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Abstract
We present an approach for secure information flow property preserv-
ing refinement and transformation of UML inspired interaction diagrams.
The approach is formally underpinned by trace-semantics. The semantics
is sufficiently expressive to distinguish underspecification from explicit
nondeterminism, A running example is used to introduce the approach
and to demonstrate that it is of practical value.

1 Introduction

Security is an important attribute of many software systems. Nevertheless,
careful engineering of security into overall design is often neglected. Security
features are typically built into an application in an ad-hoc manner or are only
integrated during the final phases of system development [24]. It is, however, a
common view in the security field that security mechanisms should be taken into
account and built into the system during early phases of system development
at a higher level of abstraction than the level of implementation.

The Object Management Group (OMG) advocates a framework for sys-
tem development, Model Driven Architecture (MDA) [27], that aims to raise
the level of abstraction of the programming environment by supporting (1) a
maodel-driven development process, (2) a clear separation of abstract, platform
independent models (PIMs) and refined, platform dependent models (PSMs),
and (3) transformations between PIMs and PSMs.

By integrating security into MDA, security documentation can be specified
and analyzed at a high level of abstraction during system development, thereby
reducing the need for ad hoc integration of security mechanisms after system
implementation. Moreover, the advantage of analyzing PIMs rather than PSMs
is that analysis is more feasible at high level of abstractions as opposed to levels
closer to implementation which may include too much detail to make analysis
practical. Also, it is well known that the earlier an error is discovered, the easier
and cheaper it is to fix.

In order to contribute towards a formal foundation of security within the
MDA framework, we restrict the notion of security to a property of secure in-
formation flow. Secure information flow properties in general, provide a way
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of specifying security requirements by seleciing a set of domains, i.e. abstrac-
tions of real system entities such as users or files, and then restricting allowed
flow of information between these domains. There are numerous definitions of
information flow properties [25]. The property that we consider is based on a
definition given in [20]. Informally, the property holds if an observer communi-
cating with a system, based on its observations and its knowledge of the system
specification, cannot infer that another observer has communicated with the
same system.

The relationship between information flow security and refinement has been
researched for a fairly long time. In 1989 it was shown by Jacob [20] that
the derivation of secure systems from security specifications can be practically
infeasible. It has later been observed e.g. in [17, 21, 30], that the problem orig-
inates in the inability of most specification languages, UML 2.0 [13] included,
to distinguish between underspecification {(potential nondeterminism) and ex-
plicit nondeterminism!. An exception in this respect is STAIRS [14, 15, 16],
an approach that provides a formal semantics for UML 2.0 inspired interac-
tion diagrams where the distinction of potential and explicit nondeterminism
is made. The approach presented in this report extends the theory of STAIRS
wrt. refinement and information flow. It also provides the first steps towards a
formal foundation for model-driven security in the setting of UML interactions.
In particular, the contributions of this report are:

e A formal definition of a notion of secure information flow in STAIRS.
Thereby we provide a foundation for analysis of UML 2.0 interaction dia-
grams wrt. secure information flow. The only work that we are aware of
that deals with information flow security in a proposed semantics of UML
is [21], but only a simplified version of UML 1.5 [12] interaction diagrams
is considered in this work.

e Showing that the STAIRS notion of refinement preserves our notion of
secure information flow. The most notable recent theoretical works that
we are aware of that address refinement and secure information flow are
(5, 26]. In [5], conditions for checking that a given refinement is informa-
tion flow preserving are presented, and [26] proposes a way of modifying
refinement operations such that they remain secure information flow pre-
serving. These approaches are clearly different from ours. We prove that
all refinements preserve our notion of secure information flow, thus there
is no need to check or modify given refinements as in [5, 26].

e A formal definition of a notion of transformation that preserves our notion
of secure information flow. The notion of refinement is a relation between
two specifications and it is in general not subject for automation. In
contrast, a transformation takes a specification and delivers another spec-
ification as output in the sense of a compiler. There are no related works
that we are aware of that address secure information flow with respect to
this notion of transformation.

e A peneralization of the notion of refinement into a more general notion
of refinement modulo transformation. This more general concept may be

1 Also termed unpredictability [21] and probabilistic nondeterminism [30].
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Figure 1: Overview of the Project Management System

understood as a kind of data refinement [19].

The report is structured as follows: In Sect. 2 we use STAIRS to specify a PIM
of an example system which is sufficiently realistic to suggest that our approach
is of practical value. In Sect. 3 we define an information flow property in terms
of the STAIRS semantics, and explain why our PIM is secure with respect to
this property. Sect. 4 presents a formalization of refinement in the STAIRS
semantics, and explains why the information flow property is preserved under
refinement. In Sect. 5 we introduce a notion of transformation which is informa-
tion flow property preserving. We also integrate this notion of transformation
and the classical notion of refinement from STAIRS into a more general con-
cept. In Sect. 6 we show how our PIM can be transformed to PSMs in such a
way that the information flow property is preserved. Sect. 7 describes related
work. Sect. 8 provides conclusions and suggests directions for future work. The
appendix provides formal definitions of auxiliary operators used in this report.

2 The Project Management System

Consider a large software developing company that aims to develop a distributed
system, the project management system (the PM system), in order to centralize
all storage of software development projects. Software developers should be
able to retrieve projects from a server to their local machines, edit or add files
to the project, and upload any changes back to the server. Projects stored on
the server should be versioned, and whenever a developer updates a project,
only changes in the project with respect to the developer’s local copy should be
updated.

Currently, the company has no unified development method, and developers
working on different projects are to a large degree given flexibility in the method
they choose to adopt. The company wants to assess the different methods in
order to recommend improvements, and possibly to introduce a unified devel-
opment process. This task is assigned to a group of researches. The researchers
are to pick a set of sample projects, and assess each project thoroughly with
respect to progress, quality of code etc. For convenience, the PM system should
be augmented slightly such that the researchers will be able to retrieve projects
from the server over the Internet on a regular basis. This additional function-
ality is not of high priority, thus it will be implemented with little resources.
The researcher will not use the same versioning system that the developers are
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Figure 2: Simple interaction scenario of the PM system

using, thus for simplicity, the whole project is copied to the researchers for every
retrieval.

To malke the assessment as realistic as possible, the software developers of
the company should not know which projects are sampled for the assessment.
‘We ensure this by requiring that the developers should not, at any given moment
in time, be able to deduce whether a researcher has retrieved a project from the
server. This means that the developers are ignorant of the researchers.

The company decides that the server where all projects are stored shall
expose two web-service endpoints, one for the developers and one for the re-
searchers as illustrated in Fig. 1. Also, the server implementation will be based
on J2EE technology, where so-called Java session beans are responsible for han-
dling SOAP-message communication between the server and the clients, and
the Java entity beans are responsible for handling persistence.

2.1 Capturing Behavior Using STAIRS

The interaction diagrams in Fig. 2 specify two simple interactions of the PM
system in which a developer updates a project by sending an update message to
the server, whereupon to server responds by returning an ok or an error message
depending on whether or not the update was successful.

In the graphical diagrams, vertical dashed lines correspond to so-called life-
lines, and the signals of messages correspond the to labels decorating the arrows
between the lifelines.

Definition 1 A message is a triple (tr,re, si), consisting of a transmitier tr, a
receiver re, and a signal si.

Example The two messages in the left most diagram of Fig. 2 are represented
by the triples (D, S, u) and (S, D,0). For conciseness we refer to the lifelines
and the signals in graphical diagrams by their first letters if this can be done
unambiguously.

In the trace-semantics of STAIRS [15], the transmission and the reception of a
message m is represented by a transmission event (denoted (!,m)) and a recep-
tion event (denoted (7, m)), respectively. For conciseness, an event (!, (tr, re, 5i))
is usually denoted !si if the transmitter and the receiver can be deduced from
the context. The same convention applies for reception events.

A trace is a sequence of events representing a single run. A trace is causal
and weakly sequenced. Causality means that a message must be transmitted
before it is received. Weak sequencing [13] means that events are ordered by
their vertical position with respect to each lifeline. For example, if two messages
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Tigure 3: Potential nondeterministic alternatives

are transmitted from a lifeline {; to a lifeline I, then the first message is not
necessarily received by lo before the second message is transmitted from [;.

