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1 Introduction

A prediction system for the local flow in mountainous terrain is developed (Utnes 2002, Lie
et al 2003, Eidsvik et al 2004, Eidsvik 2005). The prediction is based upon synoptic scale
information, which is downscaled by means of detailed information about the terrain and fully
three-dimensional flow models (Figure 1). Although all models integrate efficiently parallel, the
time-step constraint: At < Az1/U makes high-resolution estimations expensive. As for all
meteorological prediction models, the gridding therefore have to be sparse, even in the most
local model of a system like in Figure 1. This study estimate errors associated with too sparse
gridding of the most local model, given that the larger scale flow is known.

For the purpose of comparison, the prediction error of the large scale flow (UM1-scale)
should also be estimated, but quantitative estimates of errors associated with meteorological
predictions are scarce. For the purpose of this study a large scale weakly stratified flow is
represented with the flow near the top of the boundary layer: U. Very roughly its prediction
error should be comparable to the structure function for horizontal velocity components. For
scales between about 102Km and 10?Km, corresponding to timescales between about 2hr and
24hr, where two-dimensional (geostropic) turbulence is dominant, the relative error is then very
roughly: 6U/U ~ 0.2(fAt) ~ 0.2, where f ~ 10~*s~! is the Coriolis parameter and At ~5 hr.
is the lead time for the prediction (Lindborg and Cho 2001, with references therein). The total
relative prediction error for the mean value , u; =< w; >, and standard deviation of a velocity
component (characteristic turbulent velocity, turbulent kinetic energy) o; ~ u; ~ VK, can be
roughly estimated from relations like: w; = (u;/U)U, as: du;/u; ~ §(u;/U)/(u;/U) + 6U/U.
The first term on the right hand side represents the prediction error given that the larger scale
flow is known, and only this is estimated here. When misunderstandings are not probable, the
normalization with U may then be neglected. Preferrably this error should not be significantly
larger than the larger scale error: 6U/U ~0.2.

The simplest error associated with too sparse gridding is that the terrain height and slope
can be seriously underestimated. Suppose that a hill is characterized by its maximum heigt:
H=0(500m), and halve-width: L=0(2Km), relative to the surrounding terrain. For resolving
the maximum height the grid resolution have to be better than about Az;/L <0.3. Since the
terrain slope, comparable to: H/L, is a spatial derivative, it focus small scale variations even more
so that it may be significantly underestimated on a sparse grid. The predicted flow may then
be attached when in reality it should have been separated, for about H/L>0.5, corresponding to
25 degrees. The wind-shear and turbulent intensity may therefore be seriously underestimated.
Even for less dramatic differences the turbulent intensity may be underestimated on sparse grids.



This is so because the turbulent production is proportional to the mean wind shear squared:
P = ugly(Ou;/ 8xj)2, so that the spectrum of energy production is focused towards the small
scale variations which cannot be represented realistically if the grid is too sparse.

The relatively unknown surface properties also gives flow estimation errors. Even the surface
roughness distribution over a given terrain is quite unknown. Also the local thermodynamic
forcing depends significantly upon the surface properties. For instance, as the system (Figure
1) functions presently, the regional scale cooling during clear nights appears to overestimate the
turbidity flows from the valleys. The stratification associated with such flows may then decouple
the low level flow from the large scale flow over the mountains so that the latter flow do not
“see” the actual terrain. This means that the low level flow may be quite independent of the
upper layer flow, making the downscaling procedure (Figure 1) inaccurate (Eidsvik et al 2004).

Stratified flows with N? = (¢/0)06/0x3 > 0, are associated with lee waves, rotors, breaking
waves, hydraulic transitions, vortex wakes, ship waves and bifurcations (Baines 1995, Wurtele
et al 1996), so that the flow over a given local terrain may be critically dependent upon the
detailed history of the flow over the regional scale terrain. Therefore these features should
also be predicted accurately on the regional scale. The gridding of the regional scale model can
probably not be sufficiently dense for this, but it is hoped that the general properties of lee waves
with characteristic wavelength A ~ 27U/N =0(5Km) (Baines 1995) and moderate amplitudes
should be represented reasonably accurately also in the regional scale model. It is also hoped
that the information about lee waves on the regional scale grid can be transformed accurately
to the more detailed local scale grid. However, problems with downscaling internal wave flows
will only be addressed implicitly in this study. Convective flows, 06/0z3 < 0, with cumulus
clouds, have energetic coherent eddies with spatial scales as small as 100m (Emanuel 1994). In
a coordinate system moving with the mean flow the most local model can simulate such flows,
but the prediction system (Figure 1) can not. Convective effects are only parameterized in the
simplest manner, so that errors associated with convection will not be discussed.

