintained between the
artefacts. Each change to an artefact may trigger an event which may change or not
the coherence state of the system itself. If a part of a system is in an incoherent state,
the system may be in risk. In consequence, the state of the system must be checked
when a change of an artefact occurs and a decision may be required to run existing
actions that will bring again the system to a coherent state.

In this perspective a trace is seen as a record of a dependency relation between two
artefacts. The artefacts may have different levels of abstraction, e.g., it is possible to
define a trace between all classes of an ULM class model and a set of table
definitions. The artefacts can be at a metalevel, i.e., at a language definition level (e.g.
artefact Class of metamodel UML). As the artefacts also include structural artefacts
(e.g. the UML class X) generic rules of traceability may not old for all necessary
traces. A reactive traceability solution must maintain the traces and ensure that they
are still valid at any time.

4 Reactive Traceability and Transformations

Transformations between models or between models and code (usually firom models
to code and not the opposite) are a relevant issue to reactive traceability. After
transformations are performed traces are created (implicitly or explicitly) but this is
not the only action that can create traces. There are two viewpoints (Fig. 4) to the
issue of creating traces: a) in legacy applications one may consider artefacts already
existent and traces will instantiate and describe some implicit or explicit semantic
relations, or dependencies, between them; b) from a starting point in an artefact
(diagram or code) it is necessary to create (or generate) another artefact, using some
type of transformation.. These two viewpoints are both necessary in a solution that
implements reactive traceability. The first item has a focus on creating and
maintaining the semantic relations between existing artefacts and the word existing is
a keyword to understand this viewpoint. At some time of the development process
changes in the system will become evolutions of an existing state. For each change
the system coherence is checked and decisions are made about the new achieved
system state. The second gives more importance to the generation process [1, 2] and
traces are relations between ofd and new (generated) artefacts. The second viewpoint
is related to the IEEE traceability definition in [13]: “the degree fo which a
relationship can be established between two or more products of the development
process, especially products having a predecessor-successor or master-subordinate
relationship to one another”. When a generation of a set of artefacts occurs it is
necessary to record the new dependency relations that are created in the process.
These two approaches are not only valid but necessary, in a development process and
reactive traceability must include both.

Transformations between models, and by extension between models and code, may
be realized using a standard like QVT [3]. The QVT specification uses trace classes to
record traceability data between artefacts. QVT has a declarative language (Relations
Language — QVT-RL), an imperative language (Operational Mappings Language —
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QVT-OML) and a simplified core language (QVT-Core) in which the other more
complex language constructs may be expressed.

Dependency Viewpoint Generative Viewpoint

Existent . .
Artefacts 13
New

Artefacts
@ f ’@
4 o E:

Traces

Reactive Traceability
Fig. 4. Creation of traces: two approaches to reach reactive traceability.

In the QVT-RL the traces are implicitly defined (which, in this context, is almost
the same as undefined), but there is a trace class generation rule that defines the
corresponding trace class definition in the QVT-Core language. The generation rule
states that [3] “Corresponding to each relation there exists a trace class in core. The

trace class contains a property corresponding to each object node in the pattern of

each domain in the relation”. Let us consider a simplified QVT relation between a
class diagram at design level written in UML and the corresponding C# classes:

relation UMLClassToCSharpClass

checkonly domain uml uc: UClass {
namespace = un:UMLNamespace{},
name= cn }

checkonly domain csharp csc: CSClass {
namespace = cen:CSNamespace(},
name= cn

}

The generated QVT-Core trace class is:

class TUMLClassToCSharpClass

uc: UClass;
un: UMLNamespace;
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csc: CSClass;
¢sn: CSNamespace;

}

When instantiated, this trace class will represent the actual dependency relation
between the two related artefacts.

5 RT-MDD Framework

As seen later, transformations are an important source of traceability information but
are not the only one available. Different tools can create artefacts that may include
other artefacts with traces that must be tracked and maintained. Considering
transformations as a necessary tool, implemented by a QFT Engine, to efficiently
produce models and code artefacts, Fig. 5 shows the high-level architecture of a
reactive traceability solution. The RT-MDD framework has providers which are
integration components to different tools. Of course, more compoenents from different
types may be added if they produce or consume artefacts with traces. The link
between the Traceability Engine and each other component varies from type of
provider. Each tool to be included in the traceability solution must have the necessary
provider plug-in that will be used to access the relevant artefacts which have traces.
The relations between artefacts are kept within the RT-MDD solution.

CASE Tool —-g? Reposilory Access
i \
\

E Blomed,
1

IDE —0O¢ Codo Manipulation :
- '

!

[}

py
i
=
S
O

Traceabllity Engine
g SRR Transformations Access

Fig. 5. UML component diagram of a traceability solution.

It is important to note, however that the traceability solution is not a production or
test environment tool. It is designed to be used in development environments. As it
acts with the structure of the target applications, if the structure is not changed there is
no need to control traceability.

The Traceability Engine (TE) permanently verifies the coherence state of the
system in a three phase approach: (1) polling, (2) artefacts change handling, and (3)
trace change handling.
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(1) The TE polls each artefact. When a change is made to an artefact, the TE adds
that artefact to a list of changed artefacts.

(2) For each artefact in the list of changed artefacts TE searches in an artefact
event list all the relevant events related to that artefact. For each of these events found,
it is necessary to verify if a valid action was made in the system. Possible valid
actions are: create, update and delete. The read action is not valid as it does not
change the system state. The create action is valid when used with metamodel
artefacts. Only then it is possible to say if an event related directly to the artefact
exists, If this is the case, the event is triggered. This phase ensures that actions over
artefacts and their properties don’t change the coherence state of the system.

(3) Afier artefact events are verified it is necessary to check if traces still hold
(even after eventual artefact changes). For each artefact in the list of changed
artefacts TE recursively searches trace events that refer artefacts contained in the
artefact. If a trace event is found, and the relevant artefact and action hold, the event is
triggered.

L.* SynchronizationDecision
ArtefactEvent S
Aetion ® 1"*'} Question
o
| b

TraccEvent SynchronizationAction

1
]
Action * ActionScript

Fig. 6. Domain model of the trace engine

When the trigger conditions are satisfied TE runs synchronization decisions (Fig.
6). When the user selects one of the decisions available TE runs a set of
synchronization actions associated to that decision. After the decision is taken the
system is in equal or more coherent state than before, If a decision of solving a
coherence issue is postponed, a warning is generated and logged in a fo-do list for
further processing.

The user interaction with the solution is minimized if trace and artefact events have
only one synchronization decision (representing just one option). In that case TE may
enforce or omit the related actions (in this case generating an entry in the fo-do list).

A prototype is currently under development wich has a graphical user interface
with QVT diagrams to define transformations and templates.
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Fig. 7. A QVT Relations diagram (made with the prototype application)

6 Conclusions

Traceability is still regarded has a documentation activity. If the human resources
involved in the project are not conscientious about the relevance of documentation in
maintenance phases, traceability is not seen as a critic issue. In the software
engineering area, traceability has to address specific issues, such has documentation,
model production and maintenance, model and code transformations and artefact
coherence. This work presents some issues that where considered in the production of
RT-MDD framework.

From the early 1970s there is work on requirements traceability, usually with a
predominant human operation. Nowadays, the presence of traceability can be very
important for the acceptance of MDD and Model Driven Architecture (MDA) in an
industry environment. Without tools supporting traceability, across all system levels,
the traditional resistance [9, 17] in MDD acceptance will continue to exist.

In our perspective, traceability is not about documentation of the system, it should
be more focused on the system itself, as well as its parts and the way they are related
to each other. Reactive traceability is a proposal with that orientation. A reactive
solution is supposed to act, creating, updating, deleting or modifying artefacts of the
target system. The number and importance of available artefact types and the level at
which the tool is able to interact with each of them is an important measure of its
capabilities.

Traceability is already present in many tools available, such as IDEs, CASE tools,
RDBMS, requirements tools. The way each tool solves the traceability problem
within the context of its artefacts is usually a black-box approach. By definition,
traceability uses artefacts from several providers, each one with a possible different
metamodel. Metamodeling and transformations are the key tools that traceability uses
to provide effective coherence between artefacts of a system.
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Abstract. We present a model-based methodology for requirements traceability
proposed in the framework of the MeMVaTEx project. The methodology relies
on the EAST-ADL language and the two UML 2.0 profiles: MARTE for real-time
embedded systems, and SysML for system requirements modeling. Along the pa-
per, we illustrate the proposed methodology by an automotive case study, namely
a knock controller, focusing on the time aspects of the requirements specified
with the MARTE UML 2.0 profile. We explain how to define the requirements
according to a proposed classification, and we present the tracing mechanisms
based on the SysML UML 2.0 profile. Finally, we describe the proposed MeM-
VaTEx methedology which extends the EAST-ADL methodology in order to take
into consideration the expression of requirements, and their traceability along the
life cycle.

Keywords: end-to-end traceability methodology, application of traceability, UML
model driven process, automotive domain, real-time, embedded.

1 Introduction

Embedded applications found in automotive domain continually increase in complexity
not only according to the functionalities they must provide, but also according to the
requirements they must meet due to multiple constraints such as dependability, timing,
resources, variability, etc. For these reasons it becomes necessary to trace these require-
ments all along the development life cycle leading to the intended product in order to
guarantee they are met. One of the major difficulties is due to the modifications that
requirements must undergo from the highest functional level to the lowest implementa-
tion level. Indeed, they must be as consistent as possible to guarantee that traceability
is efficient.