Definition 2 An event is a pair, (k,m), consisting of a kind k € {,,7} and a
message m. A trace is a sequence of evenis. We let H denote the set of all
traces.

Example The diagrams PM; and PMs in Fig. 2 describe the traces {lu, 7u, lo, 7o)
and (lu, ?u, le, 7e), respectively.

STAIRS distinguishes between positive and negative traces. Positive traces
represent desired or acceptable behavior, while negative traces represent unde-
sired or unacceptable behavior. The remaining traces are inconclusive meaning
that their status is not decided or that they are irrelevant. The semantics of a
diagram in STAIRS is set of pairs of positive and negative traces. Such pairs
are referred to as interaction obligations. Each interaction obligation represents
an explicit nondeterministic alternative. Underspecification (also referred to as
potential nondeterminism) is represented by allowing the implementer to choose
between different alternative behaviors within a single interaction obligation.

Definition 3 An interaction obligalion is a pair, (p,n), where p is a set of
positive traces and n is a set of negative iraces. The semantics of a diagram d
in STAIRS, written [d], is a set of interaction obligations.

Unless otherwise indicated, traces of interaction diagrams are interpreted as
positive.

Example Diagram PM; and PM, of Fig. 2 describe the interaction obligations
({('u, Tu,l0,70)},0) and ({{lu, 7u,'e, 7e}},B), respectively. The set of negative
traces in each interaction obligation is empty since traces of diagrams are inter-
preted as positive by default.

2.2 Potential Nondeterminism

The diagram in Fig. 3 specifies the interaction in which a developer tries to
update a project before it is retrieved by a researcher who has requested the
same project prior to the developer’s update attempt. The updated project
cannot be stored on the server while it is being read, but whether or not the
update will have to be resubmitted (upon reception of an error message) by the
developer is a postponed design decision.
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Figure 4: Explicit nondeterministic alternatives

In interaction diagrams as interpreted in STAIRS, underspecification in the
form of alternative design decisions is explicitly expressed by the so-called alt-
operator as illustrated in Fig. 3. Interactions that are separated by the alt-
operator are interpreted as potential nondeterministic trace alternatives. In
Fig. 3 the topmost operand of alt specifies the design alternative in which
an ok message is transmitted back to the developer. The second alternative
specifies the alternative where the developer receives an error message.

Definition 4 The alt-operator specifies potential nondeterminism by leaving
the choice between its operands open. The semantics is the inner union of each
point-wise selection of interaction obligations from its operands:

[alt(dy, ....dn] ] £ {{H{o1, ...on} Vi € [L,n] 1 0; € [ i ]}

The inner union of interaction obligations is defined as:

W i) Z( U ro U )

i€[l,n) i€[l,n]  i€[1,n]

Example The diagram PMj in Fig. 3 describes an interaction obligation (p, @)
where p includes the traces (lg, 7g, lu, Tu, lo, 70, Ir, 7r) and {!g, 7g, u, 7u, le, 7e, Ir,
77} due to the alt-operator. Note that p will also contain other traces due to weak
sequencing. E.g. p will also contain the trace {lg, lu,?g, Tu,le, Te,lr, 7r), where
both the messages get project (!g) and the update project (lu) are transmit-
ted by the researcher and the developer, respectively, before the corresponding
messages (Tg and 7u) are received by the server.

2.3 Explicit Nondeterminism

In STAIRS we may use the xalt-operator to specify explicit nondeterminism.
This is illustrated in the interaction diagram of Fig. 4. It states that any cor-
rect implementation must offer the choice between the operands PM;, PMsy,
and PMj. Each alternative specified by an xalt-operator represents an explicit
nondeterministic choice thal must be preserved by any correct refinement of the
diagram.
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Definition 5 The xalt-operator specifies explicit nondeterminism by requiring
all operands to be reflected in any proper implementation. The semantics is the
union of the sets of interaction obligations characterized by the operands:

|Ixalt[dl,‘..,cin]ﬂg U ld:]

i€[1,n]

Assume now for the sake of the running example, that the diagram in Fig. 4
describes all the relevant interactions of the PM system. We may then encap-
sulate the interactions of the diagram using the assert-operator (as shown in
Fig. 4), which means that all traces that are not described within the scope of
the assert, i.e. the inconclusive traces, are to be interpreted as negative. This is
of course an incomplete specification, but interaction diagrams are often used
to capture incomplete aspects of a system.

Definition 6 The assert-operator makes all inconclusive traces negalive. The
sets of positive and negative traces are left unchanged:

[assertd] = {(p,nU (H\p)) | (p,n) € [d]}

Example The STAIRS-semantics interprets the diagram PM of Fig. 4 as {(p1, H\
1)y (P2, H\ p2), (p3, H \ ps)} where the trace sets pi, ps, and p3 are described
by the diagrams PM;, PM,, and PM3, respectively.

A diagram is well-defined if its semantic interpretation does not contain an
interaction obligation (p,n) such that pNn # 0. We denote by D the set of
all well-defined diagrams that can be constructed by the syntactic operators
presented in this report.

3 Why Our Specification Ensures Ignorance

A requirement of the PM system is that the developers should be ignorant of
the researchers. In this section we formalize this notion. For this purpose, we
distinguish between observers and the system under observation. Each observer
is only able to observe its own interaction with the system, and we assume that
each observer has complete knowledge of the diagram describing the system
they interact with. Based on this knowledge, an observer can construct the
set of all system behaviors which are compatible with a given observation, the
so-called inference set, and try to deduce confidential information from this
set. The secure information flow property that we formalize (the ignorance
property) demands that an observer o must not, based on the inferences it can
make, deduce with certainty that another observer o' has communicated with
the system under observation.

3.1 Systems, Behavior and Observations

In this section we define the notions of system, observer, behavior, and obser-
vation in terms of the STAIRS semantics.

Definition 7 Systems and observers are represenied by sets of lifelines.
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Example In our running example, we require that developers should be ignorant
of researchers. Thus developers and researchers are observers. With respect to
the diagram PM (of T'ig. 4), let D and R denote the observers {: Developer} and
{: Researcher}, respectively. Both the developer and the researcher communi-
cate with the same server. Hence, the server is the system under observation.
We let S denote the system {: Server}. This applies throughout the rest of our
examples.

STAIRS does not prohibit an implementation of a diagram to produce traces
that are not described by the diagram (the inconclusive traces). The set of
traces allowed by an interaction obligation is therefore its set of non-negative
traces (i.e. the union of its positive and inconclusive traces). Such traces are
called behavior traces. The set of all behavior traces that are derived from
exactly one interaction obligation is called a behavior alternative.

In general, an interaction diagram may describe the behavior of several sys-
iems or observers. We are usually interested in reasoning about the behavior of
a specific system. A behavior alternative of a system s can be obtained from an
interaction obligation a by restricting all behavior traces in a to the lifelines in
s.

Definition 8 The behavior alternative of system s in interaction obligation
(p,n), written V{({p,n), s), is defined:

V((p,n),s) ={E.s@h|h € H\n)}

Here E.s is the set of events that may occur on the lifelines in s. Furthermore,
the function A ® h yields the trace obtained from trace h by filtering away all
events in A that are not in the set of events A (see App. A).

We lift the function to yield the behavior alternatives of a system s as de-
scribed in a diagram d.

Definition 9 The behavior of a system s in diagram d, written V(d, s), is de-
Sined:
V(d,5) = UpepajiVia 9)}

Example Let PM be the diagram specified in Fig. 4. The behavior of sys-
tem S in PM is given by the behavior traces that can occur on the lifeline in S:
V(PM,S) = {by, ba, b3}, where by = {(?u,0)} (corresponding to PM; in Fig. 2),
bs = {{7u,le)} (corresponding to PMs in Fig. 2), and b3 = {(7g, Tu,lo,!Ir), (g, Tu,
le,Ir}} (corresponding to PMj in Fig. 3).

An observer may observe its own interaction with the system under observa-
tion. The set of observation traces that an observer can make of a behavior
alternative b is obtained from b by filtering away the events that are not trans-
mitted to or from the observer.

