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1 Background

A prediction system for the local flow in mountainous terrain have been developed (Utnes
2002, Lie et al 2003, Eidsvik et al 2004, Eidsvik 2005). The prediction is based upon
synoptic scale information, which is downscaled by means of detailed information about
the terrain and fully three-dimensional flow models. The flow modelling and its relevance
for flying is described below.

2 Numerical Model

2.1 Reynolds Equations

The SIMRA (and UM and HIRLAM) numerical model is based on conservation of mean
momentum, mass and potential temperature (Pope 2000). The expected flow may be
described, in anelastic form, as in Equations 1, 2, 3. Time and spatial coordinates are t
and z;, with z; along the main flow and 3 vertical. Kroneckers delta and the alternating
symbol are d;; and ¢;;,. The velocity, pressure, density and potential temperature are:
u;, p, 0. The expected flow is < u; >, < p >, < 0 >, and the turbulence is (ué,p’,@’) =
(uiy p,0) — (K u; >, < p>,<0>).
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Since the most local flow is associated with a typical Rossby number as large as: R, =
U/ fsL = O(20), the Coriolis rotation, f;, is neglected at the SIMRA scale. Coriolis effects
are only accounted for via the boundary conditions from the UM1-model. The heating,
Sy, is also neglected at the SIMRA scale.

2.2 Turbulence Closures

Until a rational turbulence model for geophysical flows is documented, we apply the most
standard models from laboratory scale flows, based upon the Boussinesq approximation:

. 2 0 < u; >

Here < K >=< wu; > /2, is the turbulent kinetic energy and v, = wul, the turbu-
lent viscosity coefficient. The HIRLAM- and the UM-models apply standard algebraic
relations for u; and [;, while the SIMRA model apply dynamic relations. The charac-
teristic turbulent velocity and lengthscale are given in terms of closure relations like:
Uy = (C’,i/ ‘<K >)/2 and Equation 5. The thickness of the atmospheric boundary layer
is D~ 0.2u,/f3 ~1Km, so that in the bulck boundary layer the turbulent lengthscale is
comparable to Iy ~ kz3(1 — z3/D) ~ 100 m.

L u (CL? < K >)3/?
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The SIMRA- model estimate the turbulent kinetic energy and dissipation ¢, dynamically
from Equations 6 and 7. Here P = — < u;u; >0 <u; > /0rj,and G=— < puy >g/ <
p> < 0'ug > g/ < 6 >. . The turbulent viscosity coefficient is then v, = wl; = C, <
K >? / < € >. Adjustments of the standard coefficient may commonly make predictions
by standard models apparently better when applied to geophysical flows, but since such
curve-fits may not be related to model accuracy , standard coefficients are applied here,
(k,Cu,Cea1, Ce2, Ce3, 0, 0¢) = (0.41,0.09,1.92,1.43,1,1,1.3), (Pope 2000).
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An example of predicted turbulence intensity is shown in Figure 1. For geophysical tur-
bulence with energetic quasi-horizontal, an-isotropic large scale eddies, it is neccesary to
discuss closer what < K > and < € > as estimated from Equations 6, 7, should be inter-
preted as in this case, and we extrapapolate from what is most commonly accepted both
for laboratory- and full scale geophysical flows: the structure of the smallest isotropic iner-
tial subrange eddies. Physically < € >, measures the energy dissipation near Kolmogorovs
microscale: € = v(0u;/07;)?, as well as the energy transfer from the large to smaller eddies
and also the intensity of the Kolmogorov inertial subrange spectrum. In our context it is



physically more rational to identify the estimated < e > with the characteristic length-
scale of the most energetic quasi-isotropic, but also flux-containing eddies represented as
in Equations 4 and 5.

The inertial subrange one-dimensional energy spectra are given in Equation 8, with
the Kolmogorov coefficient ax =0.5. As mentioned, in the present context the intensity
of the small scale isotropic turbulence should rather be estimated in terms of < K > and
l; than from Equation 7 directly.
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The estimated < K > is also supposed to contain energy from the quasi-isotropic and flux-
containing eddies (Equation 4). Even the largest of the eddies assosiated with significant
vertical velocity, contributing most to vertical fluxes < wyuy; >, < K u; > and the wall
stress u? =~ C’Ll/ > < K > (x5 — 0) are supposed to be included in the estimated < K >. It
therefore follows that < K >~ 3/2@Q33. The spectrum of the vertical velocity component
can be approximated with the Kaimal model spectrum (Equation 9 with [;3 = [}).
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The largest scale quasi-horizontal, an-isotropic geophysical eddies are supposed not to be
contained in < K > and < € > as estimated from Equations 6 and 7, but it may still
be convenient to include them in what we call “turbulence”. These fluctuations must be
estimated by means of ad hoc relations. Experimental evidence from the near bottom
boundary layer over flat land suggest that the variance of u; is related to < K >=