The paper presents preliminary results of a work achieved within the framework of
the MeMVaTEx project®. This project is intended to provide a methodology for require-
ments traceability using a model driven engineering (MDE) approach in order to design

®This work has been performed in the context of the MeMVaTEx project
(http://www.memvatex.org) of the System@tic Paris Region Cluster. This project is partially
funded by the French Research Agency (ANR) in the “Réseau National des Technologies
Logicielles” support.
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embedded systems of the automobile domain. For this domain which demands a high
level of dependability, sound methodologies are necessary to tackle the complex prob-
lems that arise. This project is closely related to other works carried out in the Competi-
tiveness Cluster Ile-de-France System @tic, and in the European project ATESST, since
they also concern MDE for embedded applications as well as the automotive domain.

Nowadays, dependability is a critical issue in automotive systems. The automotive
industry is now conceiving its own standard’ to introduce safety notions at every level
of the development life cycle, from the system level down to the implementation level
onto software and/or hardware. Since safety notions at each level are expressed by re-
quirements, the control of safety-critical system depends on the control of requirements
from their elicitation, their validation, and traceability through the different levels.

Requirement expression and traceability are key aspects of software engineering.
The first studies on requirements engineering in the domain of software development
has been started in 1990 [1]. Some tools like DOORS [2] handle the traceability man-
agement. More recently, the Paladin [3] approach proposed a requirement methodology
based on UML in the domain of the web semantic. The SysML [4] UML profile allows
now the designer to consider requirements as first class concepts in UML for system
level design, and to deal with traceability concerns since relations between require-
ments and, requirements or model elements, are also defined in SysML. For the real-
time embedded domain, the EAST-ADL [5, 6] language proposes a way to integrate
requirements in the modeling approach process for automotive systems. Nonetheless,
EAST-ADL neither covers all the requirement classes nor their traceability, and does
not propose an integrated methodology.

Therefore, we propose a MDE methodology based on UML and its extensions
(MARTE [7], EAST-ADL, SysML) for the modeling of requirements and their trace-
ability in embedded systems. In this paper, we shall only focus on the three first levels
defined in the methodology associated with the EAST-ADL language. However, it is
planned that the five levels of the development life cycle will be covered at the end
of the MeMVaTEx project. Consequently, the EAST-ADL methodology is extended in
order to take into consideration the expression of requirements, possibly of different
types, and their traceability along the development life cycle. An important issue con-
cerns the transformation of the requirements when one proceeds to a next level because
they request that corresponding rules are defined. We model the requirements and their
traceability with the SysML UML profile that was defined for this purpose, while of
course, relying on the EAST-ADL levels. Since timing constraint issues are of crucial
importance for the dependability of the applications we are interested in, we use the
MARTE UML profile to model accurately time relationships through the different lev-
els of the development cycle. For other issues such as dependability, safety, availability,
or security we merge the interesting features of SysML, EAST-ADL and MARTE.

We illustrate the proposed methodology by using an automotive case study, namely
a knock controller.

The paper is structured as follows. Section 2 is an overview of the EAST-ADL
language, and the EAST features we adopt in our methodology. Section 3 presents the
knock control system focusing on the temporal characteristics. Section 4 focuses on the

7 The IEC 26262, derived from IEC 61508,
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requirement expression classification and modeling. The methodology is presented in .

Section 5. Some perspectives of this work are given in the conclusion.

2 The EAST-ADL process

EAST (Embedded electronic Architecture STudy)-ADL (Architecture Description Lan-
guage) is a language for the development of vehicle embedded electronic systems.
EAST-ADL was developed in the context of the EAST-EEA European project. It pro-
vides a unified notation and a common development process for all the actors of a
car development (car-maker, suppliers,...). EAST-ADL allows a decomposition and a
modeling of an electronics system through five abstraction levels (Vehicle, Analysis,
Design, Implementation, and Operational). These levels and the corresponding model
elements provide a separation of concerns.

The Vehicle level describes the main functionalities, and the variability points of the
vehicle (Stakeholders view). The Analysis level models and refines these functionalities,
and their interactions (Control/Command engineers view). The Design level represents
a decomposition of functionalities with respect to allocation constraints, reuse, mode
change, etc. (software engineers view). The lmplementation level is an instantiation of
the design level model. It produces a flat software structure which takes into account
the software parts, the protocols and the OS (design engineers view). The Operational
level consists in mapping the implementation model onto the effective ECU, frames,
and tasks (design engineers view). An example of complete prototype car developed
with EAST-ADL process can be found in [8].

Another objective of EAST-ADL is to propose mechanisms to support variant han-
dling, requirement expression, and requirements traceability. The requirements in EAST-
ADL are an extension of those of SysML. They can be modeled either as a textual de-
scription or using a formal description, and they can be attached to create a dependence
with any EAST-ADL objects. Requirements traceablility is also based on the same de-
pendencies of SySML.

Today, EAST-ADL does not provide an integrated framework offering all these in-
teresting aspects. Our methodology inherits from the EAST-ADL process, the different
abstract levels (Vehicle, Analysis, Design, Implementation, Operational), but it enriches
the EAST-ADL language with some model elements such has the expression of time,
and the resources allocation. The traceability and requirements aspects follow a SysML
syntax.

3 Case study: knock controller

‘We illustrate our methodology with the support of an automotive application: the detec-
tion and control of the knock phenomena. In gasoline internal combustion engines with
spark ignition, an undesired effect may occur when the fuel mixture partially antomati-
cally ignites as a result of the compression in the combustion chamber.

Figure 1(a) shows the origin of the knock phenomenon. In a gasoline internal com-
bustion engine, when the piston compresses the mixture, the spark plug produces a
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Fig. 1. Knock controller description.

flame front in the combustion chamber. The generated electric spark ignites the mix-
ture, and produces uniform waves that push the piston to its original position. The very
rapid heat release implied by this abnormal combustion generates shock waves that: de-
crease the engine performance, increase some pollutants that do not comply with norms,
generate undesired engine vibrations, and decrease the user comfort. Eventually, it may
cause a destruction of the engine, by damaging the spark or piston, potentially leading
to jamming.

For theses reasons, monitoring the knock phenomenon is a critical issue. An ap-
propriate anti-knock control, represented in Figure 1(b), is applied to each cylinder at
every engine cycle from low engine speed up to the highest engine speed. A knock con-
trol system consists of one or several noise sensors, and a controller which acquire the
noise through the sensors, and computes the correction during the combustion phases
of the cylinders. Due to the speed of the combustion cycle in a motor, these treatments
may be handled while satisfying complex real-time constraints during the design of the
corresponding function. The knock control function equips a very wide range of engine
management system for gasoline system. Several strategies for acquisition and correc-
tion are possible for optimizing the treatment of the knock, leading to manage a lot of
variants for this function.

All these variants must be handled at the early stage of the design process. They
lead to multiple solutions at the end of the design process. A first-part solution to man-
age this complexity consists in proposing a precise expression and classification of the
requirements, using adapted models.

4 Expression and classification of requirements

Requirements are generally expressed by stakeholders or automatic control and soft-
ware engineers with natural languages. In a design process, requirements must be vali-
dated and verified. On the one hand verification means that the designer must guarantee,
at the different abstraction levels, that the requirement has been taken into account, and
that they give raise to a corresponding model element. Verification is of particular im-
portance in a certification process. On the other hand validation means that the designer
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must guarantee, at the different abstraction levels, that the model satisfies the require- .

ments.

We focus here on the verification of requirements. Since we develop a methodol-
ogy based on the EAST-ADL process, requirements must be expressed at the different
abstraction levels of this process. They must be refined, and a link must exist between
requirements expressed at the different levels. A link between requirements is expressed
using the traceability mechanisms of SysML. We propose a classification and a labeling
of the requirements. These features permit the characterization of traceable paths for a
requirement, or a class of requirements, through the levels of the EAST-ADL process. In
the next section we present the different classes of requirements we have adopted. With
the support of the knock example, we illustrate the SysML mechanisms provided for
traceability, and show how to associate requirements to model elements of the method-
ology. For this purpose, we use the MARTE UML profile for addressing the expression
of real-time requirement.

4.1 Definition and classification of requirement

The design of embedded real-time systems requires a precise management and tracing
of user’s requirements. It becomes even more critical when the design process must
comply with a standard such as the IEC 880 in nuclear system, CENELEC EN 50126,
EN 50128 and EN 50129 in railway system in Europe, and DO-178 and DO-254 in
aeronautic system. Above all these standards there is the general IEC 61508 standard [9]
which concerns all systems based on electric, electronics, and programmable electron-
ics. These standards recommend the application of requirement engineering with end-
to-end traceability applied to the whole V-cycle. Details and discussions about these
standards can be found in [10].

Requirements are generally expressed in natural language. Some research initiatives
are provided to transform the expression of needs into a set of requirements. A simple
description of a requirement is not fully sufficient to define it. There is other status infor-
mation that each requirement must carry. The requirements must be tagged to provide
such information.

For that purpose, we consider a requirement as a structure with several attributes. A
requirement is characterized by an identification, a textual description, and a type (finc-
tional, non-functional). The non-functional type is refined into sub-types such as relia-
bility, performance, safety, and cost, etc. Some other attributes indicate the derivation
type (decomposition/refinement), the document source where the origin of the require-
ment can be found, the verification method that must be applied on this requirement,
and its agreement status. Some of these attributes are automatically generated. For ex-
ample, the identification attribute consists of a number, and a label representing the
level in the EAST-ADL process (Vehicle Level VL, Analysis Level AL, Design Level
DL, etc.) Other attributes are defined by the user (Functional/Non-Functional), others
attributes are flags which are set after an analysis phase (Agreement status).

Table 1 gives some examples for the identification and definition of requirements
for the knock controller.

This precise labeling of requirements becomes essential when a traceability process
is requested. It is important to demonstrate that all input requirements are satisfied at
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Table 1. Example of requirement expression.