Definition 10 The set of all observalion traces that an observer o can make of
behavior alternative b, written o> b, is defined:

o> b= {rT.0®k|h € b}
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RT.o yields the set of events that can be transmitted to or from the observer o
(see App. A).
We lift the observation function to diagram-system pairs.

Definition 11 The sel of all observation traces that an observer o can make of
system g in diagram d, written o > (d, s), is defined:

def
o> (d1 S) ~ UbEV{dr‘g} Bl b

The definition implies that an observer may observe liveness properties (such as
termination) because neither the set of behavior traces nor the set of observa-
tions traces have to be prefix-closed [3].

Example Based on Fig. 4, we have that D > {PM, S) yields the observation
set {(Tu, o), (?u,le)}, and R > (PM, §) yields the set {({?g,!r)}.

3.2 Inference and Ignorance

We assume that observers have full access to the specification of the system,
i.e. the observers have complete knowledge of the behavior alternatives of the
system under observation. An observer may then, based on a behavior alterna-
tive b, construct an inference set consisting of all traces in b that are compatible
with a given observation h.

Definition 12 The inference set that observer o can construct from behavior
alternative b, based on observation trace h, written o < b, is defined:

o<dn b={h® € b|h = (rRT.0® AY)}

Example Continuing the previous examples, let k; and hs be observation traces
(?u,lo) and (7u,le) of observer D, respectively, and let behavior alternative b
be the set {{7g, 7u,lo, 7}, (7g, Tu, le,Ir}}. We have that observer D, based on h;
can infer the following set of behavior traces from b: D <15, b= {{?g, Tu, lo,!7)}.
Similarly we have that D <y, b= {(?g, Tu, le,!Ir)}.

If an inference set that an observer o can construct has a trace that compromise
another observer o/, meaning that the trace contains an event that is sent to or
received from o, then o may deduce that o’ has done something. Conversely, if
none of the traces in the inference set compromise o', then o cannot deduce that
o' has done something. We say that a behavior alternative from which such an
inference set can be constructed hides o',

Definition 13 Behavior alternative b hides observer o' from observer o wrt. ob-
servation h, written o lpn o, iff

Vh® co<pb:rr.0' @A = )

Example Consider diagram PM;z (Fig. 3). Let b € V(PM3,5) and h € D>
(PM3, S), such that behavior alternative b equals {(?g, 7u,lo, Ir), (?g, 7u,le, Ir)}
and observation h = (?u,!0). The set of traces that 1D can infer from b based on
h equals D <ij, b = {h®} (where h® = (?g, 7u, o, Ir}). Since the trace h? contains
events that compromises observer R (RT.R®h? = (7g, Ir)), we have that b does
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Figure 5: Refinement of diagram PM3

not hide R from D wrt. i, i.e. D} R yields false.

Observer o is ignorant of observer o' if o cannot infer with certainty that o
has communicated with the system under observation, More precisely, this
means that if o, based on an observation i and a behavior alternative by, is able
to infer a trace that compromises o', then there must exist another behavior
alternative by that hides ¢’ from o wrt. the same observation h.

Definition 14 An observer o is ignorant of observer ¢ wri. diagram-system
pair 84, written 0154 o', iff

VheorSy:Vh €VSg: (0l 20) = € VSg:0l,no Aba=o0<yba

The last condition (by = o <Ij, b2) ensures that the ignorance property is pre-
served during refinement. This will be explained in Sect 4.

Example D is ignorant of R wrt. § in diagram PM (Fig. 4). To see this,
note that for each observation trace h that D can make of S5, we have that for
all traces that compromise £ that D} can infer based on h, there exists a behav-
ior alternative that hides R from D wrt. h. E.g. as described in the previous
example, D can infer the compromising irace (?g, 7u, lo, !r) based on observation
h = (?u,lo). However, there also exists a behavior alternative b € V(PM, S)
that hides R wrt. h. Specifically, b = {{?u,l0)} (corresponding to the interac-
tion obligation described by diagram PM; in Fig. 2). We have that D, hased
on h, can infer the trace (?u,lo) from b. Since this trace does not compromise
R (RT.R® (?u,l0) = {}), all traces in b (since there is only one trace in b) hide
R from D wrt. h.

4 Why the Ignorance Property is Preserved by
Refinement

Refinement means to add information to a specification such that the specifica-
tion becomes more complete. This may be achieved by categorizing inconclusive
traces as either positive or negative, or by reducing the set of positive traces.
Negative traces always remain negative. We first define refinement of interaction
obligations formally. This definition is then lifted to interaction diagrams.

Definition 15 An interaction obligation (pe,ne) is @ refinement of an interac-
tion obligation (py,na), written (pa,ma) ~ (pe,nc), iff

g S ne Apy, € peUng
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Definition 16 An interaction diagram d. is a refinement of an inleraction di-
agram d,, written dg ~ dg, iff

(Vae[da]:3cedc]:a~e)A(Vee[de]:Fac[da] :a~c)

Example The diagram PMag (Fig. 5) is a refinement of diagram PMj (in
Fig. 3). That is, [PMs] = {(pa, )} and [PMag] = {(pe, H\pc)} such that
Pe C pa. PM3 differs from PM3zg in that some positive traces in PMg and all
inconclusive traces have been made negative in PM3p.

Theorem 1 The ignorance property is preserved by refinement, formally:
o199 of Ady ~ dp = 0 1{Fe®) of

The proof of the theorem relies on the fact that the ignorance property is defined
in terms of behavior alternatives as opposed to individual traces which is how
secure information flow properties are usually defined in the literature [25]. That
is, instead of demanding that there exists a trace that fulfills a certain criterion,
we demand that there exists a behavior alternative such that all its traces fulfills
a certain criterion. In Def. 14, this criterion is expressed by the condition oly, o'
which requires that none of the traces in by that are compatible with observation
h must compromise observer ¢/. The condition bs = o <y, bs demands that all
traces in bs must be compatible with observation k. This ensures that all traces
in by hide o’ from o. Since all (not just some) traces in ba must fulfill this
requirement, the criterion holds regardless of how bs is refined. Note that we
do not have to worry about empty behavior alternatives, since no well-defined
diagram can yield such a behavior alternative given the syntactic constructs
presented in this report.

5 Ignorance Preserving Transformation

The notion of refinement addressed above is a binary relation on specifications
that formalizes the process of stepwise development by removal of underspecifi-
cation. This process depends on human intuition and is in general not subject
for automation. A transformation on the other hand, is an executable function
that takes a syntactic specification and produces another specification (e.g. a
PIM to a PSM). Semantically, we represent a syntactic transformation by a set
of functions mapping traces over abstract events to traces over concrete events.
The reason why a single syntactic transformation is represented by a set of func-
tions is that transformations often introduce a finer granularity in the sense that
one abstract trace may correspond to a set of concrete traces. Alternatively, we
could have used a function mapping traces to sets of traces.

5.1 Transformations from a Semantic Perspective

We denote by H, a set of traces over an abstract set of events, and by H. a
set of traces over a concrete set of events. Hence, contrary to earlier, we now
have an abstract universe H, and a concrete universe H,. Transformations are
semantically represented by a set of functions

FCHy — H,
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Figure 6: Example of a transformation

that maps abstract traces to concrete traces.

In order to ensure that transformations preserve our security property, we
impose two requirements on each function f € F.

First, we require f to be transmitter and receiver preserving in the following
sense:

f(Eh,lg ®h’ﬂJ — Ell,ig ®f{ha) (1)

Here h, is universally quantified over H,. Similarly, {; and !l» range over the
set of all lifelines. The function Ey, ;, yields the set of events that can occur on
lifeline I; whose message is sent from {; to [; or from I3 to [;.

Condition (1) is just states that an abstract trace whose events all have the
same transmitter and receiver, say t and r, must by transformed to a concrete
trace whose events also have the same transmitter and receiver ¢ and r. Note
that condition (1) may be weakened; e.g. by allowing lifelines to be decomposed
into a set of lifelines.