Again: the purpose of this study is to investigate if the standard local model in Figure 1,
which is reasonably realistic on sufficiently dense grids, can also predict usefully accurate on
very sparse grids. The focus is towards errors that are most relevant for estimating the flying
safety, the wind shear and turbulence. With intense turbulence the turbulent standard deviation,
o; ~ ug ~ VK is most important for both (Eidsvik et al 2004).

Since the prediction system should be applicable in most interesting flows, the gridding error
is estimated roughly in several idealized flows. The vertical-, Az3/H and horizontal gridding,
Azq/L, Azy/L, are chosen to be approximately proportional so that they can be represented
roughly with Az, /H.

It turns out that moderately stratified flows are predicted usefully accurate in terms of
resirculation domains and characteristic wavelength for lee waves even on quite sparse grids.
The lee wave amplitude is predicted less accurately. For better grids than about Az;/H <0.5
or so, the relative error 6V K / VK is smaller than about 0.25, which is comparable to the large
scale error and about as accurate as any turbulence model can be. For flows with resirculation
domains, it also turns out that this error is systematic in that sparse gridding underestimates
the turbulent intensity. This may be used for corrections of the sparse grid estimates from the
prediction system (Figure 1).

For strongly stratified flows with hydraulic transitions, it appears that the turbulence model
underestimates the turbulent intensity seriously. Although such flows are dramatic, for moderate
hill height they are associated with small U-values, so that this error may not be very important
for flight safety.



2 Simple Modelling of Geophysical Turbulence

The HIRLAM, UM and SIMRA numerical models (Figure 1) are based first principles like
the conservation of mean momentum, mass and potential temperature (Pope 2000, Eidsvik et
al 2004 ). A rational turbulence model for stratified geophysical flows with energetic quasi-
horizontal, an-isotropic large scale eddies is not available (Phanofsky and Dutton 1984, Kaimal
and Finnigan 1994). In a system like in Figure 1 the integration speed and robustness are so
essential that many-equation models cannot be afforded (Brgrs and Eidsvik 1992, 1994, Hewitt
and Vassilicos 2005). Therefore, until a rational turbulence model for stratified geophysical
flows is documented, the most standard few-equation model from laboratory scale flows are ap-
plied. The turbulent stress is estimated from the Boussinesq viscosity approximation. with a
turbulent viscosity coefficient given as v4 = uyl;, where the turbulent velocity and length-scale
are u; = (C’,i/ ’K )'/2 and I; &~ u}/e respectively. The turbulent kinetic energy and dissipa-
tion €, are estimated dynamically from Equations 1 and 2. Here P = — < u;u; > Ou;/0x;,
and G =< 0”21,,3 > ¢/0. Adjustments of the standard coefficient may commonly make pre-
dictions by standard models apparently better when applied to geophysical flows, but since
such curve-fits may not be related to model accuracy, standard coefficients are applied here,
(k,C, Ce1,Ce2,Ce3,0K,0¢) = (0.41,0.09,1.92,1.43,1,1,1.3), (Pope 2000).
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The available evidence suggests that this model is also usefully accurate for moderately stratified
geophysical flows. However, K and € as estimated from Equations 1, 2, should then be inter-
preted so that the quasi-horizontal, an-isotropic large scale eddies can also be estimated. For
the purpose of this study, we feel that it is rational to extrapolate from what is most commonly
accepted both for laboratory- and full scale geophysical flows, the structure of the smallest
isotropic inertial subrange eddies:

The energy dissipation € = V(@u; /0z;)?, really occurs near the Kolmogorov micro-scale, but
in Equation 2 it is rather to be interpreted as the inertial subrange energy transfer from the
large to smaller eddies. It also measures the intensity of the inertial subrange spectrum and the
associated covariance Q;;(Ax) =< u;(x)u;(x + Ax) > function (Pope 2000). The dissipation
can also be interpreted as the characteristic length-scale of the most energetic quasi-isotropic,
but also flux-containing turbulent eddies. This length-scale should therefore be representative
for the vertical velocity component both in laboratory scale and geophysical flows.