Req. Name |ID Text

Eng.Pha.Pos. |VL-F-2 The engine management must detect the different positions
of the cylinder and control the ignition in an optimal manner.
Eng.Cam.Pos.|AL-F-4 Observing the camshaft position, the knock function must
locate the ignition phase in a 4 stroke cycle.

Eng.Cra.Pos. [AL-F-8 Observing the crankshaft position the knock function must
detect which cylinder is concerned by the knock correction.
Kno.Con.Dur. |AL-NF-P-2 |The filtering and the detection/correction must be executed
before the next ignition phase of the same cylinder.
Acq.Dur.Con. [AL-NF-P-3 | The acquisition duration window must be large enough to
acquire at most 2 samples of the knock sensor.

Rot.Spe.Val. [AL-NF-D-2|The rotation speed for the motor is lower than a constant
MAXRPM.

the lower levels (i.e. they are linked to other requirements, or they have been taken
into account by a model). This demonstration is based on links established between
requirements, and on arguments associated to these links.

We use SysML to express the requirements and their relationships. The section 4.2
presents the different constructions taken from SysML for this purpose.

4.2 SysML requirement and tracing mechanisms

The SysML profile (for Systems Modeling Language) is a specialization of UML for
systems engineering applications. SysML supports specification, analysis, design, ver-
ification, and validation of various systems potentially complex. SysML is defined as
an UML profile since it uses a subset of UML 2.1 [11]. SysML extends UML with new
notations and diagrams such as the requirement, and parametric diagrams which are an
extension of internal block diagrams. We focus on requirement diagram since this is the
most appropriated for our considerations.

The purpose of requirements in SysML is to provide a relationship between re-
quirements, as traditionally managed, and model elements as usually managed in UML.
Thus, a requirement is a stereotype of a UML class that is subject to a set of constraints.
A requirement in SysML is composed of an identifier and a text that describes the re-
quirement in a natural language. Additional properties can be attached to these two
fields. We use this functionality in our approach.

Several links are defined in SysML to express requirements relationships, and to link
them to other model elements. The different relationships are the requirements hierar-
chy (refine) to describe how a model element can be used to further refine a requirement,
the derivation (derive) that corresponds to requirements at the next level of a hierarchy,
the requirement satisfaction (satisfy) which describes how a design or an implementa-
tion model satisfies a requirement, and the verification (verify) which defines how a test
case verifies a requirement. With such relationships, initial requirements can be traced
by following a top down path in the requirement tree. In reverse, a requirement at any
level can be traced back to its origin. Supported by these previous SysML relations,
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traceability between requirements and model elements, are considered directly in the
models; such as traceability between requirement evolutions in the model development.
The Figure 2 illustrates a requirement diagram and relationship between requirements
and model elements for the knock controller case study.
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Fig. 2. Example of a SysML requirement diagram.

LY
wetlodken
{unite"CAM)
C2AnaleClock

4.3 MARTE profile for real-time requirements modeling

Real-time constraints belong to the non-functional requirements class. The MARTE
profile is used in conjunction with SysML to model the temporal and allocation char-
acteristics of an embedded system. MARTE extends the modeling capabilities of UML
and SysML, and makes clear the semantic with an objective of model validation.

In this section we pay a special attention to the time model of MARTE which allows
the modeling of multi-clock systems. As embedded systems interact with mechanical
and physical components the software computing part is usually triggered by heteroge-
neous events. A clock can be either associated with the classical time (second, hertz) or
a logical one (round per minute, angular position, meter).

The knock control example is a good candidate for multi-clock system modeling.
The capture phase depends on the period, in hertz, of the acquisition sensor whereas
the filtering and correction phases are triggered by events the occurrences of which are
measured in angle degrees. This possibility to deal with such logical time is adapted
to the specification expression of embedded systems. It allows a manipulation of time
at a high level of abstraction, and a direct relationship between the requirements and
the model. The definition of clocks in MARTE corresponds to the definition of a class
named AngleClock which is the time base that represents the temporal evolution of a
rotation. From this class we declare two instances of this clock, camClk and erlClk .
These clocks represent the revolution position of the camshaft and the crankshaft which
are crucial mechanical elements of an engine. The definition of these two clocks partic-
ipates to the satisfaction of the AL-F-4 and AL-F-8 requirements (cf. Figure 2). These
two clocks have a resolution, an offset, and a maximal value (modulo).
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Fig. 3. State machine of a four stroke cycle.

These clocks can trigger some processing as it is showed in Figure 3. The timed-
Processing elements are UML behaviors that can be triggered by logical events or
clocks. Some duration constraints may be expressed on these behaviors. For exam-
ple, the requirement AL-NF-P-2, which belongs to the performance class, is satisfied
by a duration that must be associated as a constraint to the knock controller block.
<timedDurationConstraint>3>{ KFilter. Duration+KDetect. Duration<720° CAM}

This capability to express at the same level of abstraction the requirements and the
model is a way to bridging the gap between the requirements and the model, but also to
link the requirements with the underlying properties to be verified.

5 MeMVaTEx methodology

‘We propose a methodology that considers requirements as a first class concept, from the
early steps of modeling, and during all the phases of the development life cycle. The
MeMVaTEx methodology aims at merging different languages and standards: UML2.0
and SysML are used for system modeling and requirements traceability in the mod-
els, the EAST-ADL language is used for the automotive architectural description. The
MARTE UML profile deals with the real-time constraints modeling. Furthermore, the
EAST-ADL process is adopted as a standard to provide the different modeling abstrac-
tion levels (see section 2).

As shows in Figure 4, the proposed methodology keeps the five levels of the EAST-
ADL process for structuring the development. At this stage of the project we have only
addressed the vehicle, analysis, and design levels. For each level, two branches evolve
in parallel. The requirement branch on the left side allows expressing, defining, and
tracing the requirements of the system. Requirements are expressed in such a way that
they can be managed by dedicated tools; the modeling branch on the right side is com-
posed of models integrating related requirements. A set of heterogeneous models can
be explored at each level for expressing different parts of the system (behavior, archi-
tecture, algorithms, allocations,...) For instance, UML/SysML models are built with
the ARTiSAN Studio tool, and the behavioral functions with the Simulink tool. In order
to manage the requirements we use Reqtify, a light and powerful tool who facilitates the
traceability: textual requirements — stored in Word or Excel documents — are imported
to Reqtify [12], and are represented in our model. Each requirement is linked to another
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Fig. 4. The MeMVaTEx methodology.

requirement, or a part of the model, or a test case. Reqtify manages these links and can
export analysis and traceability reports at any level during the development process.

The general outline presented in Figure 4 shows that initial requirements are given
through a textual form, and must be dispatched at the different levels. The original-
ity lies in the fact that these requirements are considered along the whole application
development life cycle, and built at each level, Additionally, some requirements can ap-
pears at intermediate levels, like exported requirements, and for these reasons, it can be
confusing to trace back these requirements to formers levels. Requirements are traced
among the modeling branch by using the traceability mechanisms offered by the SysML
metamodel (composition, verification, satisfiability, etc.) This traceability can also be
followed between the corresponding requirements in the requirement documents.

From this point, requirements models are defined, and traceability is achieved be-
tween requirements pools and models. This is done by building references between
requirements elements included in the models and requirements in external documents.
These external documents (on the left branch in the Figure 4) are requirements pools. In
the project, the references between the initial requirements documents and the require-
ments model elements are managed by traceability tools like Reqtify or its open-source
release in Topcased, TRAMWAY.

Model elements used at each level are carefully selected in the methodology. We
have voluntarily limited the use of some models because they are not endowed with a
sufficiently precise semantics giving raise to ambiguous models. All these choices are
made with the objective to connect the models with validation and verification (V&V)
tools. These tools will check that models satisfy properties induced by requirement ex-
pressions. The connection with V&YV tools and technologies will be facilitated by the
MARTE profile that includes the analysis part of UML models for real-time systems; it
will also be facilitated by the use of Matlab models and its connection with the Simulink
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tool for the design levels. The MeMVaTEx methodology achieves a major goal for in-
dustry in the domain of system and software engineering based on model driven archi-
tecture. It allows the designer to facilitate the use of common tools, an easier update and
evolution of the models, and the requirement integration along the MeMVaTEx process.

6 Conclusion

We presented the MeMVaTEx methodology for requirements traceability through the
first three levels of the EAST-ADL process in the case of a knock controller, example
coming from the automotive domain. Relying on the two UML 2.0 profiles: MARTE
for real-time embedded systems, and SysML for system requirements, it allows the
designer to express the requirements according to a proposed classification, and to trace
them along the EAST-ADL process.

This method will provide a competitive advantage to the industry, a mastering of
the system development quality, and will reduce the cost of re-engineering by decom-
position of solution, and backward impact analysis (reuse) centered on the requirement
management.

As future works we plan to extend the methodology to the five levels of the EAST-
ADL process taking into account the requirement related to the hardware architecture,
the operating system, and the allocation of functions to the hardware components,
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Abstract. Some model transformations require more information than can be
derived from its source model(s) in order 10 generate a meaningful target model.
For example, a transformation with two source models needs to know how their
respective model elements relate; these relations often only exist implicitly as part
of the transformations developer's knowledge. In this paper we show that trace-
ability models, who can be automatically generated as part of any model trans-
formation, contain explicit inter- and intra-model relations that are valuable to
subsequent transformations. We explain how to extract this information and pro-
pose a number of additions to current transformation techniques that are needed
to completely open up traceability information to transformation developers.

1 Introduction

Classically, the creation and maintenance of traceability information has been a man-
ual and labor intensive task. The rise of Model Driven Development (MDD) eases this
problem by introducing model transformations, which can generate basic traces auto-
matically. MDD recognizes the need of many different intermediate models to represent
a sysiem, which results in an abundance of readily available traces that interrelate ev-
ery piece of the system. Typical uses of this traceability information are: showing that
requirements are met, analyzing impact of changes, propagating changes, etc.