The second condition requires each f € F to be homomorphic wrt. concate-
nation of traces:

J(h)7 fh2) = f(h1™ h2) (2)

The traces i; and hs are universally quantified over H,. Condition (2) essen-
tially states that f is a function of events rather than trace histories.

Note that requirements (1) and (2) ensure that one abstract observation is
transformed to one and only one concrete observation. We let F denote the set
of all functions that abide to requirements (1) and (2) above.

5.2 Ignorance Preserving Transformation of Interaction
Diagrams

In the following, d, and d. are interactions diagrams with traces in M, and
H, respectively. Moreover, T' is a (syntactic) transformation on interaction
diagrams whose semantics [T'] C F is a transformation as defined above.

We first define what it means to translate an interaction obligation. Then
we lift this notion of translation to interactions diagrams.

Definition 17 Interaction obligation (p., n.) is a translation of interaction obli-
gation (pa,ng) with respect lo function f € F, written (pa,na) — ¢ (P, e), iff

He\ne = {f(ha) | ha € (Ha \ na)} Ape = {f(h) |k € pa}

The first condition states that each non-negative trace of the concrete inter-
action obligation must be a translation of a non-negative trace of the abstract
obligation. The second condition ensures that a positive trace in the abstract
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obligation is transformed to a positive (not inconclusive) trace in the concrete
obligation.

Definition 18 An interaction diagram d. is a translation of an interaction
diagram d, with respect to transformation T, written, d, —p d., iff

[de]={cla—=jcrac[d.]Afe[T]}

If F1,Fo € F then Fy o F» is understood as the set of functions obtained by
functional point-to-point composition of all functions in £} and Fs. That is,

FloRE{fiofo|fi € FiAfa € Fa}
If Ty and T; are syntactic transformations, we write T} 0T instead of [ T} Jo[ T2 ].
Lemma 1 — is {ransitive, formally:
dy =, do Ady —m, dy = di —muon da
Theorem 2 The ignorance property is preserved by transformation, formally
0199 o' A dy < d, = 0 1(d5) of

The proof relies on two facts. First, all transformations are interpreted by a set
of functions where each function by definition abides to conditions (1) and (2)
that together ensure that one observation at the abstract level is transformed to
one and only one observation at the concrete level. Second, each function that
interprets a transformation is by Def. 18 applied to interaction obligations in the
manner illustrated in Fig 6. That is, each function translates each interaction
obligation in the abstract diagram into a concrete interaction obligation. This
ensures that additional granularity introduced at the concrete level is in the form
of explicit nondeterminism as opposed to potential nondeterminism because the
cardinality of an obligation (i.e. the number of traces in the obligation that may
provide potential nondeterminism) is never increased during transformation.

The notions of refinement and transformation may be combined into a more
general notion of refinement.

Definition 19 The interaction obligaiions o, and o, are in a refinement rela-
tion wri. function f € F, written 0, ~; of., iff

Joc € O : 0, —f 0:. Ao ~ O

Definition 20 Two inleraction diograms d, and d., are in a refinement relation
wrt. transformation T, writien dg ~¢ d, iff

[de]={o. € Oloa ~folnos€da]AfE[T]}
Lemma 2 ~ is transitive modulo {ranslation.
dy ~q da Ada ~m, ds = di ~mom, d3

The results on preservation of the ignorance property carry over to the general
notion of refinement.

Corollary 1 The ignorance property is preserved by refinement modulo trans-
SJormation, formally:

01408) o! A dy s dp = 01d08) of

The proof is straightforward given Theorem 1 and 2.
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sd PM1 ) sd PM 1t )
update(p)
v o= ] T
L ok | xalt J '
| 1
TCP session 1 l
lsEh | ]
sd PM 1h J | : |
e e i e ez
Hupdata(p) h2t
¥ > » el TCP session n |
L- Hok 1
N ! : :

Figure 7: Example transformation

6 Transforming the Project Management
System

In Sect. 5 we showed that our notion of transformation preserves the ignorance
property. The purpose of this section is to show that our notion of transfor-
mation is not so strong that it cannot be used to semantically characterize
transformations of practical value.

In our running example, the developers and the researchers of the PM system
communicate with the server by SOAP messages. SOAP, however, is typically
bound to HTTP which again typically runs over TCP, etc. In the following
we demonstrate how the PM system based on SOAP can be transformed into a
system based on TCP in such a way that the ignorance property is guaranteed to
be preserved even when developers are able to observe TCP messages as opposed
to SOAP messages. In MDA terminology, this can be seen as a transformation
from a PIM to a PSM, where the platform is understood as a protocol.

6.1 SOAP to TCP

In practice, a transformation from SOAP to TCP typically works as follows:
First each SOAP request and response message is encapsulated by a HTTP
request and response header, respectively, then a new so-called TCP session is
created for each HTTP request-response pair. That is, for each HTTP request-
response pair, (1) a connection is established between the two sides of communi-
cation, (2) both the request and response are segmented, encapsulated by TCP
frames and transmitted, (3) finally the connection is explicitly terminated. The
TCP protocol must, among other things, handle message overtaking and mes-
sage disappearance. Hence, a HTTP request-response pair may be translated
into one of several potential TCP session alternatives.

Let dg — g0y dp —pot dy be two transformations that translate diagrams at
the SOAP level to diagrams at the HTTP and TCP levels. s2k may be inter-
preted by the set [ s2h] consisting of one bijective function that substitutes the
signal si of each event in d, with a signal that represents its encapsulated HTTP
equivalent, e.g. by concatenating the letter “H” and si. h2t can be interpreted
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as the set [ h2t] such that each function in [h2{] translates a HTTP request
message and a HTTP response message into a TCP session alternative. The
fact that the functions in [s2h] and [h2t] satisly requirements (1) and (2)
is almost immediate. (1) is satisfied because the transformation preserves the
transmitters and receivers of events. (2) is satisfied because s2h and h2t can be
expressed as a function of single events (as opposed to traces). Since transla-
tions are transitive by Lemma 2, d; “—ga dj <o dp is ignorance preserving
by Theorem 2.

Example The two left most diagrams in Fig. 7 illustrate the case where s2h is
applied to diagram PM; (also specified in Fig. 2). Here, the SOAP level mes-
sage names update(p) and ok have been transformed to the HTTP level message
names Hupdate(p) and Hok in diagram PM;,. Diagrams PMi, and PM;; il-
lustrate the application of h2¢ where the HTTP request and response messages
are translated in a number of different TCP session alternatives. These alterna-
tives are composed by the xalt, since by our definition of transformation, each
function in [ h2t] yields an explicit nondeterministic alternative.

7 Related Work

The work that is most related to ours is the work of Jiirjens, largely summarized
in the book [21]. Not only does he give a formal semantics for a fragment of
UML, but he also identifies conditions under which a secure information flow
property (among other properties) is preserved under refinement. There are
appreciable differences between our work and his. First, he formalizes a frag-
ment of UML in which only a simplified version of sequence diagrams of UML
1.5 is included. In other words, while his work is based on formalized parts of
UML that we do not consider, our work is based on STATRS which provides a
more in depth formalization of UML 2.0 interactions than what is considered in
Jiirjens work. Second, his semantics is based on so-called UML machines which
are a kind of state machines. The semantics of STAIRS is not based on state
machines. Third, while Jiirjens distinguishes between potential and explicit
nondeterminism in order to define a refinement preserving property of confiden-
tiality and integrity, he does not rely on this distinction in the definition of his
information flow property. That is, a secure information flow property for UML
machines is formalized such that each behavior refinement to a deterministic
UML machine satisfies this property, i.e. he effectively closes the property un-
der refinement without considering explicit nondeterminism. He himself notes
this is “rather strong” and it is in fact exactly this kind of definition that we have
been trying to avoid. Qur experience suggests that information flow properties
closed under refinement tend to be too strong for practical use if the distinction
between potential and explicit nondeterminism is not taken into consideration.
For example, if we had based our running example on a definition of ignorance
similar to that which is given in [20] (where explicit nondeterminism is not con-
sidered), and then closed this property under refinement without considering
explicit nondeterminism, then the property would have been so strong that the
example would not have made any sense. Finally, Jiirjens does not address
MDA or transformations.