The turbulent kinetic energy K as estimated from Equation 1, is supposed to contain energy
from the quasi-isotropic and flux-containing eddies. Even the largest of the eddies associated
with significant vertical velocity, contributing most to vertical fluxes < u;u’g >, < Klu'?, >
and the wall stress u2 = C,i/ ’K (3 — 0) are supposed to be included in the estimated K. It
therefore follows that K = 3/2Q33. The spectrum of the vertical velocity component can be
roughly approximated with the Kaimal model spectrum (Equation 3 with l;3 = [;).
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The largest scale quasi-horizontal, an-isotropic geophysical eddies are supposed not to be con-
tained in K and € as estimated from Equations 1 and 2, but it may still be convenient to include
them in what we call “turbulence”. These fluctuations must be estimated by means of ad hoc
relations. Experimental evidence from the near bottom equilibrium boundary layer over flat land
suggest that the variance of u; is related to K = C,Ilﬂuf, like: Q11(0) = Q22(0) ~ 4.5u? ~ 1.4K,
Q33(0) ~ 1.7u? = 0.5K ~ (2/3)K (Phanofsky and Dutton 1984, Kaimal and Finnigan 1994,
Utnes and Eidsvik 1996). This means that o1/03 ~ 1.7 or so. Very approximately the
Kaimal spectrum (Equation 3 and 4) is also fruitful for the horizontal velocity components
and temperature, so that the o;/o3-ratio of 1.7 corresponds to I /li3 ~ 7.0 (Equation 4).
Other data suggest that the one-dimensional spectra for the horizontal velocity components
and temperature tend to follow -5/3 spectral laws even farther beyond k,,3 ~ 1/li3, say to
kmi ~ 1/ly ~ 1/l ~ 1/D =~ 1/1Km (Panofsky and Dutton 1984, Kaimal and Finnigan
1994). For long time averages of larger scale two-dimensional turbulence this spectral law is
even estimated up to about /3 ~100Km (Lindborg and Cho 2001).

Since the large scale contribution is supposed to be associated with small vertical velocity, it
contribute little to vertical fluxes and wall stress, so it may not be dynamically essential. This is
one reason why there may be some hope that a standard turbulence model developed and tuned
to laboratory-scale flows, may be useful also to weakly stratified full-scale geophysical flows.

3 Simulations

3.1 Inflow Profiles

For the purpose of this study the incoming flow at the “west” boundary of SIMRA is approxi-
mated as in Equation 5 (Panofsky and Dutton 1985, Kaimal and Finnigan 1994). The friction
velocity is u, and the stratification is supposed to affect the flow negligibly. The wake function
can be approximated as W (z3/D) = (A — 1)(z3/D) — A/2(z3/D)? which behaves properly as
z3/D =1, regardless of the coefficient choice (A~4).

z3

uo(z3) ~ %(lnj—j’ +W(H) (5)

The turbulent lengthscale-, kinetic energy- and dissipation profiles at the “west” boundary are
estimated as 1/l (z3) ~ 1/kz3 + 1/6D, €(z3) ~ (Ci *K (z3)1/2)3 /1,(z3), with:
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In neutrally stratified flows the Ekman layer thickness is: D=~0.2u,/f = O(1km), but for
stratified flows a neutral surface boundary layer is normally capped by a potential tempera-
ture interface A9 = 0(D) — 6(0), at z3 = D, with a fairly constant Brunt Vaisila frequency:
N? = (g/©)(0©/0z3) above:

O(x3) =0(0), for x3<D

06 N?
0(z3) = 6(D) + a—xg(xg, —D)=6(D)[1+ 7(x3 —D)], for xz3>D (7)
If a flow like above with initial D = 0 is heated and mixed from below, D and the potential
temperature jump will increase with time like: A@ =~ (80/0z3)D = (8(0)/g)N?D, so that
the relative internal wave speed and Froude number are: c2 = (A8/6(0))gD = (ND)?, and

Ule, =U/ND.



With stationary inflow, it is expected that the simulated flows should also be stationary.
However, it turns out that some dynamics remains even after quite long integration times. The
simulation results to be illustrated contain such variations, but their relative magnitude are
significantly smaller than the errors associated with the coarse gridding.