In this paper we present a new use of traceability information in the context of trans-
formation chains. A transformation chain or transformation composition is a network
of many subtransformations, each contributing a small part to a larger transformation
goal. Each subtransformation also produces traces that contribute to a global traceabil-
ity graph. This graph interrelates disparate models that represent different aspects of a
system (e.g. functional, security and persistence model), produced as part of a trans-
formation chain. In some cases we need to know exactly how these aspects are related
in order to perform further transformations (e.g. which database table stores a partic-
ular attribute from the functional model). This kind of information usually cannot be
extracted from the individual models but is hidden in the traceability models.

‘We will show how generated traces can provide non-trivial inter- and intra-model
relations without imposing many additional requirements on the models or transforma-
tions. We define trace navigation as an operation to derive the required information

* The described work is part of the EUREKA-ITEA MARTES project, and partly funded by the
Flemish government institution IWT (Institute for the Promotion of Innovation by Science and
Technology in Flanders).
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and propose frace tagging to enrich the information contained in the traceability graph.
Finally we discuss how these concepts can be integrated in current transformation tech-
nologies.

The rest of the paper is structured as follows. Section 2 provides the necessary
background on traceability modeling and trace generation. In Section 3, we show that
generic traceability information can be used to derive non-trivial relations between
model elements. In some cases, we must add a specific meaning to traces in order to
extract useful information (Section 4). In Section 5 we discuss how our approach can
be integrated in current transformation technologies. We wrap up by presenting related
work (Section 6) and drawing conclusions (Section 7).

2 Background

In the context of MDD, traceability information is represented as a model on its own. In
this section we briefly discuss what a traceability (meta)model is (2.1) and how traces
can be generated automatically by transformations (2.2).

2.1 Traceability Metamodel

A traceability metamodel captures how model elements may be related by trace rela-
tions and defines the semantics of such relations. It is often necessary to distinguish
between different kinds of traces. For example, it is interesting to know whether a trace
denotes a relationship between a textual requirement and an architectural element or
indicates a refinement within the design. The required kinds of traces are often highly
project dependent [1]. In this subsection, we make a concise comparison between two
different traceability metamodels that both facilitate specific kinds of traces.

TracaablaElomont irace
source 4
TraceableElement | TaggedTrace |
target EEEEEEEEE——
’ LTS + String[] lags
target
' McTracal
(a) pure metamodel (b) trace tagging

Fig. 1. Two extreme traceability metamodels.

In a pure metamodel approach, the traceability metamodel specifies every kind of
trace we may need. Figure 1(a) shows a snapshot of such a metamodel. The two top
classes indicate that a Trace can relate two TraceableElements. If we need a more spe-
cific kind of trace it suffices to subclass Trace and specialize its associations (see Speci-
ficTrace in the figure). The most notable advantage of this approach is that we can pre-
cisely specify both usage constraints and semantics of each trace kind at the metamodel
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level. The main drawback is its lack of flexibility: every change in traceability require-
ments needs to be reflected (hard-coded) in the metamodel. Project-specific trace kinds
are expressed directly in the metamodel, which limits potential reuse to one project.

The trace fagging approach uses a simple and general traceability metamodel (see
Figure 1(b)) and allows users to annotate generic traces with attributes or tags. A similar
approach is used in specialized tools such as Telelogic DOORS. The kinds of traces are
represented by tags and are defined at the model rather than at the metamodel level.
This prevents us from specifying precise semantics and usage rules in the metamodel.
A user can add any tag without having to adhere to any rules. At the same time this kind
of flexibility is its biggest advantage. The metamodel never needs to be changed, hence
this kind of metameodel can be reused in any project.

We will show that, because of its generality and flexibility, the trace tagging ap-
proach is best suited for integrating traceability into transformation compositions.

2.2 Automatic Trace Generation

Automatic model transformations can generate traceability information along with the
target model(s). According to [2], transformation approaches either have dedicated sup-
port for traceability or rely on the developer to encode traceability as a regular output
model. In any case, it is favorable to incorporate traceability generation into the trans-
formation as opposed to producing it manually, no matter whether we apply the pure
metamodel or tagging approach.

The major advantage of dedicated traceability support is that we get the traceability
model(s) at an extremely low cost; the developer has to do little to no additional effort.
A practical disadvantage is that the traceability metamodel is then fixed and may not be
standardized among different transformation engines. Also, the level of granularity of
the traces may not be the same.

Alternatively we can treat traceability as a regular output model of the transfor-
mation and incorporate additional transformation rules to generate it. The choice of
metamodel is then completely at the discretion of the developer and does not depend
on the transformation engine. The drawback is that additional effort is required to add
traceability-specific transformation rules, which also pollute the implementation. An
approach that partly solves these issues by automatically generating the trace-related
transformation rules was proposed in [3].

Since our research is focussed on composing many subtransformations and com-
bining different transformation technologies, we can only assume a generic traceability
metamodel (i.e. Figure 1(b)) as the least common denominator of all transformation
technologies. Furthermore we assume that each transformation creates a separate trace
for each generated target model element; this link points to the source element(s) from
which the target was created. Hence, no model element exists that is not fully traceable
back to its source throughout the transformation chain.

3 Leveraging Traceability Models

In an MDD approach we use many models that offer different views on a system: dif-
ferent levels of abstraction, different sub-aspects of a system, etc. Many of these models
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are derived through automatic transformations and are hence highly interlinked through
automatically generated traceability models (as discussed in 2.2). In 3.1 we show that
the information contained in traceability models can be leveraged for development of
further transformations. We discuss an elaborate example in subsection 3.2.

3.1 Discovering Useful Trace Information

Figure 2(a) and 2(b) present examples of transformations and models along with their
generated traceability models. Each curved line in the figure represents a single trace
and is part of a traceability model. For example in Figure 2(a) there are in fact three
models: UML-1, UML-2 and the traceability model that connects these two.

UML-1
MyClass |.

UML-1 KD umML-2

MyClass || "[ MyClass

] +MyAttr<]]
+MyAttr-t =MyAttr kY
a1 +getAttr()
MyClass
-MyAttr
-{+getAttr()

—

(a) intra-model (b) inter-model

Fig. 2. Deriving model relations from past traceability information,

Figure 2(a) shows a transformation TF from source UML-1 to target UML-2 that
adds accessors methods (i.e. getters) to classes and makes corresponding attributes pri-
vate, We focus on traces Artr2Anr and Antr2Get, labeled according to their transforma-
tion rule. The dotted arrows on the figure indicate that we can navigate back and forth
through the traceability model and the UML-1 model to discover an intra-model rela-
tion between MyArtr and getArtr() in the UML-2 model. A subsequent transformation
can use this information, which matches attributes to their accessors, for example to
generate a detailed implementation for accessors. As a result, the concern of naming
the accessor and making the attribute private (transformation TF) can be separated from
the implementation generation. The necessary information is implicitly passed via the
generated traces, Without traceability, a subsequent transformation would would only
be able to guess the relation between accessor and attribute (e.g. by matching strings).

A second example is shown in Figure 2(b). Class model UML-1 is transformed into
an XML data type definition model (XML-DTD) [4] and a refined class model UML-2.
This transformation is accomplished in two parallel steps (TF1 and TF2); TF2 is equiv-
alent to the transformation in Figure 2(a). Suppose that we now introduce an additional
subsequent transformation (TF3) to generate a persistence layer that can load objects
from an XML file. This transformation needs to know, amongst others, the exact re-
lations between class attributes and XML properties in order to produce a valid target
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model. If we solely use UML-2 and XML-DTD as inputs it is hard to find these relations.
Resorting to the traceability models offers a solution, For example, the XML property
that corresponds to class attribute MyAsr can be found by navigating back (Arr2Anr)
and forth (Ar2Prop) through the traceability model (see dotted arrows). This example
shows that we can also derive infer-model relations from traceability models.

In the former paragraphs we have used ‘navigate’ whenever we combined the infor-
mation from one or more traces to derive relations between transformation input model
elements. We consider the union of all traceability models and regular models as a graph
G where elements from the regular models are vertices v and traces are edges E. We can
hence give a definition for trace navigation.

Definition 1. Given an input vertex v; and a set of navigation target models M;, a frace
navigation is any operation that takes v; as input and yields a collection of vertices V,
as output, All the elements of v, are reachable from v; and are owned by a model in M;.

3.2 Example: Persistence with a Relational Database

In this subsection we present a realistic example where a relational persistence layer is
generated by a composition of a transformations. The complete composition is shown
in Figure 3.

In the upper part, TFa1 and TF42 subsequently transform the initial class model
into an entity-relationship model (ER) [5] and corresponding relational database tables
(RDB/SQL). Notice that the transformation from entity-relationship to database tables
(TFa2) is not a trivial one-to-one mapping; only two tables are introduced to represent
three elements of the ER model. In the lower part, TFp; and TFg transform the class
model into a simplified class model UML-2 (taking away the association class) and
subsequently a JAVA model. The figure also shows all the traces that were created by
each subtransformation.

Having this many intermediate models has the advantage that different concerns
are treated separately in different transformations and are visible in separate, highly
specialized models. This narrows the scope of each subtransformation, making them
easier to implement, and offers a dedicated view to each domain expert —i.e. a database
specialist considers the ER model while a Java programmer only looks at the JAVA
model.

After executing all the transformations, we end up with the current models: RD-
B/SQL and JAVA. At this point we introduce a new transformation TFygw (see Figure 3)
that adds database access code to the JAVA model; part of the resulting model is shown
in the rightmost part of the figure. Transformation TFy g takes both RDB/SQL and JAVA
models as input since a persistence layer involves getting values from the tables in the
database (RDB/SQL model) and storing them as class attribute values of the JAVA model.