Other efforts that are comparable to ours on a general level in that they
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address security in an MDA-setting and/or model-based security, can be roughly
classified into (1) access control related works: [2, 4, 7, 8, 9, 18, 22, 24, 28, 29|,
(2) secure database development [10], and (3) specification of high-level security
requirements [1, 6, 11, 31]. Although all these works are comparable to ours on
a general level, they are in fact quite different in that they do not deal with a
formalized notion of refinement, nor do they address information flow security.

There are a number of more theoretical papers related to information Aow
security and refinement. The work of Jacob [20] is related to ours in that our
formalization of ignorance is based on Jacob’s formalization of this property.
Jacob’s property is, however, not preserved under refinement. In fact, he was
the first that we are aware of to show that the derivation of secure systems
from security specifications can be practically infeasible. This became known
as the refinement paradox. It has later been observed that this “paradox” is
a manifestation of failing to clearly distinguish between potential and explicit
nondeterminism. As far as we are aware of, this observation was first made in
[30].

Two notable recent theoretic works that define refinement operators that
preserve information flow properties under refinement are [5, 26]. Both papers
investigate a number of information Aow properties, but their approaches differ
from ours. Specifically, [5] presents sufficient conditions with which to check
that a given refinement (defined in terms of simulation in a processes calculus)
preserves information low properties. Similarly, [26] presents refinement oper-
ators that can be used to check or modify refinements such that security is pre-
served. Both papers differ from ours in that we address secure information flow
preservation in a formalism that distinguishes between potential and explicit
nondeterminism. By taking this distinction into consideration in our definition
of refinement and the ignorance property, we show that all refinements preserve
ignorance, thus there is no need to check each specific refinement.

The work of Heisel. et. al. [17] is similar to ours in that they distinguish
between potential and explicit nondeterminism. The main differences between
their work and ours are: (1) They work in a probabilistic setting in a different
formalism than ours and they do not consider UML interaction diagrams. (2)
They consider a notion of confidentiality based on low-level indistiguishability.
This notion of security is strictly speaking not a secure information flow prop-
erty. (3) Their approach is different from ours in that they build the condition of
security preservation into their notion of confidentiality preserving refinement.
Wrt. refinement, we take the dual approach of strengthening the notion of se-
curity, i.e. by strengthening the ignorance property wrt. its original proposal
[20].

8 Conclusions and Future Work

On a general level, we have argued that by integrating security into MDA, secu-
rity documentation can be specified and analyzed at a high level of abstraction
during early phases of system development, thereby reducing the need of ad hoc
integration of security mechanisms at the level of implementation. Moreover,
analysis is more feasible at high levels of abstraction than at levels closer to im-
plementation because specifications at these levels may be too detailed to make
analysis practical.
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Our main objective has been to contribute towards a formal foundation
for this by presenting an approach where high-level UML inspired interaction
diagrams can be analyzed with respect to a secure information flow property,
and transformed, if desired, down to the level of sequences of bits in such a way
that the property is preserved.

Our approach is based on STAIRS [16], and the contributions of this re-
port are specifically (1) the formalization of the ignorance property (Sect. 3),
(2) showing that the ingorance property is preserved by the STAIRS notion of
refinement (Sect. 4), and (3) the formalization of ignorance preserving transfor-
mations and the general notion of refinement (Sect. 5). We are not aware of
any other work that exploits the distinction of potential and explicit nondeter-
minism in order to define a notion refinement in such a way that all refinements
preserve a secure information flow property. Moreover, we are not aware of any
work that addresses secure information flow and a notion of transformation.

A natural direction of future work is to generalize our results to other in-
formation flow properties. We are also planning to consider syntactic transfor-
mations, and to implement a computerized tool that will automate the security
analysis of transformations.
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A Glossary of Symbols

A.1 Set notation

Set™ Meaning

P(A) = {X|X C A} The power set of A.

AY = The set of all finite and infinite sequences
over the set A.

le Ll = The set of all lifelines.

st € 8T = The set of all signals.

me M = L x LxS8T  The set of all messages.

K = 1,7} The set of all kinds.

ecé = KxM The set of all events.

heH = £v The trace universe.

p,n,b C H A set of positive, negative, and behavior
traces, respectively.

Ha - H The abstract trace universe.

He - H The concrete trace universe.

fEFE C  He—Hc The set of functions that conform to (2)
and (1) Sect. 5.1.

a,ceO £ P(H) x P(H) The set of all interaction obligations.

0,0,s€8 = P(L) The set of all systems.

* By the notation a € A we understand that A is ranged over by a.

A.2 Traces
Notation Meaning Example
{ The empty trace
{la, 7a) The trace with two !a then ?a
events
#h The length of trace b~ #{la, ?a) = 2
A®h The trace h restricted {la,?a} ® (la,!b, 7a, 7b) = {la, 7a)
to set A
hy Ehy Dy is prefix or equal to  (la,1b) T {la, b, 7a) yields true
ha
{la,?a) C {la,1b, 7a} yields false
h[n] The event in trace h at  (la, 7a,!b, 76)[2] =7a
index n
h1"ha Concatination of h; (la,7a}™ (b, 7b) vields (la, ?a, b, 7b)

and hq
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A.3 Auxiliar Functions

Function X._.€&—K

Def. K.e Z!if e € {!} x M. 7 otherwise.

Meaning  The kind (output or input) of event e.

Function TR._€&— L

Def. TR.e =t, where e € {t} x Lx ST

Meaning  The transmitter of event e.

Function RE..€& — L

Def. RE.e =7, where e € £ x {r} x ST

Meaning  The transmitter of event e.

Function E._€8 — P(£)

Def. EsZ{ecf|(ke=!ATReE s)V (K.e =? ARE.c € 5)}

Meaning  The set of events that can occur on the lifelines of system s.

Function RT._€S8 — P(E)

Def. RT.5={e € | TR. € s VRE.c € s}

Meaning  The set of events whose message can be sent to or from the
lifelines in s.

Function E__€ L x L — P(£)

Def. By 1, =B {1} NRT.{l}

Meaning  The set of events on lifeline {; whose message can be sent from
! to g or from I3 to I;.

B Proofs

The proofs in this section are structured in a way similar to that of [23], where
hierarchical structure is used to demonstrate how each proof step is justified.

B.1 Theorem 1: Information flow property preserving be-
havior refinement

Theorem 1: The ignorance property is preserved by refinement.

AssUME: 1. o)(da®) of

2. dy ~ de
PROVE: o {de9) of

(1)1. AssUME: 1.1 h, € 0> (d, 5)
1.2 ﬁl = v(dﬂws)
1.3 =(o s, 4, @)
PROVE: 382 € V(dc,8) : 01g, 5, ' A2 =0 <p, fa
(2)1. Choose aa € V(d,, s) such that 0lg, 5, 0 and as = 0 <, as
(3)1. Choose a; € [d,] and ¢; € [d, ] such that a; ~ ¢; and 3; = V(cy, 5)
PROOF: By assumption 1.2, assumption 2 and definition of ~+ (Def. 16)
and V (Def. 9).
(3)2. Choose a1 € V(dg, s) such that a; = V{as, s)
Proor: By (3)1 and definition of V (Def. 9).
(33. (0 lah, 0
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{4)1. Choose h € 3 such that RT.o®h = h, and RT.0' ® h # ()
Proor: By assumption 1.3 and definition of ? (Def. 13).
(4)2. h € ay
PROOF: By (3)1, (3)2, (4)1, and definition of ~+ (Def. 15).
(4)3. Q.E.D.
Proor: By {(4)1, (4)2, and definition of { (Def. 13).
(3)4. Q.E.D.
Proor: By (3)3, assumption 1 and definition of ! (Def. 14).
(2)2. Choose az € [dq ] and ¢z € [d. ] such that as ~ ca and @z = V{aa, 5)
Proor: By {2)1 and assumption 2, and definition of ¥V (Def. 9).
(2)3. Choose 85 € V(d., 8) such that 3} = V(cg, s)
PRrOOF: By (2)2 and definition of ¥V (Def. 9).
(2)4 o Zﬁ{,,h., O'r
AssuME: (a) —(o s 4, 0)
ProvE: False )
(3)1. ~(oas,n, 0)
(431, 3’ € 0 <y, az : RT.O' @K # ()
(5)1. Choose h € o <p, (3% such that RT.0'®h # )
PRrROOF: By assumption (a) and definition of { (Def. 13).
(9)2. heo<y, an
Proor: By (2)2, (2)3, {5)1 and definition of ~ (Def. 15).