3.2 Attached Flow over a Hill

Neutrally stratified attached flow over a hill is studied with reference to the Askervein hill
experiments . The maximum slope is about H/L~ 0.5, corresponding to 25 degrees, which is
marginal for attached flow. These data are one of the most classic references for validating
models for geophysical flows, and several models can be adjusted to “predict” these data very
accurately even on very sparse grids. Castro et al (2005) concludes that grids comparable to
N;i x N3 x N3 ~ 50 x 50 x 30, with near ground vertical resolution comparable to: Axsz/zy ~20,
2o ~0.03m are sufficient. Castro et al (2005) apply a (K, €)- turbulence model with a nonstandard
turbulent viscosity, (C,=0.033 instead of C,= 0.09). Also standard turbulence models predicts
these data quite accurately on sparse grids. The SIMRA model, with a standard Gatski- Speziale
(1993) algebraic turbulence closure, do so (Eidsvik 2005) and Figure 2 illustrates that also the
standard (K, €)- turbulence model with standard coefficients do (compare Figure 2a with Eidsvik
2005). Even the general variation of the turbulence, AK/Kj, along the terrain, with the rapid
increase behind the hill-crest is predicted quite accurately on quite sparse grids. A main reason
for this sparse grid accuracy may be that this flow is governed by the Jackson-Hunt (1975)
speedup effects, where the main flow gradients are normal to the terrain. A reasonably accurate
representation along this direction is sufficient for a quite accurate prediction of the whole flow.

However, Figure 2a suggests an unexpected grid variation in that the simulation on the most
detailed grids appear to give the largest velocity defect “errors” behind the hill. Since Figure 3b
illustrate that Au/ug vary quite much over small distances along the hillside in this area, with a
minimum value smaller than Au/ug ~-0.8, these differences may not be significant. Also, since
the mean flow and turbulence is estimated as: u ~ 4.0 m/s and vK ~ 2.5m/s in this area, the
relative accuracy of these Au/ug-data may be quite large, say 0.5 or so. Both arguments suggest
that the differences between the Au/up-data and fine grid predictions may not be significant.

But also the variations of AK/K| appear to suggest that the prediction error behind the
hill may not decrease with increasing grid resolution (Figure 2b), and Figure 3b illustrate that
AK/K, for the best grid is systematically too small in this area, say smaller than AK/Kjy ~1.5
or so. From Figure 2b we estimate that the predicted near wall turbulence is associated with a
relative error of AK/K) as large as 0.5 or so, over the whole hill. Equation 8 then illustrates
that the relative error of v/K is only about halve as large as the relative error of AK/Ky, say
about 0.25, and this is comparable to the accuracy of most turbulence closures which are models
and not curve-fits. The inaccuracy of the turbulence predictions should therefore be accepted
as moderate, particularly so when this is geophysical turbulence.

AK
VK =/ Ko[l+ —] (8)

Ko
In summary: the differences between the predictions and the data are therefore considered to be

moderate and a better gridding than, say Az;/H <0.6 is estimated as sufficient for predicting
such flows usefully accurately, also in terms of the turbulent intensity.

3.3 Separated flows over idealized Hills

Separated flows over hills are studied with reference to Hunt and Snyder’s (1980) laboratory
scale experiments, with an axisymmetric hill with D/H=0.3 and z,/H=0.00033. We simu-



late large Reynolds number geophysical flows and upscale the parameters from H=0.229m to
H=500m. For the purpose of obtaining simpler understanding and denser numerical resolution,
two-dimensional simulations over a cosine-square hill with L/H =2 is also simulated (Utnes and
Eidsvik 1996). Since the separation is more important than the details of the incoming flow, the
predictions are now discussed in terms of u;/U and v/ K /U rather than in terms of Au;/U and
AK/Ky.

Figure 4 and 5, can be compared with Hunt and Snyder’s (1980) Figure 15e. The details
of the small scale variations near a complicated hilltop like this can obviously not be predicted
accurately on sparse grids. Nevertheless the larger scale variations are so and for the purpose
of this study the predicted flow corresponds well to the data. Both the main separation point
at about (z1,z2) = (0.6, 0) and the reattachment point (z1,22) = (3.5, 0) (Hunt and Snyder
1980) are predicted quite similar. Also the width of the main recirculation area are similar to
the data, recirculation defined as the domain with negative u;-component. Turbulence was not
measured, but in a recirculating flow like this the maximum turbulence intensity should be close
to: VK /U ~0.25 (Rodi and Bonnin 1997), like suggested by the simulations.

The grid dependence is illustrated in Figure 6, and a systematic increase of the reattachment
distance with increasing grid resolution is estimated, like in the classical backward facing step
flow (Pope 2000, Hewitt and Vassilicos 2005). Also the estimated maximum turbulent intensity,
VK /U tend to increase with increasing grid resolution, as expected.