In Figure 3 we show how we can relate classes to database tables in order to generate
the correct sql query for the Person class. Just by navigating the traces through the old
models, we end up with the Employee table (follow the lines marked with dots), which
is indeed the table where the information about Person is stored; note that we also get
the corresponding primary key. It would be very difficult to find this relation without the
traceability information since there is no one-to-one correspondence from the RDB/SQL
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Fig. 3. Using traceability in a transformation chain to generate a relational persistence layer.
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model structure to the JAVA class structure. It is easy to see that we can also use the
traces to find corresponding table fields for the attributes of the Company and Job class,
for example a Job’s salary attribute corresponds to jsalary column in the database.
Because of space restrictions we leave it up to the reader to find other relations hidden
in the traceability information. Two other examples are given at the bottom rightmost
corner of Figure 3.

In this and the previous subsection we have shown how we can extract valuable
information from a global traceability graph that cannot be extracted from models in-
dividually but is sometimes required to perform meaningful transformations. A key
observation that can be made at this point is that, although we heavily use the trace-
ability models to derive relations, a transformation only needs to consider its actual
inputs. The navigation through the traceability models can be handled transparently by
a generic ‘trace query’ operation. As a consequence, a transformation does not have to
depend explicitly on each one of the previous (traceability) models (see also Section 5).

4 Producing Unambiguous Traceability Models

As allowed by Definition 1, a trace navigation can return more than one result. In many
cases the required element can be selected by filtering on the element’s type (see also
Section 3.2). If the result of a navigation yields several elements of the same type how-
ever, the obtained information will be ambiguous. We retake the example where an
accessor method is generated for each class attribute and we now include generation of
mutator methods (i.e. a setters) in a separate transformation (see Figure 4). If we start
navigation from attribute MyAter, we get a collection of two operations as result: both
mutator and accessor (see dotted arrows). Since they are of the same type (Operation),
it is impossible to filter out the desired result,

To solve this issue we need to add additional semantics to the traces that allow
to distinguish different trace paths. In case of the example we need to be able to find
out which trace path leads to the accessor and which leads to the mutator. Since we
use a generic traceability metamodel, an appropriate way to add these semantics is by
applying the trace tagging approach (explained in 2.1). This way we do not limit the
possible semantics of the traces by the traceability metamodel; these semantics are very
dependent on the type of transformation and it seems quite impossible to capture all
possibilities a priori as in a pure metamodel approach (see 2.1).

SOURCELl Eﬁ?jﬁ%’gﬁlﬁ TARGET2
MyCIass:_’____;ﬂ::__h _______ ... |.MyClass

+MyatnET Mmoo I-MyAttr

Fig. 4. Navigating tagged trace links.

In figure 4 we apply two consecutive transformations: first we add mutators (TAR-
GET1) and subsequently we add accessors (TARGETZ2) and tag the traces appropriately
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with ‘set” and ‘get’. Further transformations can now unambiguously find both mutators
and accessors for each attribute in model TARGET2 by navigating via the appropriate
traces. As long as a ‘set’ trace is encountered on the navigation path we get the mutator;
when a ‘get’ tag is encountered, we get the accessor. We refer to a navigation that takes
tagged traces into account as a qualified navigation. The following definition uses the
same assumptions as Definition I.

Definition 2. A gqualified trace navigation for tag ! is a navigation where each path
Sfrom input vertex v; to any of the result vertices in vV, contain al least one edge (trace)
tagged witlh t.

In case the tagged trace models, produced by previous transformations, still yield
ambiguous trace navigation results it is up to the transformation assembler (who speci-
fies a transformation composition) to decorate the traces with additional tags.

5 Integrating Traceability in Transformations

We have shown that automatic model transformations can generate traceability models
at a very low cost and that we can navigate through traces to extract useful information.
In this section we identify three transformation areas that need to be extended in order
to fully implement our approach. We also propose early ideas to extend these areas.

Production of Traces It is not very hard to produce traceability models as part of model
transformations. Some transformation languages even offer dedicated support for this
purpose (for an overview, see [2]). Nevertheless, we believe that it would be useful to
see how this can be improved, keeping the trace tagging metamodel in mind. Adding
dedicated trace tagging syntax to transformation languages could be very useful, for
example allowing annotation of each transformation target element with a tag that is
transferred to a corresponding trace at execution time (see Listing 1.1).

rule Attr2Set
source( Attribute aln)
target (Operation oQut) tag ‘set’

Listing 1.1. Example syntax for trace tagging (in pseudo code).

Traceability Queries In order for transformations to access traceability information
(through the global traceability graph), they will need to include both traceability mod-
els (edges) and past regular models (vertices) as additional inputs. This has very nega-
tive effects on various aspects of the transformation. First of all reusability goes down
since the transformation is directly dependent on all the intermediate results produced
by previous transformations. Secondly, the specification of the transformation becomes
cluttered with many additional models that are not used directly in the transformation
but are solely used to derive relations between the real input models. Finally, trace nav-
igation needs to be encoded in the transformation itself, cluttering its implementation.
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However, as briefly mentioned in Section 3.2, a transformation does not have to
depend directly on all the previous models if we factor out the (qualified) trace navi-
gation operation. We propose to introduce the traceVia(tag: Set(String)): Set(oclAny)
operation in OCL as the single access point to the traceability information. In Listing
1.2 we use this operation to find out if an operation is a mutator. This approach would
eliminate most of the disadvantages described in the previous paragraph.

rule RenameMutators
source (Operation in)
when in.traceVia(‘set ')—>select(ocllsTypeOf(Property))—>
notEmpty ()
target(Operation out)
out.name = ‘my’ + in.name

Listing 1.2. Example syntax for trace navigation (in pseudo code).

Declaration of Traceability Usage Each transformation needs to have a clear speci-
fication so that it can easily be reused and composed in a transformation chain. In the
first place, this comes down to a specification of in and output models. But, if trans-
formations also depend on traceability information from previous transformations, the
specification also has to include that information. We think that this can be accom-
plished by specifying required and provided trace tags. Each transformation can define
its own tags independently of other transformations, improving reusability. Whenever
the transformation assembler connects transformations it might then be necessary to do
a semantic mapping between required and provided tags. More research is needed to
find a suitable set of mapping strategies.

6 Related Work

In previous work [6] we have proposed a technique that uses UML Profiles to encode
intra-model traceability relations directly in a UML model. The approach taken in this
paper extends this work by externalizing traces, allowing for inter-model relations and
metamodel independence.

Most current transformation languages [7, 3, 8] build an intemnal traceability model
that can be interrogated at execution time, for example, to check if a target element
was already created for a given source element. This approach is specific to each trans-
formation language and sometimes to the individual transformation specification. The
language determines the (raceability metamodel and the transformation specification
determines the label of the traces (in case of QVT/Relational the traceability metamodel
is deduced from the transformation specification). The approach taken only provides ac-
cess to the traces produced within the scope of the current transformation. The aim of
our approach is to open up this information to other subtransformations.

Marvie describes a transformation composition framework [9] that allows manual
creation of linkings (traces). These linkings can then be accessed by subsequent trans-
formation, although this is limited to searching specific traces by name, introducing
tight coupling between subtransformations. Our proposal allows a more loose coupling
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by matching tags within a trace navigation and is able to deduce information that spans
more than a single trace.

In [10], a traceability framework for Kermeta is discussed. This framework supports
the creation of traces throughout a transformation chain. However, the authors do not
discuss how this information can be exploited in subsequent transformations,

7 Conclusions & Future Work

Currently, most model transformations do not take the results of previous transforma-
tions into account. These intermediate results are a collection of regular and traceability
models; the latter can be produced at very low cost in an MDD setting,

In this paper, we considered intermediate models as part of a global traceability
graph and showed that this graph can be used to derive useful relations between (inter)
an within (intra) input models of subsequent transformations. These relations cannot
be derived from individual input models but are sometimes required to specify mean-
ingful transformations. We defined the notion of (qualified) trace navigation as a meta-
model independent way to search for such relations. We introduced semantic annota-
tions (tags) on the traceability models to avoid ambiguities during trace navigation.

Finally, we discussed three areas in transformation techniques that need to be ex-
tended in order to enable the use of traceability in transformation development. These
are integration of trace creation (1) and trace navigation/querying (2) in transformation
languages and (3) declaring traceability usage in a transformation specification. We are
currently extending ATL [3] with the traceVia operation that we proposed as a solution
for (2). We will use this extended version of ATL to further validate our approach.
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Abstract. Establishing and using traceability and provenance between different
models is a very important issue in complex software systems. Traceability in
the small (local traceability) handles the trace information between model
clements. Traceability in the large (global traceability) handles traceability
information between models as a whole. Current solutions are more or less ad-
hoc approaches that mix local and global traceability. In this paper, we present
global model management as a generic solution to support traceability in the
large. Based on previous experience on traceability in the small using model
weaving, we propose a novel approach that uses traceability megamodels, The
traceability megamodels are extensible, thus supporting different kinds of
traceability. Consequently, weaving models and megamodels are two
complementary approaches to deploy a generic and complete traceability
solution.

1 Introduction

Complex systems are represented by several kinds of models, for instance state chart
models, UML models, transformation models, weaving models, and many others.
These models are not isolated entities, but they are linked through different kinds of
abstract relations. For instance, consider a service oriented architecture, where several
services are executed to produce a particular output [7]. It may be necessary to know
the sources that were used to generate this output, for example, to verify if the process
is correctly executed, or to check if the sources are reliable. This scenario is typical in
data provenance applications [10], where it is necessary to know which elements of a
set of data sources were used to generate a target data source.