{6)3. Q.E.D.
PROOF: Select i’ such that i’ = h, then (4)1 holds by (5)1 and (5)2.
(1)2. Q.ED.
Proor: By {4)1 and definition of { (Defl. 13).
{3)2. Q.E.D.
Proor: (3)1 contradicts (2)1, hence assumption (a) is false and (2)4
holds.

(2)5. fo=o0<m, B
(5 is a subset of aa by (2)2, definition of ~+ (Def. 15), and definition of ¥V
(Def. 8), hence (2)5 must hold by {2)1 and definition of < (Def. 12).
(2)6. Q.E.D.
PROOF: Select 32 such that fa = 8%, then (1)1 holds by (2)4 and (2)5.
(1)2. Q.E.D.
PRrRoOOF:By (1)1 and definition of { (Def. 14).

B.2 Lemma 1: Transformation is transitive

Lemma 1: — js transitive
AssuME: 1. d —, dp,

2. dp, —, dn,
PROVE: d —rom, dry

(V1. [dr,]={or, € Olo—sop, Ao€[d]Afe[TaoT]}
2)1. 3(pm,nm) € [dr] : (p,n) —¢ (pry,n7y) for arbitrary (p,n) € [d]
and f € [T oTy]
(3)1. Choose f; € [T1] and fo € [T2] such that f = fao fi
PRoOF: By definition of o.
(3)2. Choose (pr,,n7,) € [dr, ] such that (p,n) =y, (pry,nm)
PRrRoOOF: By assumption 1 and definition of — (Def. 17).
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(8)3. Choose (}'JTH,?'ETE) € Hdeﬂ such that (pTITHT])  fa (anvn:T'z)
PRrRooOF: By assumption 2 and definition of < (Def. 17).
(3>4 (p,n) = faofi (pTzwnTu)
Proor: By (3)2, (3)3, and Lemma 1.1 (Sect. B.2.1).
(3}5. Q.E.D.
Proor: By (3}1 and (3)4.
(22. 3(p,n) € [d] : 3f € [TaoTi] : (p,n) —f (pr,nT) for arbitrary
(pT:z'lnTz) € ﬂdTaﬂ
(3)1. Choose f» € [T2] and (pr,,n1,) € [dr, | such that (pr,,n7,) </,
(pTz ) nTz)
PRrROOF: By assumption 2 and definition of — (Def. 17).
{3)2. Choose f1 € [T1] and (p,n) € [d] such that (p,n) —p (pry,n7,)
Proor: By assumption 1 and definition of — (Def. 17).
(3)3. (p,n) = paofy (Pruimmy)
Proor: By (3)1, (3)2, and Lemma 1.1 (Sect. B.2.1).
34 foofre[TaoTi]
PRroOF: By (3)1, (3)2, and definition of o.
(3)5. Q.E.D.
Proor: By (3}3 and {3)4.
(2)3. Q.E.D.
Proor: By (2)1 and (2)2.
(1)2. Q.ED.
ProoF: By definition of — (Def. 17).

B.2.1 Lemma 1.1
AssuME: 1. (p,n) =y, (pry,n1y)

2, (pT1 1 nTL) Hf;z (pTg ] nTz)
PROVE: (p,n) —fop (Pry,n7))

LET: f£ faofy
(1. Hp \ng, = {f(h) |h € H\n} Apr, = {f(h) | h € p}
(2)1. Vhe H\n:3hp, € Hr, \ np, : hp, = f(h)
(8)1. 3hp, € Hy, \ nqy, : hy, = f(h) for arbitrary h € H\ n
(4)1. Choose hr, € Hy, \ ny, such that hr, = f1(h)
PRoOF: By assumption 1 and definition of — (Def. 17).
(4)2. Choose hr, € Hr, \ nr, such that hr, = fa(hz,)
PROOF: By assumption 2 and definition of «— (Def. 17).
(4)3. Q.E.D.
Proor: By {4)1 and {4)2 and definition of f.
(3)2. Q.E.D.
Proor: By (3)1.
(2)2. Vhp, e Hpy \nmy, 1 3h e H\n: hp, = f(h)
(3)L. I e H\n: hp, = f(h) for arbritrary hr, € Hp, \ npy
(4)1. Choose hy, € Hr, \ ny, such that hp, = fo(hy)
PRrROOF: By assumption 2 and definition of — (Def. 17).
(4)2. Choose h € H \ n such that hy, = fi(h)
PROOF: By assumption 1 and definition of — (Def. 17).
(4)3. Q.E.D.
ProorF: By {4)1 and (4)2 and definition of f.
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{3)2. Q.E.D.
Proor: By {3)1.
(2)3. Yhe p:3hy, € pp, : by, = f(R)
(3)1. 3hyp, € pp, ¢ he, = F(h) lor arbritrary h € p
(4)1. Choose hy, € pr, such that hr, = fi(k)
PROOF: By assumption 1 and definition of — (Def. 17).
{4}2. Choose ht, € pr, such that hr, = falhg,)
Proor: By assumption 2 and definition of — (Def. 17).
(4)3. Q.E.D.
Proor: By (4)1 and {4)2 and definition of f.
(3)2. Q.E.D.
Proor: By {3)1.
(4. Yhyy, €pry tJh€p by, = f(R)
(3)1. 3h € p: hpy, = f(h) for arbritrary hy, € pr,
{4)1. Choose hr, € pr, such that hy, = fa(hn)
PROOF: By assumption 2 and definition of — (Def. 17).
{4)2. Choose I € p such that hp, = f1(h)
PRrRoOOF: By assumption 1 and definition of — (Def. 17).
(4)3. Q.E.D.
ProoOTF: By (4)1 and {4)2 and definition of f.
(3)2. Q.E.D.
Proor: By (3)1.
{2)5. Q.ED.
Proor: By (2)1 - (2)4.
(1)2. Q.E.D.
PRrooF: By definition of — (Def. 17).

B.3 Lemma 2: Refinement is transitive modulo transla-
tion

Lemma 2: ~ is transitive modulo translation.
AsSUME: 1. d ~~m, df,
2. dy, ~my df,
PROVE: d ~myery df,
{1)1. 3dr, € D:d —myemy dry Adp, ~ da’w"
(2)1. Choose dp, € D such that i
(a) d =7, dr, and
(b) dr, -~ di,
PRroor: By assumption 1 and definition of ~ (Def. 20).
(2)2. Choose dy, € D such that
(a) dy, —m, d, and
(b) dfp, ~ dr,
PRrRoOF: By assumption 2 and definition of ~ (Def. 20).
(2)3. Choose dr, € D such that
(a) dTl T t‘l!T2 and
(b) dr, ~= dp,
Proor: By (2)1 (b), (2)2 (a), and Lemma 2.1 (Sect. B.3.1).
(2>4 d TTaoT)y dT:
Proor: By (2)1 (a), {2)3 (a), and Lemma 1 (Sect. B.2).
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(2)5. dr, - d,

Proor: By {2)3 (b), (2)2 (b), and transitivity of ~ { proved in [14]).

{2)6. Q.E.D.
Proor: By (2)4 and (2)5.
(1)2. Q.E.D.
PROOF: By definition of ~~ (Def. 20).