The two-dimensional flow is experimentally verified to be similar to the classical flow over a
backward facing step, with a reattachment distance and maximum turbulent intensity compa-
rable to z,/H = 6.5 and VK /U ~0.25 (Rodi and Bonnin 1995, Utnes and Eidsvik 1996) and
also Figure 7 illustrate that this is so. The flow is estimated to separate slightly behind the
hill-crest, leaving a thin shear layer trailing behind. The thickness of this shear layer turns out
to be quite grid dependent and the vorticity distribution in Figure 7 suggests that even the most
detailed grid applied here is not dense enough to represent this shear layer very accurately. As
for the backward facing step flow, the reattachment point and the maximum turbulent intensity
must also be expected to converge slowly towards the correct values, and Figure 8 illustrate this.
Nevertheless, the bulk properties of the flow are predicted plausibly, even on sparse grids.

In summary: the simulations suggest that even a gridding as coarse as about Az1/H ~0.6
give usefully accurate predictions of complicated massively separated flows. However, both the
reattachment distance and maximum turbulent intensity are underestimated, as illustrated in
the Figures 6 and 8. For steep hills it should be recalled that Az;/L is also supposed to be
sufficiently small so that a separation can be represented.

3.4 Stratified wave flows over idealized Hills

Stratified flows are also studied with reference to Hunt and Snyder’s (1980) laboratory scale
experiments. The inflow profile of density (potential temperature) is like in Equation 7, without
a density interface. What Baines (1995) calls the inverse steepness number: U/NH, is varied
over 0.1 < U/NH < 1.7. Two-dimensional stratified flows are studied with reference to Vosper
(2004) and Sheridan and Vosper (2005). The flow is estimated to be governed by the non-
dimensional numbers: U/c,, U/ND, D/H . When the inversion is generated by convection like
suggested below Equation 7, so that: ¢,=ND, there are only two independent numbers. Sheridan
and Vosper (2005) find that lee waves can occur when: (U/c;)? < Tanh(ND/U)/(ND/U) ~
[1 - (1/3)(U/ND) 2] ~ 1. For D/H > 2.5 the lee waves have moderate amplitudes. For
D/H < 2.5 and 0.4 < U/e, < 1 the lee waves have large amplitudes with rotors and for
U/c¢, <0.4 there is an hydraulic jump behind the mountain with small lee wave amplitudes.
The characteristic wavelength of the lee waves is estimated as in Equations 9 and 10 (Hunt and



Snyder 1980, Baines 1995, Vosper 2004).
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A necessary grid requirement for representing lee waves like this is that the resolution should be
significantly better than the Nyquist condition: Az; < A\/2. In the lee wave region, U/NH =
O(1), 0.4 < U/c, < 1, this gives approximately:

% < Mm[vr(N—[;), 27%[1 + (%)‘2]—1] ~ 3.0 (11)
Hunt and Snyder’s (1980) U/NH=0.8- flow is illustrated in the Figures 9 and 10. As expected
from data (Hunt and Snyder 1980, Baines 1995) it is predicted to be attached over the hill, with
well developed lee waves. The characteristic lee wavelength, estimated as about A/H =5.0, is
similar to the linear estimate in Equation 9. Also the low level rotor flow is realistic. Although
the maximum turbulent intensity in the rotor flow is estimated as almost vK /U ~0.2, this
may be considerable to small relative to common conceptions of rotor flows. As have been
experienced before, the stratification do probably damp the (K, ¢€) turbulence too much (Brgrs
and Eidsvik 1992, 1994, Hewitt and Vassilicos 2005).

The grid dependence of the characteristic lee wavelength, maximum wave vertical velocity
and maximum rotor turbulent intensity are illustrated in Figure 11. It appears that the correct
lee wavelength is estimated as soon as the lee waves are resolved reasonably well. However, the
lee wave amplitude as characterized with the maximum vertical velocity increases systematically
with the grid resolution. The maximum turbulent intensity also increases systematically with
the grid resolution, but as mentioned, it is probably significantly underestimated even on a very
dense grid.

A two-dimensional wave flow is estimated in Figure 12. In agreement with Sheridan and
Vosper (2005) the parameters D/H=1.4 and U/¢, =~0.67 (corresponding to U/NH=0.9), are
consistent with significant lee waves and rotors. The grid dependence of the numerical solution
is estimated in Figure 13. Firstly, the dominant linear wavelength A\/H =5.5 (Equation 10), is
estimated within the estimation uncertainty, say AX/H ~0.5 (Subjectively judged from figures
like 12), even on the coarsest grids. The wave amplitude, in terms of the characteristic maxi-
mum wave vertical velocity is reduced considerably with decreasing grid resolution. As for the
neutrally stratified flow, the maximum turbulent intensity is also systematically underestimated
on coarse grids.