Consider another example of a bridge between two concrete syntaxes, KM3 [6]
and SQL-DDL (Data Definition Language), having a MDE platform such as AMMA
[1] as bridging platform. Several operations are executed during this process: the
injection of the SQL-DDL file into the MDE platform, the production of the KM3 and
SQL-DDL metamodels, the transformation of a KM3 model into a SQL-DDL model,
and the extraction of the SQL-DDL model into its concrete syntax. To be able to trace
back from one representation to another, it is necessary to record this chain of
relations.
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Traceability and provenance handling consists of storing information that enables
to reconstruct these chains of operations. There are several issues that must be
considered in traceability and provenance scenarios. First, it is necessary to know how
to define fined-grained relationships between the elements of the models. For
instance, to know which KM3 element was used to generate a target SQL-DDL
element. In typical data provenance applications [10], the source and target models
are annotated (or decorated) with the provenance information (we do not take into
account issues such as security or privacy of the data). Despite being simple, these
approaches have a major drawback: the source and target models are polluted with
additional information that is not part of the model semantics. It is also necessary to
modify the related query language to be able to read these traceability annotations. In
addition, the complexity of the annotations may considerably increase when the
number of relationships between models is large. The overhead of this solution may
be too expensive. Moreover, it requires to adapt each metamodel to take in account
the traceability issues. We rather think it should be profitable to have a loosely
coupled solution. This solution would be sufficiently generic to be applied to any use
cases but also extensible to be refined. Lastly, this approach would distinguish
traceability of models elements from traceability of models, to allow different
navigation levels: microscopic (model elements) and macroscopic (model).

The traceability and provenance between the elements of different models is called
traceability in the small. We propose using weaving models to support traceability in
the small. Weaving has already proved to be useful to represent relationships between
different models in different application scenarios [2] [4]. A weaving model stores
traceability information that is loosely coupled with the related models. This means
the traced models are not modified or updated with extra traceability information.
This enables to have a clear separation of the traced models from the traceability
weaving model, and to have a unified view to handle all of these models. In addition,
the weaving model conforms to a weaving metamodel that is extensible, thus
supporting different kinds of traceability links. It is possible to create a hierarchy of
metamodel extensions. This is very important because of the heterogeneity of the
traceability scenarios.

However, fine-grained relationships between model elements are not enough to
give a global view of the provenance of the data, because the weaving models
contains double undirected links. For instance, in addition to discovering which
elements of a given model are the origins of a target model element, it is necessary to
have a global view of all the models involved in the traceability process.

There are different approaches to support traceability in the large. The work from
[7] [9] proposes a provenance metamodel that enables expressing at the same time
traceability between model elements and models. The main drawback is that it does
not provide a clear separation between global and local relationships. Moreover, those
relationships do not have the same semantic most of the time. Thus, they should be
represented by different models. In requirements traceability [8], several traceability
metamodels are defined to store traceability information in different abstraction
levels. For instance, a decision maker uses more general provenance and traceability
information, while a developer uses traceability information in a smaller and more
specific context.
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We propose using global model management (GMM) to store global traceability
relationships. It is a complementary solution to model weaving. We propose using
megamodels to handle the global traceability relationships. The concept of
megamodel was initially proposed in [3]. A megamodel contains relationships
between models, for instance transformation models, weaving models, UML models,
or metamodels. We call it traceability in the large. Similarly to weaving models, a
megamodel conforms to an extensible metamodel. This enables to store different
kinds of traceability information. In addition, there is a clear separation between
traceability in the large and traceability in the small.

To summarize, the contributions of this paper are the following. First, we propose
the use of weaving models to store traceability relationships between model elements.
We validate our approach by presenting a use case. Second, based on our experiences,
we raise a set of issues that must be supported in a global traceability solution. We
present a complete and generic proposal by using megamodels.

This paper is organized as follows. Section 2 presents a typical use case of
traceability in the small, which is the traceability of model transformations. We show
how weaving models are used to store the execution trace of ATL transformations.
Section 3 presents issues of traceability in the large. Section 4 concludes.

2 Traceability in the Small

Traceability in the small consists of storing any relevant traceability information at
the model element level. One typical application of traceability in the small is to store
the execution trace of model transformations [5], i.e., to support traceability of model
transformations. Based on previous work [5], this section presents an application
scenario that uses weaving models to store the execution trace of ATL
transformations.

2.1 Traceability of model transformations

A model transformation takes a set of models as input and produces a set of models as
output. The elements of the input models are visited and then transformed into
elements of the output models. After the execution of the transformation, it is
necessary to discover which set of elements of the source models were visited and
transformed into a set of target model elements, and which transformation rule was
executed.

We present in Figure | a concise example of a transformation between two models.
Although being very simple, this example clearly presents the problem of traceability
of model transformations. The input model contains information about books (Book).
It conforms to the book metamodel MMb'. MMb has one class Book, which has
attributes fitle, author, year (the content of the columns is self-explanatory). The

! The metamodels from this use case conform to the KM3 metametamodel, KM3 is formed by
classes, which are formed by attributes and references [6].
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output medel contains information about generic publications (Publication). It
conforms to a publication metamodel AMAdp, MMp has two classes: Publication, which
has attributes title, authors, pubYear and reference authors [multiple cardinality];
Author, with attribute name. The transformation Mr is an ATL transformation; thus it
conforms to the ATL metamodel (denoted by MM). A part of the code of the ATL
transformation is shown in the right side of Figure 1. For every Book of the source
model, the transformation creates a new Publication in the target model, and it assigns
the values of the source attributes to the target attributes.

rule Book2Publication {

from
MMb Mip s : MMb!Book
MMt to
t : MMp!Publication (
T title <- s.title + s.subtitle,
c2 c2 c2

pubYear <- s.year,

authors <- author
Mt 1y

Book : Publication author : Mip!Author (
name <- s.author

Transforms ]
)

Fig. 1. Book to publication transformation

We illustrate the traceability between model elements in Figure 2. It shows one
model element from the source model (007 : Book), and two elements from the target
model (002 : Publication and 003 : Author)., The traceability information is
represented by the lines between the model elements.

001 : Book 002 ; Publication
title = Traceability with AMW Leoeeomeee e titlte = Traceability with AMW
author = Atlas Group !

003 ; Author
“-{name = Atlas Group

Fig. 2 Traceability between two model elements

Without this information, it is not possible to directly discover which elements of
the source model are used to generate author 003. The model transformation is
created using the metamodel elements, and it is executed over the model elements.
The relationships between the input and the output model elements (as well as the
transformation rules), are accessible only in the moment of its execution.
Consequently, without any traceability information, it would be necessary to apply an
inverse procedure to transform the Author class into the author attribute, and to
compare the result with the source model elements. These relationships must be saved
to be able to exploit the execution trace information afterwards.

A weaving model can be used to capture this traceability information. This
weaving model conforms to an extension to the core weaving metamodel. The
traceability metamodel extension is depicted in Figure 3. The central element of this
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extension is the TraceLink element. Every time a transformation visits a source
element (e.g., the 00! : Book in our case), it creates a new TraceLink in the weaving
model. The reference sourceElements refers to the source elements (the #itfe and
author values, not the metaelements). The reference targetElements refers to the
generated target elements (the multiple cardinality enables having more than one
target element). The attribute ruleName has the name of the rule that is executed (e.g.,
Book2Publication). This attribute enables fo keep a trace to the transformation rule,
not only to the source elements.

The class TracelLinkEnd represents the source and target elements. The reference
element (from the core weaving metamodel) refers to class ElementRef. This element
is a proxy to the real linked elements. It saves an identifier that enables to uniquely
identify the source or target model elements. The format of the identifier is specified
by the annotation --@wmodelRefType (e.g., XMI IDs, XPointers, etc.).

class TracelLink extends WLink(
attribute ruleName : String;
-- (@subsets end
reference sourceElements[*] ordered container : WLinkEnd;
-- (@subsets end
reference targetElements[*] ordered container : WLinkEnd;

}

class TracelinkEnd extends WLinkEnd |

1

-- #wmodelRefType TraceModelRef
class ElementRef extends WElementRef (

}

Fig. 3. Traceability metamodel extension in KM3

However, the original model transformation Book2Publication does not specify
how to create the traceability weaving model, only how to transform a Book into a
Publication. Hence, the original transformation is modified into Mr'. M¢’ has
additional rules to create the elements of the traceability weaving model. The new
setup is shown in Figure 4: the modified transformation M’ takes the Book model as
input and produces a Publication model and a traceability weaving model Mw as
output (the metamodels are omitted for better visualization). The weaving model has
the traceability links between Book and Publication.

ouT

Fublicalion

IN

Book B M

Mw

Fig. 4. Mt’ generates a Publication model and a weaving model

To summarize, weaving models are an appropriate solution to provide traceability
of model transformations. This can be extended to be used in different applications of
traceability in the small, i.e., traceability between model elements. The traceability
metamodel extension enables to create traceability links (domain specific links). The
weaving model is automatically created when the ATL transformation is executed.
The traceability weaving model can be visualized and modified on the AMW
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prototype, without any modification on the source code. This shows the advantage of
developing the prototype using a generic and reflective API. The traceability use case
is available for download at (http:/www.eclipse.org/gmt/amw/usecases/traceability/).
This page contains a fully implemented example, with general documentation, a
HowTo and the sources.

This example has been chosen to illustrate the characteristics of traceability in the
small. We do not suggest that all such traceability in the small is related to model
transformation. There are many other situations. Qur purpose was mainly illustrative
in this section.

3 Traceability in the Large

In the previous section, we introduced loosely coupled traceability in the small
concepts. Despite the advantages compared to tightly coupled traceability, i.e., not
polluting models?, its main mechanism does not allow to follow traceability links
because loosely coupled traceability relies on a double indirection linking. Thus, it is
not possible to get the provenance of a target model element from itself as it does not
know its trace model, or set of trace models. This principle is illustrated on Figure 5.