B.3.1 Lemma 2.1

AssUME: 1. d ~ d'

2. d = da«
PROVE: d ~r df

(VL. [dp] = {0} € Ol o noe [d]Af € [T])
(2)1. Vfe[T]:Yoe[d]: 3oy € [dy] : 0~y o
(3)1. dof- € [dy ] : 0 ~f ofp for arbritrary f € [T] and o € [d]
{(4)1. Choose o' € [d'] such that o ~ o'
PROOF: By assumption 1 and definition of ~ (Def. 15).
{4)2. Choose oy € [[dy ] such that o' — of
PROOF: By assumption 2 and definition of — (Def. 17).
(4)3. 0~ o
PROOF: By (4)1, (4)2, and Lemma 2.2 (Sect. B.3.2).
{4)4. Q.E.D.
ProoOF: By (4)3.
(3)2. Q.E.D.
Proor: By V-rule.
(2)2. Vo € [dp]: 3f €[T]:Fo € [d]: 0~y o
(3)1. Af € [T] : do € [d] : 0 ~ o} for arbritrary of € [df ]
(4)1. Choose o' € [d'] and f € [T'] such that o’ — o}
Proor: By assumption 2 and definition of < (Def. 17).
(4)2. Choose o € [ d] such that o ~ o'
PROOF: By assumption 1 and definition of ~ (Def. 15).
(4}3. 0~ o
Proor: By (4)2, (4)1, and Lemma 2.2 (Sect. B.3.2).
(4)4. Q.E.D.
PRrOOF: By (4)3.
(3)2. Q.E.D.
Proor: By V-rule.
(2)3. Q.E.D.
Proor: Trivial.
(1)2. Q.E.D.
PrOOF: By (1)1 and definition of ~ (Def. 20).

B.3.2 Lemma 2.2

ASSUME: 1. (pa,na) ~ (ph,nh)

2. (phsmg) —y (L nL)

PROVE:  (Da,7a) ~; (Pl 1)
(1. (pe;ne) € O (pa;s Pa) = (Pesnte) A (peynic) ~ (plc! Tl::)

o
o




B PROOFS 26

<2>1' A(p., nr:} el
He\ne = {f(R)|h € (Ha \ na)}A
pe={f(1) |1 € pa}r
ne EnL Ape C pl Un
{3)1. Choose (p¢,n.) € O such that H.\ n. = {f(h)|h € (Ha \ na)} and
Pe = {f(h) | he Pu}
ProorF: By definition of O.
(3)2. n. Cnl
D1, Ha\n, C Ha \ng
PROOF: n, C n), by assumption 1 and definition of ~ (Def 15), hence
{41 must hold by definition of H,.
(2. {f(W)[h' € (Ha \mg)} € {f(h) [ h € (Ha\na)}
PRrROOF: By (4)1 since f is a function and hence deterministic.
(4)3. Ho\nl € He\ne
Proor: By (4)2, assumption 2, (3)1, and defintion of < (Def. 17).
(4)4. Q.E.D.
ProOF: By {4)3 and definition of H,.
(3)3. p. C peUng
AssUME: 1.1 p. € pLUn.
ProvEe: False
(4)1. h € pg: h & (p, Unl)
{5)1. Choose h. € p. such that h. ¢ (p.,Un.)
ProoF: By assumption 1.1.
{8)2. Choose h, € p, such that f{h,) = h.
Proor: By (5)1 and (3)1.
(5)3. ha & 1
Proor: By assumption 2, definition of — (Def. 17}, and modus
tollens.
(5)4. ha ¢ 1,
Proor: By assumption 2, definition of «— (Def. 17), and modus
tollens.
(5y5. Q.E.D.
Proor: By (5)2, (5)3, and (5)4.
(4)2. Q.ED.
Proor: (4)1 contradicts assumption 1 by definition of ~~ (Def. 15).
Thus assumption 1.1. is false, and (3)3 must held.
(3)4. Q.E.D.
Proor: By (3)1, (3)2, and (3)3.
(2)2. Q.ED.
ProoF: By (2)1, definition of — (Def. 17), and definition of ~ (Def. 15).
(1)2. Q.ED.
Proor: By definition of ~ (Def. 19).

B.4 Theorem 2: Ignorance preserving transformation

Theorem 2: The ignorance property is preserved by transformation.

ASSUME: 1. glda:®) ¢f
2, da = dc
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PROVE: o(ldess) of

(1)1. AssuME: 1.1 h. € 01> (dg, 8)
1.2 ¢1 € V(d., 9)
1.3 =(0lcy,n, )
PROVE: ez € V(de,8) 1 0lean, 0 Aca =04, ca
LET: w £ (RT.0NE.s), and o' £ (RT.0' NE.5)
(2)1. Choose (p},nt) € [d.] such that ¢; = V((pi,n}), s)
Proor: By assumption 1.2 and definition of ¥V (Def. 9).
(2)2. Choose (pl,nl) € [da] and f € [T] such that (pl,nl) —; (pi,nl)
PRrOOF: By (2}1, assumption 2, and definition of — (Def 18).
(2)3. Choose 3, € H, \ n} such that h, =w®f; and ' @ f1 # ()
(3)1. Chaoose h? € 0 <y, €1 : RT.0' @ hY # ()
Proor: By assumption 1.3 and definition of ! (Def. 13).
(3)2. Choose 3 € Hc \ nl such that E.s® 8 = h®
ProOOF:By assumption 1.2, (2}1, {3)1 and definition of <1 (Def. 12).
{3)3. (E.sNRT.0)®F=h,
(4}1. RT.0® R = h,
Proo¥r: By (3}1 and definition of < (Def 12).
(1y2. Q.ED.
PROOF: It is easy to see that A® (B@h) = (AN B)®#h for arbritrary
sets of events A and B and trace h. Thus (3)3 holds by (3)2 and (4)1.
(34, (BE.sNRT.ONO®F# ()
Proor:By (3)1 and (3)2.
(3)5. Q.E.D.
Proor: By (3)2, (3)3, (3)4 and definition of w and w’.
(2)4. Choose a; € H, \ nl such that 8; = f(a;)
Proor: By (2)2, (2)3, and defintion of — (Def. 17).
(2)5. W' @a; # ()
ASSUME: (a) w' B ay = ()
ProvE: False.
. W' © 8 = ()
Dl veh = o)
Proor: By (2)4 and Lemma 2.1 (Sect. B.4.1).
(4)2. QED.
Proor: By (4)1, assumption (&), and Lemma 2.3 (Sect. B.4.3).
(3)2. Q.E.D.
PROOF: Assumption (a) cannot hold since (3)1 contradicts (2)3, hence
(2)5 must hold.
LET: h, 2w®a;
{2)6. he = f(ha)
PROOF: By (2)3, (2)4, defintion of &, and Lemma 2.1 (Sect. B.4.1).
{2)7. ha € o> (dg, 8)
PROOF: By definition of &> (Def. 11) and w.
(2)8. Choose as € V(dg, s) such that 01, 5, 0' Aas =0 <, as
{3)1. Choose a; € V{d,, s) such that a; = V({pl,n.),s)
Proor: By (2)2 and definition of V (Defl. 9).
(32 (0 lay 1, )
(4)1. 3h € o<y, a1 : RT.0'@h # ()
(5)1 (E.S@G:l) €o<p, @y
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{6)1. (E.s®a)) € qg
PRoOOF: By (2)4, (3)1 and definition of V (Def. 9).
(6)2. RT.0® (E.s®a) = hq
PROOF: By definition of h,.
(6)3. Q.E.D.
Proor: By (6)1 and (6)2 and definition of < (Def. 12).
(5)2. RT.0'® (E.8®@qy) # ()
PROOF: It is easy to see that A® (B®h) = (ANB) ® h for arbritrary
sets of events A and B and trace h. Hence {5)2 holds by (2)5 and
definition of w.
(5)3. Q.E.D.
PROOF: Select h such that h = E.s® o, then (4)1 holds by (5)1 and
(5)2.
(@)2. Q.ED.
PROOF: By {4)1 and definition of { (Def. 13).
(3)3. Q.E.D.
PROOF: By (3)2, (2)7, assumption 1, and definition of ¢ (Def. 14).
(2)9. Choose (pZ,n2) € [da ] such that az = V((p2,n2),s)
PROOF: By (2)8 and definition of ¥V (Def. 9).
(2)10. Choose (p2,n2) € [d.] such that (p?,n2) < (p2,n2)
Proor: By (2)9, assumption 2, and definition of — (Def. 18).
(2)11. Choose ¢z € V(d,, s) such that ca = V{((p2,n2), s)
By {2)10 and definition of ¥V (Def. 9).
(2)12. cz =0 <y, C2
ASSUME: (a) ~(c2 = 0 <p, €2)
ProvE: False.
{3)1. as # o<y, as
(1. 3h € az: (RT.0®h) # h,
(5)1. Choose h® € ¢» such that h, # (RT.0® hD)
Proor: By assumption (a) and definition of <1 (Def. 12).
(5)2. Choose f € H, \ n? such that E.s® 3 = h®
Proor: By (2)11, (5)1, and definition of V (Del. 8).
(5)3. w®fF # he
Proor: By (8)1, (5)2, and definition of w and ®.
(5)4. Choose a € H, \ n2 such that 7 = f(a)
Proor: By {2)10, (5)2, and definition of — (Def. 17).
(5)5. w@aF#h,

6)1. flw®a)# flha)
Proor:
w®f # he [By (5)3]
flweda) # he [By (5)4 and Lemma 2.1]
floea) # flha) [By (2)6]
(6)2. Q.E.D.