In summary: the Figures 11 and 13 suggest that better grids than about Az;/H ~0.5 or
S0, give quite realistic predictions of lee wave flows with low level rotors. However, the wave
amplitude and maximum turbulent intensity are systematically underestimated. It should be
recalled that Az;/L is also supposed to be sufficiently small, say Az;/L <0.25 so that the
difference between a separation and a downslope jet can be represented.

3.5 Flows with hydraulic Transition

Strongly stratified flows are also studied with reference to Hunt and Snyder’s (1980) laboratory
scale experiments and Sheridan and Vosper’s (2005) simulations. Figure 14 and 15 illustrate the
predicted U/NH=0.4- flow, to be compared with Hunt and Snyder’s (1980) Figure 15b. The
predicted speedup down the lee slope, with the hydraulic transition are evident. The transition
point (z1,z2)/H = (1.0, 0) (Hunt and Snyder 1980), is predicted quite well but the reattachment



point (z1,z9)/H =~ (3.0, 0) is predicted to be larger than (6.0, 0). Also the width of the wake
area seems to be over-predicted. The several isolines in the wake area are insignificant, all for
small and similar values. The characteristic scale for the variations downstream of the transition
corresponds to the characteristic lee wavelength (Equation 9, Figure 15).

Again the turbulence was not measured by Hunt and Snyder (1980), but the common concep-
tion that hydraulic transitions are associated with intense turbulence, is not predicted (Figure
15). The maximum turbulent intensity is only about v/ K /U ~0.15, and the most intense turbu-
lence is restricted to the most intense shear layer. It turns out that the Gatski- Speziale (1993)
modified model predicts the U/NH=0.4- flow almost similarly to the standard model, but the
maximum turbulent intensity is now v/K /U 0.2 instead of 0.15. The figures 17 and 18 show
that a prediction with stratification effects removed from the turbulence model is significantly
different than from these two models. The main reattachment point is now estimated as about
(z1,z2)/H = (5.0, 0) and the width of the recirculating area is limited to (z1,z2)/H = (2.0, 1.0)
(Figures 17 and 18), in better agreement with the data (Hunt and Snyder’s 1980 Figure 15b).
The turbulence intensity is also much larger, in agreement with common conceptions of such
flows. However, since this is a nonstandard turbulence model, it will not be applied further.

The grid dependence of the standard model is simulated on the same grids as illustrated in
Figure 6, but it is difficult to characterize this flow in terms of a few variables. Obviously coarse
grids cannot resolve the large gradients near the transition and the coarsest grid, Az1/H = 0.86,
turns out not even to predict the tendency to downslope speedup. Also, since now Az = (A\/2)
(Equation 11), the lee wave pattern is folded to become a more variable and shorter wavelength
wake flow than indicated in the Figures 14 and 15. However, at the resolution Az,/H ~ 0.43,
both the tendency to downslope jet and the hydraulic transition is predicted (Figure 16). The
maximum turbulent intensity turns out to be estimated as v/ K /U ~0.15 for all reasonable grids,
which are probably major underestimates.

Figure 19 illustrate a two-dimensional flow with D/H=1.4 and U/¢, =~0.28 (corresponding to
NH/U=2.5), and in agreement with Sheridan and Vosper (2005) and Eidsvik and Utnes (1996),
an hydraulic transition is predicted behind the hill. There is a strong downslope wind near the
surface with an overturning flow higher and behind (compare Figure 14, 14 ). The characteristic
wavelength for the moderate amplitude waves above the density interface is: A/D =~ 1.63,
which is more like A\/D = 2nU/ND =1.78 instead of like A\/D 1.0 from Equation 10. This is
physically reasonable since the flow below the density interface do not now participate in the
wave flow. Since the lower level flow is neutrally stratified, it is reasonable that the turbulence
intensity is now much higher than in Figure 15.

The grid dependence of the flow in Figure 19 is also difficult to characterize in terms of a
few variables so that a coarse grid integration is illustrated instead in Figure 20. As indicated
by the vorticity distribution, the density interface layer cannot be represented properly on the
coarse grid and there is a strong turbulent wake in front of the hill. However, the transition
flow behind the hill is estimated even on the coarse grid. The maximum turbulent intensity in
this area, which is estimated as VK /U =0.5 on the most detailed grid, is estimated as high as
vK /U =0.35 even for the coarsest grid, which is comparable to the relative grid variations in
figures 8 and 13.