Ma Mb

Mw

Fig. 5. Double indirection in weaving models and its limitations

Figure 5 shows that from the Mw model, we are capable of retrieving which
elements of Ma and which elements of Mb are linked. The use of model M prevents
from polluting Ma and Mb with any traceability metadata. This means Ma and Mb are
not aware that they are linked by a weaving model. Thus, it is not possible to follow a
link from Ma or Mb to the other model (depicted by the forbidden sign).

Moreover, the purpose of the traceability model M is to link model elements with
traceability semantics. The link between the models as a whole has a different nature
(and maybe semantics as well). Thus, the traceability model should not contain
references to woven models. Current implementation keeps references to its woven
models. This is an implementation trade-off but it does not completely separate global
(between models) and local (between model elements) relationships.

We see that model weaving cannot answer the general goals for traceability or
provenance, The only alternative is to pollute the models themselves with direct
traceability links. This solution itself does not allow managing multiple traceability
chains involving common models.

2 As stated before, polluting a model is the action of adding information to this model unrelated
with its original semantic.
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At this point, the conclusion seems thus quite pessimistic. Should we give up using
model engineering to provide a uniform, general and scalable solution to traceability
and provenance problems? We decided to have a second try and to investigate how
model weaving techniques could be complemented by megamodeling techniques to
offer a complete solution. The result was positive and this proposal is the main
contribution of the present paper.

We propose to see this issue of global relationship representation as a Global
Model Management one. Global Model Management is about considering
relationships between models themselves as a model. Thus, there is a metamodel of
those models and every tool defined for modeling in the small are also applicable for
modeling in the large: model transformation, model weaving, etc. We call this kind of
model a megamodel.

A possible metamode! of a megamodel for traceability would be the one depicted
on Figure 6. On this picture we can see that a TraceModel links one more source

models to one or more target models. The Model class contains opposite references.
package TraceMegamodel |
class Model {
reference conformsTo : ReferenceModel;
reference sourceOf[*] : TraceModel oppositeof sourceModels;
reference targetOf[*] : TraceModel oppositeof targetModels;
}
class ReferenceModel extends Model {}
class TraceModel ({
reference sourceModels[1l-*] : Model oppositeof sourceOQf;
reference targetModels[l-*] : Model oppositeof targetOf;

Fig. 6. A metamodel of 2 megamodel (KM3 notation)

Thus, with a megamodel conforming to this metamodel, it is possible to navigate
from source model to trace model, from trace model to source and/or target models,
from target model to trace model. Moreover, this solution does not pollute source,
target, or trace models.

In the previous section, we infroduced the metamodel extension mechanism,
because there is more than one traceability metamodel depending on the desired
granularity and purposes. In the same way, megamodels’ metamodels are not unique,
We have to provide a core metamodel with extensibility mechanism. Then, this
metamodel extension will allow more or less navigation facilities, coarse or fine
grained relationships between traced models for microscopic or macroscopic point of
view.

4 Conclusion

In this paper we introduce a general and original proposal to traceability issues in
the context of Global Model Management. Our proposal provides a clear separation of
concerns between traceability in the small and traceability in the large. Traceability in
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the small issues are addressed by model weaving, whereas traceability in the large
issues are addressed by megamodeling. Model weaving has allowed not polluting
traced model elements. In addition, megamodeling has allowed not polluting weaving
models.

Apart from this separation of concerns, there are many traceability scenarios that
can not be addressed by a unique weaving metamodel and a unique megamodel
metamodel. By defining a simple core weaving and megamodel metamodels that can
be extended, our solution fits several traceability requirements. The symmetry
between extensibility for model weaving and megamodeling comes as a nice regular
property of our proposal. This enables to query a complete traceability chain without
polluting trace models and give an answer to a subset of data provenance
requirements.

The study of different traceability use cases using our global model management
approach and especially requirements traceability represents area of future work, but
we are quite confident that the original idea presented in this paper is implementable
with the existing prototype of AMW and the AMMA platform with high generality
and low overhead.
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Abstract. This paper describes an approach for the analysis of changes in
model transformations in the Model Driven Architecture (MDA). Models
should be amenable to changes in user requirements and technological plat-
forms. Impact analysis of changes can be based on traceability of model ele-
ments. We propose a model for generating trace links between model elements
and study scenarios for changes in source models and how to identify the im-
pacted elements in the target model.

1 Introduction

Change management is a prerequisite for high-quality software development.
Changes may be caused by changing user requirements and business goals or be
induced by changes in implementation technologies. Software architectures must be
designed such that they can evolve to cope with these changes. The Model Driven
Engineering (MDE) approach aims at providing stable models amenable to changes
[14]. An analysis of the impact of changes is necessary for a cost effective software
development [3]. The number of affected modules or elements is a response measure
for the quality attribute modifiability in software architectural design [4]. Such analy-
sis can be based on dependency traces between elements in the architectural design
and other software artifacts.

In MDE, models are manipulated via model transformations. Transformations are
usually sequentially applied until a model with enough details is obtained. A change
in one of the source models causes changes in all the models obtained as products in
the transformation chain. There are two options for performing these changes: (1)
executing the transformations again on the whole modified model and (2) propagating
the changes incrementally by transforming only the changed source elements. In the
latter case we need an incremental model transformation mechanism. It is clear that in
the case of large models the incremental transformation approach may be more effi-
cient.

In order to perform change impact analysis we need to trace changes in a source
model element to required changes in the target model elements. We utilize trace
information created during the transformation execution. It provides a set of traces
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that relate source and target elements created by a given transformation rule. The
necessity of such traces points to the requirement for an important quality property of
model transformation languages and execution engines: fraceability.

Traceability is defined as the degree to which a relationship can be established be-
tween two or more products of the development process [10]. In the context of model
transformations the products are models and their model elements. Traceability is an
optional requirement in the QVT Request for Proposals (RFP) issued by OMG [15].
QVT specification describes three model transformation languages: Relations, Core,
and Operational Mappings. In the Relations and Operational Mappings languages,
traces are created automatically and remain transparent to the user. In the Core Lan-
guage, a trace class is specified explicitly for each transformation mapping.

In this paper we study the possibility for using incremental model transformations
written in the QVT language Operational Mappings. We use the transformation en-
gine provided by Borland Together Architect 2006 for Eclipse to execute transforma-
tions and to experiment with the trace information. We evaluate the possibility to use
the traces generated by Together Architect as a side product of a transformation exe-
cution. We classify change cases and analyze them in the context of incremental
model transformations.

The paper is structured as follows. In Section 2, we describe our approach to gen-
eration of traces. Section 3 gives a conceptual framework for change impact analysis,
Section 4 discusses possibilities and obstacles in implementing the identified changes.
Section 5 describes related work and Section 6 concludes the paper,

2 Traceability in Operational Mappings Language

We generalize the concept of traceability by means of a traceability pattern (see
Figure 1).

isCrossculting

Source Source Element| 0.
isScallered T
1 0.*
isCogpled
0." 0. 1
isMapped isRelated
0.* 1 a.”
Target Target Element
isTangled
1 0. 0.*

isén.Jpled

Figure 1. Traceability Pattern

In this pattern, we have dependency relations between elements in the source and
elements in the target. We use here the general terms sowrce and target to denote two
consecutive levels. We distinguish between intra-level and inter-level dependency
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relations. Intra-level relations denote couplings between elements at a certain level
(model). Examples of intra-level relations are generalization between classes, aggre-
gation, etc. Inter-level relations relate elements at different level of abstraction. For
example, an element in a model is refined to a set of elements in another model at a
lower level of abstraction. In this case we have a refinement inter-level relation, In the
case of model transformations inter-level relations are the traces derived during the
transformation of source elements to target elements. For the purpose of change im-
pact analysis both types of dependencies should be taken into account.

We may distinguish several cases of mappings between source and target: 1-to-1,
1-to-many, many-to-1, and many-to-many. This can be represented in a dependency
graph, as shown in Figure 2,

source

target

Figure 2. Mapping between elements at different levels of abstraction
(s1, s2, s3 at source; t1, t2, t3 and t4 at target)

In general, a transformation language provides different ways for creating and
maintaining the traces between source and target elements. Operational Mappings
language uses automatic creation of the traces. They can be used during the transfor-
mation execution by invoking different forms of the resofve function. The QVT
specification does not impose any constraints on the exact structure of the traces and
their lifetime. This is considered an implementation specific issue.

The engine implemented in Together Architect provides an option for creating per-
sistent traces, i.e. traces that are saved after the transformation execution. Keeping
such traces in a form accessible to programs is essential for the change impact analy-
sis. Unfortunately, Together Architect only provides a browsing mechanism to in-
spect the traces. They cannot be manipulated programmatically. This is the reason for
implementing our own traceability mechanism that produces persistent traces in the
form of a model.

In our approach traces are instances of a simple model. Every trace is associated to
a rule and refers to the sets of source and target elements used by that rule. Formally
traces have the following structure:

t([sl, .., sn], [tl, .., tm], )
This is interpreted in the following way: trace ¢ is derived from the execution of
rule » on source model elements s/, ..., sn that results in the creation of target model

elements ¢/, ..., #m. Since a rule may match multiple tuples in the source model it is
clear that multiple traces may exist per single transformation rule.
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The set of traces form a model generated after the execution of a transformation.
The generation is done by inserting code in every transformation rule in a given trans-
formation definition. The automation of this process is beyond the scope of this pa-
per. More information may be found in [12]. The model with traces conforms to a
trace metamodel. It should be noted that this metamodel is different from the trace-
ability pattern in Fig. 1. The trace metamodel describes in details the relations be-
tween source and target, and between source element and target element.