F(R1) # f(hs) = hy # hy because f is a function.
(5)6. (E.s®@a) €Eay
Proor: By (2)9, (5}4, and definition of V (Def. 8).
{5)7. RT.0®(E.s@a) # h,
Proor: By (5)5 and definition of w and ®.
{5)8. Q.E.D.
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PROOF: Select h such that h = (E.s®a), then (4)1 holds by (5)6
and (5)7.
(4)2. Q.ED.
ProoF: By {4}1 and definition of <1 (Def. 12).
(3)2. Q.ED.
ProOF: Assumption (a) cannot hold since (3)1 contradicts {2)8. Hence
(2)12 holds.
(2)13. 0leyn, O
(3)1. Vheo<y, ca:RT.O'@h = ()
{(4)1. RT.0'®h = {) for arbritrary h € o <p,_ ca
(5)1. Choose B2 € H.\ n? such that E.s® s = h
PROOF: By (2)11 and definition of <1 (Def. 12).
{(5)2. Choose as € H, \ n2 such that G2 = f(as)
ProorF: By {2)10, {5)1, and definition of — (Def. 17).
5)3. W®Fa= )
6)l. w®as={)
PrOOF: By (2)8, (2}9, {5)2, and definition of { (Def. 13) and «'.
(6)2. Q.E.D.
Proor: By (5)2, {6)1 and Lemma 2.3 (Sect. B.4.3).
(5)4. RT.0'® (E.s® ) = ()
PROOF: By {5)3 and definition of / and ®.

(5)5. Q.E.D.
PROOF: By (5)1, and (5)4.
(4)2. Q.E.D.
Proor: By (4}1 and V-rule.
(3)2. Q.E.D.
Proor: By (3)1 and definition of } (Def. 13).
(2)14. Q.E.D.
PrROOF: By (2)11, (2)12, and (2)13.
(1)2. Q.ED.

ProoOF: By (1)1 and definition of } (Def. 14).

B.4.1 Lemma 2.1

AssUME: 1. A= f(a)for feF
PROVE: w®f= f(w®a) where w £ (RT.0 N E.s) for arbritrary s,0 € S

PROOF SKETCH:By induction over the length of a we show that (1) w® f(a) =
f(w®a) holds for the base case where #a = 0 and that (1) holds for #a =n
(induction hypothesis) implies that (1) holds for #a =n + 1.
D1 wd fla)=flw®a)

(2)1. CASE: #a =0, i.e. a= () (base case).

FRroOF:
w@®fla) = flwoa)
w®f(() = flwel) o=/
w®f(H) = f(O) [By definition of ®.]
wd®{) = { [By Lemma 2.3 (Sect. B.4.3).]
¢ = 0 [By definition of ®. ]

(2)2. Case: #a=n+1
ASSUME: w® f(ap) = f(w®ay) where a; (e) = a such that e = afn + 1]
{induction hypothesis).



B PROOFS 30

PROOF:

w®f({e)) = [flwd(e) [Lemma 2.2]
w® flap) " w@f({e)) = [flw@a,) flw®(e)) [Induct. hyp)]
w® flap) wef((e)) = [((woap) (o)) [T

w (flap)"f(le))) = flw®(a™(e)) [Def. of ®.]
w®f(ap"(€)) = flwo(a™() (*]
w® fla) = flwea) [Induct. hyp.]

* These steps are valid because f € F, thus f fulfills requirement (2)
(see Sect. 5.1) by definition of F.

(2)3. Q.E.D.
Proor: By {2}1 and {2)2.

B.4.2 Lemina 2.2
ProVE: w® f({e)) = f(w® (e)) where w £ (RT.0 N E.s) for some 0,5 € S

LET: h £ f({e))
(. we f({e)) =f(w®(e))
(2. By, Cwloralll;esandl, €0
{31, w= Ui,es,f,,eo Er 1,
PROOF: w = RT.0NE.5 = [, ¢5 4, c0 RT-{lo} N E{ls} = UL, st c0 Elaia
(3)2. Q.E.D.
Proor: B4, C U! €s.duco Elorlo obviously holds for some {; € s and
lo € o0, thus (2)1 holds by {3)1.
(2)2. CASE: e € By, 1, for some [; €sand [, €0
(1. (B, ®@h=h)= (w@h="h)
PROOF: L, ;, ® h = h implies that h = () or that / only contains events
in B, 4,. w®h = h trivially holds in the former case, and in the latter
case because E, ;, C w by (2)1.
(3)2. Bi,1, ® F({e}) = [(Ei,1, © (e))
ProoF: Holds since f € F and all functions in F must satisfy require-
ment (1) in Sect. 5.1 by definition of F.

(3)3. Q.ED.
PROOF:
E . ® f({e}) = f(E, 1, ®(e)) [Holds by (3)2]
B, 1, ® f({e)) = f({e)) [Holds since e € By, 1, ({2)2)]
E, 1, ®@h=nh [Def. of A]
w®h=nh [By (3)1]
w® f({e)) = f({e}) [Def. of A]
w® f({e)) = flw®{e)) e € w by {2)1 and (2)2.]

(2)3. Case: eg B,y foralll,€sandl, co

31 (B, ®h=())= (wh=/)
Proor: It is easy to see that the implication halds if h = (). Il h # (),
then the left side of the implication requires that i does not contain any
events in Ey, 5, but this entails that the right side of the implication holds
because B, ;, Cw (by (2)1).

(32, Ep 1, ® f({e}) = f(Er,1, @ (€))
Proor: Holds since f € F and all functions in F must satisfy require-
ment (1) in Sect. 5.1 by definition of F.
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(3)3. Q.E.D.
Proor:

Ei, 1, ® f((e})) = f(Ei, 1, ®(e)) [(3)2]
Et, 1, @ f((e)) = f({)) [Case assumption (2)3]
B, ®h= f({) [Def. of A
wdh=f({)) [Lemma 2.3 (Sect. B.4.3) and (3)1]
w® f{{e}) = f(() [By definition of &)
w® f{{e)) = fw®{e}) [Case assumption (2)3]

(2)4. Q.ED.

Proor: By (2)2 and (2)3.

B.4.3 Lemma 2.3

Assume: 1. f({})) = h where f ¢ F
Prove: h= ()

(1)1. Eyy 1, ®@ b= h for arbitrary {;,la € L.

Proor:
B ®f(0) = fEwLeQ) [
En ®F()) = Q) [By def. of ®]
Enn.®h = h [By assumption 1.]
* Holds because f satisfies requirement (1) in Sect. 5.1.
(1)2. Q.E.D.

AssUME: (a) h # ()
ProvE: False.
(3)1 U, l'elL:3neH: Ep g @k # h'
(4}1. Choose I, € £ and e € £ such that TR.e # I,
ProoOF: Trivial.
2. Iy e L:E, @) =)
PROOT: By (4)1 and definition of E .
(4)3. Q.E.D.
Proor: Select [ such that { = I, and A’ such that b’ = (e}, then (31
holds by (4)2.
(3)2. Q.E.D.
PROOF: (3)1 contradicts (1)1, thus assumption (a) is false.
(1. Q.E.D.
Proor: =(h # (}) = h =)