In summary: strongly stratified flows with hydraulic transitions, U/N H <0.4, require better
turbulence models for accurate predictions. The grid requirements are also stronger than for the
other flows discussed. Nevertheless, useful predictions of transitions may be obtained even for
Az /H = 0.4 or so. Again it should be recalled that Az;/L is also supposed to be sufficiently
small, say Az;/L <0.2, so that a hydraulic transition can be represented.



4 Concluding Remarks

In neutral- and moderately stratified flows, say for U/NH >0.5 and U/c¢, >0.6, the standard
(K, €)-model appears to be usefully accurate. Resirculating flows and characteristic lee wave-
lengths are predicted reasonably accurately even on sparse grids. Lee wave amplitudes are
predicted less accurately, particularly so for three-dimensional flows. Provided that the gridding
is better than about Az;/H <0.5 or so, the relative grid error for the turbulence intensity
is estimated as: 6V K / VK <0.25, which is comparable to the large scale error and about as
accurate as turbulence models normally can be, particularly so for geophysical flows. For flows
with separation or rotor flows, the error is systematic so that if the gridding is comparable to
Az /H ~0.5, the turbulent intensity is underestimated with about 25 percent.

In strongly stratified flows, say for U/NH <0.4, usefully accurate predictions of hydraulic
transitions may be obtained even for Az1/H <0.4 or so. However, in such flows any few-equation
turbulence model must be considered to be seriously uncertain, and this is also illustrated in the
present simulations. Flows with hydraulic transitions are dramatic, but if H is moderate, they
are also normally associated with moderate U-values, which give moderate turbulence, so that
this is usually not very important for flight safety.
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HIRLAM, hydrostatic weather prediction
model. Contains estimated and forecasted
large scale flow. Near ground resolution:
%Aa:l, Az3) ~ (10 km, 50 m)

rovides boun ary conditions for UM

UM, non—hydrostatlc Near ground resolution:
Aa:l Ax3) ~(1 km, 20 m)
Prov1(ies boun ary conditions for SIMRA

4

SIMRA, non—hydrostatlc Near ground resolution:
éAml, Amg (100 m, 1 m)
ontains predlcted local flow

Figure 1: Prediction system for local flow illustrated by the representation of the topography
in the different models (Eidsvik et al 2004). The HIRLAM topography is only shown over the
integration domain of the UM model, illustrated in the middle panel. Coordinates in km. Except
for the two isolines applied for contouring the sea-shore, the height isoline increment are 100m
in the two first figures and 50m in the last. Veaernes airport is indicated in each panel. The
Gjevingasen hill is about 300 m high.
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Figure 2: Predicted and measured flow over the Askervein AA-profile in (m) a): Au/ug, b):

AK/K,. Integration domain: z;/H €(-6,15),(-6,6), (0,5), and different grid resolutions: —-

A:L’l/H:Olg, (N1 XN2 XN3 =125 x 125 x 65) ==l A$1/H=035, (N1 XN2 XN3 =69 x 69X41)

A.’]Jl/H:OGl, (Nl X N2 X N3 = 39 x 39 x 21) A.’L‘l/H:141, (N1 X N2 X N3 =

17 x 17 x 11).(Compare Eidsvik 2005)

[h!]
wl/Href wl/Href

Figure 3: As in Figure 2 except coordinates in x;/H,.f, Hyef=121m and: a): Au/up 10 m
above the terrain. b): AK/Ky 10 m above the terrain. The AA-profile crosses the hilltop at
(z1,22)=(0,0) with an angle of -15 deg.
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.Tl/H .’L‘l/H
Figure 4: Neutrally stratified flow over the Hunt Snyder (1980) hill-shape H=500m, D=150m,
20=0.165m, U=10 m/s. Estimated flow at 10m height above the terrain a): u;/U b): u3/U.
Az /H = 0.12, Integration domain: z;/H €=(-5,15),(-5,5), (0,5), (N1 x Ny x N3 = 137 x 111 X
71).