3 Traceability-based Change Impact Analysis

We present a classification of change cases and analyze them in terms of traces, rules
to be executed, and elements affected in the source and target models. Due to a lack
of space we give only three cases. The complete set of cases is available in [8].

3.1 Notation

In the remainder of this section models will be used to show the inter-level trace
dependencies between source and target model elements. The legend for these models
is shown in Figure 3.

’ Listel element

Interdovel trace
depencency

\—__, Change transion

Figure 3 Visual notation used in the examples

We assume that models are sets of elements. We denote models in the following
way:

Source model: S = {s,,s,,..,8,}; Targetmodel: T = {t,, t,, ..t}

The target model is generated by an execution of a transformation definition R that
consists of transformation rules: R = {r;, rz,.., ry}

During the execution of the transformation traces are created. These traces hold
source and target model elements and the transformation rule which created the trace:

Setoftraces: I = {i,,i,,..,1,}; Trace:i, = (s,,t,, 1)
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We need to indicate changes being made to a model. In the following sections we
limit ourselves to two change types: update and delete. In some cases we need to
denote a change without specifying the type. We use the wildcard (*) in this case.

Change-types : C = {cy,Ca,c+), where u stands for update and d for delete.

With these sets we can define a method that takes a change, a model, and the im-
pacted elements, and creates the new desired model:

change ( [change-type], [model], [element (s)]) = [model]’

where:

Imodel]is a model, element (s) 1is a set of model elements affected by the
change, and [change-type] is a change-type from C.

When applying a change to a source model, we need to keep the target model con-
sistent with this change. This consistency is preserved with the implementation of the
same change on the target model and thus the impacted element(s). The unidirectional
transformation from S to T is indicated by creates. We assume that the target
model is not changed in the meantime (e.g. edited manually) and all the changes are
driven by changes in the source model.

3.2 Example Case: one-to-one Mappings

This case has two sub-cases:
o a single source model element is mapped to a single target model element
with one transformation rule;
e multiple transformation rules create the target model element;

Source Model 5

Source madel
elzment =

Tranglormaton

_ Ruler

Target model |
aren whement » { oamne
]

Target model T

Figure 4 One to one inter-level trace dependency created with one transfor-
mation rule

Figure 4 shows a one-to-one trace example where the element s, is transformed to
the element t; by executing rule r;, r;(s;) = t,. The only trace created holds
source element s, target element t, and transformation rule r;.
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The data contained in the source element s, is mapped to target element t,. This
indicates the lowest level of granularity on which this information is used to create
source elements’ data.

When changing s, the impacted elements are found by following the trace leading
to the target model element t,. The trace indicates the usage of the transformation
rule r,. The change on s; must be propagated to the impacted target model element.

The following facts are known:
S creates T, i = (s,t,, r,), Changel(c,,S,{s8,}) = 8",
Change(c., T, {t,}) = T*

The desired implementations of the change types are schematically shown in
Figure 5 and Figure 6.

Source Model 5 Source Model 5*
! Sowte muxtel
i element 1

<" Trastormaton

ST

Target model
“een slement - weee

Target model T Target model 7'

Figure 5 Delete change in one to one mapping

The change types infer two possible scenarios:
o Delete the source element
Deleting s, from S implies the deletion of t; from T. This results in the fol-
lowing change implementations, which creates the new source and target models:
Change (cdr 8 {Sl})= S \ [51}
Change (Ca, T, {t.1})=T \ {tl}

s Update the source element

Updating s, from S implies the re-execution of transformation rule r, and re-
placing t, with the newly created target model element. This results in the fol-
lowing change implementation:
change (c,, S, {s1)) = S \ {s;} U {s,;"} where s,’ is manual input
change (c,, T, (t1}) = T \ {t;} U {t;"} where t;/ = ri(s,")
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Source Model 5 Source Model 5*
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Figure 6 Update change in one-to-one mapping

Source Model 5

Sourco model
u P rane
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TTransformaton ’ Transfarmaten L Translormaten ™
Rute ¢ » \_—ﬂ.ﬂﬁ r _/ e Aule ¢
Targat modsl
slemend ©

Target model T

Figure 7 One to one inter-level trace dependencies created with multiple
transformation rules

The previous example can be extended to a sub-case where the source element is
mapped to one target element by using of multiple transformation rules. The differ-
ence between the two cases is the number of traces created during the execution of
the transformation and the number of rules executed to create the target element. This
is schematically shown in Figure 7.

In this example a trace is created for every transformation rule execution, We as-
sume that there is a fixed order in which these transformation rules are executed (re-
flecting the imperative nature of Operational Mappings). Because of this assumption
we get a sequential list of transformation rules {r,, r,, .., r,}.
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When the traces are collected, a list of traces with the following structure is cre-
ated:

{(s1,t1, 1), (83,81, 12) oy (51, Es,10) }

Here we consider only the case of update of the source element. Updating s, from
S implies the re-execution of transformation rules {r,, r;, .., r,} and replacing t,
with the newly created target model element. This results in the following change
implementation:
change (c,, S, {511})
change (c,, T, {t1})
281’ ) iwi Tnls1'):

S \ {s;} U {s;"} where s;’ is manual input
T \ {ty} U {ty;"} where £,/ = ry(5,");

4 Discussion

In this paper we limit ourselves only to performing impact analysis. The next step is
to implement the changes. We give an overview of possibilities and the potential
obstacles.

In general, there are two ways to implement the required changes: generate a func-
tion that implements the change (a kind of “patch™) and re-execute rules.

A patch function should be generated based on the logic of the transformation
rules responsible for changes. A major problem is the imperative nature of opera-
tional mappings rules. It is not clear how the required functionality is extracted from a
rule and how it is connected to its original context. We may hypothesize that using an
imperative transformation language is not the best option for this scenario. The appli-
cability of a language based on another paradigm (e.g. declarative, graph transforma-
tion-based) needs a further study.

The second option is to re-execute a rule. In the worst case this option may com-
pletely fail. In the current implementation of Borland together it is not possible to
execute an arbitrary rule. Furthermore, the engine does not provide any customizable
features. Apart from that, we also have a problem of granularity. Consider a case in
which only an attribute value needs to be changed. This is done by executing of an
assignment part of a rule. The smallest executable modules in Operational Mappings
language are helpers and mappings. We cannot execute parts of a mapping. Instead,
we need to execute the whole mapping. This, however, may lead to execution of other
mappings invoked by the required one. There is no way to prevent this without know-
ing the internal implementation details of the transformation engine.

The current version of the approach to impact analysis has three major limitations:

e Lack of intra-level reasoning. When a model element is changed this may
lead to changes in other elements in the same model due to the dependencies
imposed by the language semantics. We call such dependencies intra-level
dependencies. For example, if a class is deleted then its attributes must also
be deleted. Another example is the effect of deleting a super class. This auto-
matically changes the set of attributes of the specializations of that class.
Both examples are related to the semantics of the modeling language being
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used. The lack of standard way to define language semantics prevents us
from performing generic intra-level reasoning. It should be done per every
modeling language thus limiting the generality of the impact analysis frame-
work.

e Changes in guards are not considered. Our tracing model keeps track on the
relations between source and target model elements established during trans-
formation execution. However, a change may also be caused by changing
values that are checked by mapping guards. A source element may not be
mapped and therefore no trace for it is available. Yet, this element may in-
fluence the evaluation of the guard in a mapping. Changing such an element
will have no consequences since no trace is available for it. The only way to
overcome this limitation is to enhance the trace model by including also the
elements participating in the guard expressions.

e Additions of elements are not handled. Addition is problematic due to the
same reason mentioned in the previous case: no trace is available for the
newly added element. To handle the change, we need to identify the applica-
ble mappings. However, due to the imperative nature of the language, such a
mapping may be invoked in the context of another one and may invoke other
mappings. Again, identifying the functionality for the change implementa-
tion is problematic.

5 Related Work

The topic of incremental model transformations is studied in [9] and [11]. Hearnden
et al. [9] studies how continuous handling of changes in a source model may be done
with the Tefkat language [13]. Their analysis is based on a detailed knowledge of the
execution semantics of the language. The implementation of the changes extends the
engine with additional structures for keeping intermediate execution context informa-
tion, In this paper we study another language with different semantics. It was not
possible to come with implementation of changes since we could not extend the trans-
formation engine for Operational Mappings.

The authors of [11] propose writing model transformations in a style that is based
on anticipating changes. Transformations are event-driven. Events are adding and
deleting model elements. Events trigger transformation rules. This paradigm is differ-
ent from the current model transformation languages that are not designed to antici-
pate changes in the models.

In [1], a number of events and change actions have been defined as part of an op-
erational semantics of traceability. These events and change actions could be the start
of a change impact analysis as described in this paper.

In [16], the generation of traceability links is discussed, especially between re-
quirements and the object model, and between requirements. This corresponds to the
inter-level dependencies and the intra-level dependencies as described in this paper.
Similarly in [5], traceability links are retrieved between UML and target models in-
cluding one-to-many relations. In the current paper, we focused on generated trace
relations as part of QVT transformations. An event-based approach to traceability is
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described in [6]. In this approach, change is handled by means of event notification
and propagation of changes using traces between artifacts.

6 Conclusion

In this paper, we described an approach for the analysis of change in model transfor-
mations. We defined a traceability model for generating traces between source and
target model elements. We analyzed the change impact in case of modifications of the
source model. Several change scenarios were analyzed.

The specification of transformation rules and the tracing information of the execu-
tion of these rules can be used to generate dependency graphs at model level and at
metamodel level. These dependency graphs are helpful in identifying which rule
applications need to be re-executed in which order when there are changes to the
source model. These are the key issues to implement incremental model transforma-
tions.

Our approach needs further elaboration and has to be validated in empirical case
studies. Moreover, the derivation of dependencies and its analysis should be sup-
ported by tools in order to scale to industrial projects.
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