I3/H
15

0 ‘
LY -2 0

I / H
Figure 5: As in Figure 4 except vertical cross section over the hilltop. a) Horizontal velocity
component u1 /U, b) Turbulent intensity v K /U.
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Awl/H
Figure 6: Flow and simulations like in Figure 4. Reattachment distance (z,/H)/10——, Width
of reattachment area (y,/H)/10-.-. Maximum turbulent intensity v/ K /U..... as functions of grid
resolution Az/H. Grids: (N7 x Ny x N3) = (137 x 111 x 71), (71 x 61 x 41), (37 x 31 x 21),
(19 x 15 x 11)
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10

I / H I / H
Figure 7: Predicted neutrally stratified flow over a two-dimensional cosine-square hill with
L/H = 2 Grid resolution: Az;/H=0.052, corresponding to N1 x Ny x N3 = 401 x 3 x 121.
Integration domain: z;/H €=(-6,15),(-0.1,0.1), (0,5). Row-wise: a) Streamlines 9/HU, b)
Vorticity wpH/U, c) Vertical velocity component u3/U, d) Turbulent intensity VK /U.
0.7 : : ‘
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0 | | | | | | | |
[h!] 0 0.1 0.2 03 0.4 05 06 07 0.8 0.9

Az /H
Figure 8: Flow and simulations like in Figure 7. Reattachment distance (z,/H)/10— and
maximum turbulent intensity v/K /U-.-. as functions of grid resolution Az;/H. Grids: (N} x
Ny x N3) = (401 x 3 x 121), (201 x 3 x 101), (101 x 3 x 51), (31 x 3 x 15)
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Figure 9: Stratified flow (F=U/NH=0.8) over the Hunt Snyder (1980) hill-shape H=500m,
D=150m, zp=0.165m, U=10 m/s. Estimated flow at 10m height above the terrain a): u;/U b):
uz/U. Wake isolines are for many similar small values. Integration domain: z;/H €=(-5,15),(-
5,5), (0,5), A.’El/H =~ 0.12, (N1 X Ng x N3 = 137 x 111 X 71)

.’E3/H :L‘3/H

NE
]2 o 2 4 6 8 10

Figure 10: As in Figure 9 except vertical cross sections. Rowwise: a) Streamlines 9/HU, b)
Vorticity woH/U, c) Vertical velocity us/U, d) Turbulent intensity v K /U.
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Figure 11: Flow and simulations like in Figure 9. Characteristic wavelength (A\/H)/10—

, Maximum lee wave vertical velocity ug/U-.-.

Maximum turbulent intensity v K /U

as

functions of grid resolution Az;/H. Grids: (N7 x Ng x N3) = (137 x 111 x 71), (71 x 61 x 41),

(37 x 31 x 21), (19 x 15 x 11)
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U/ec,=0.67 Integration domain: z;/H €=(-6,20),(-0.1,0.1), (0,7).
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Figure 12: As in Figure 7 except stratified flow above D/H= 1.4, Inversion of A§=8.4 C and

=0.065 corresponding to: N; X Ny X N3 =401 x 3 x 121.

[h]

Figure 13: Flow and simulations like in Figure 12. Characteristic wavelength (A\/H)/10— ,
maximum turbulent intensity /K /U-.-. and typical maximum wave vertical velocity us/U
as functions of grid resolution Azy/H. Grids: N3 x Ny x N3 =401 x 3 x 121, 201 x 3 x 101,
101 x 3 x 51,31 x3 x 15
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Figure 14: Stratified flow (F=U/NH=0.4) over the Hunt Snyder (1980) hill-shape H=500m,
D=150m, zp=0.165m, U=10 m/s. Estimated flow at 10m height above the terrain a): u; /U b):
uz/U. Wake isolines are for many similar small values. Integration domain: z;/H €=(-5,15),(-
5,5), (0,5), Aﬁbl/H ~ 0.12, (N1 X NQ X N3 =137 x 111 x 71)

2

2

.CCQ/H .CCQ/H

15

0.5

[h]

Figure 15: As in Figure 14 except vertical cross section over the hilltop. a) u;1/U b) Turbulent
intensity VK /U.
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Figure 16: As in Figure 15 except Az1/H =~ 0.43, (N7 x N2 x N3 = 37 x 31 x 21)
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Figure 17: As in Figure 14 except turbulence model without stratification effects. a): u;/U b):
ug/U. Ax1/H =~ 0.22, (N7 x Ny x N3 =72 x 61 x 41).
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Figure 18: As in Figure 17 except vertical cross section over the hilltop. a) u; /U b) VK /U.
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Figure 19: As in Figure 12 except U/c,=0.28
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Figure 20: As in Figure 19 except Az /H= 0.81, corresponding to: N1 X Ny x N3 =31 x3x 15
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