Ci?u2, like: Q11(0) ~ Qu0(0) & 4.5u2 & 14 < K >, Q33(0) ~ 1.7u2 ~ 0.5 < K >~
(2/3) < K > (Phanofsky and Dutton 1984, Kaimal and Finnigan 1994). This means
that o1/03 ~ 1.7. Very approximately the Kaimal spectrum (Equation 9 and 10) is also
fruiteful for the horizontal velocoity components and temperature, so that the o;/03-
ratio of 1.7 corresponds to lj/l;3 ~ 7.0 (Equation 10). Other data suggest that the
one-dimensional spectra for the horizontal velocity components and temperature tend to
follow -5/3 spectral laws (Equation 8, 9) farther beyond k3 ~ 1/l;3, say to k ~ 1/l ~
1/liy = 1/D ~ 1/1Km (Panofsky and Dutton 1984, Kaimal and Finnigan 1994) and
on the long time average even to 1/100 Km (Lindborg and Cho 2001). Such lengthscale
relations will vary significantly with the height and stratification. Since the large scale
contribution is supposed to be associated with small vertical velocity, it contribute little
to vertical fluxes and wall stress, so it may not be dynamically essential. This is one reason
why there may be some hope that a standard turbulence model developed and tuned to
laboratory-scale flows may be applicable also to weakly stratified full-scale geophysical
flows.

Other aspects of the flow may be more conveniently discussed in terms of the covariance
function Q;;(Ax) =< u;(x)u;(x + Ax) > or the structure function D;;(Az), which can
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be approximated as in Equation 11. The Kolmogorov coefficient is: ax, ~ 4dax ~2.0
(Pope 2000). Here the structure function for horizontal velocity components is assumed to
approach a saturation level, 2Q);;(0) for |Ax;| > l;1, but the larger scale structure function
for two-dimensional turbulence is also estimated to increase like ag. (< € > |Ax|)?/3, with
a large scale coefficient of about ak, ~ 5.5 (Lindborg and Cho 2001).

Dij(Ax) =< [us(x + Ax) — ui(x)][u; (x + Ax) — u;(x)] >= 2(Qy(0) — Q45(Lx))
| Ax|

lis
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Numerical modelling of geophysical flows normally have to be on too sparce grids, and
even the smallest scale of a nested prediction system may be so. This implies that the
turbulence intensity v/ K is underestimated. This is so because the turbulent production is
proportional to the mean wind shear squared (P & u(0 < u; > /9z;)?), which focuses
the smallest scale variations. Smaller grids will therefore tend to give larger turbulent
production and turbulence intensity. However, in idealized lee wave flow with rotors the
estimated maximum /K turns out to be fairly constant as long as Az; < 0.5L3 (Eidsvik
2005). When the grid is larger the turbulence cannot be estimated accurately so that
simple turbulence closures can be applied.

~ Min[ag, (CL/? < K >)( ,2Q4;(0)] (11)

2.3 Stochastic Variations along Trajectories

When the atmospheric fields are nearly Gaussian, their stochastic properties are specified
by their mean- and covariance- fields. The stochastic velocity fluctuations along a trajec-
tory (such as a long final), can be modelled roughly as a Gaussian autoregressive processes
(Box and Jenkins 1970), with parameters supposed to vary slowly along the trajectory.
The autoregressive coeflicients ¢;;(p) are given from the covariance function Q;;(pAz) by
means of Yul Walker’s equation.

> supuj(e —pAz) = wi(z),  ¢;(0) = b (12)

For the purpose of illustration, the velocity components are supposed to be stochasti-
cally independent with exponential instead of power-law covariance function Q;;(Az)
dijexp(—pAx/ly;). The autoregressive coefficients can then be assigned a simpler notation
so that for each i: ¢;;(p) = ¢i(p)d;;. The length-scales are estimated from Equation 5 and
lyy ~ lig ~ D ~1 Km. In this study the simplest first order autoregressive process (P=1)
is applied, so that the coefficients are given in Equation 13. Realizations of u; (x) can then
be simulated by means of a random number generator for the white Gaussian w;(x).

—¢i(1) = exp(—Azx/ly), < w;(x)w;(x) > u;(x)u;(ac) > (1 —¢;(1)?) (13)

Examples of realizations of turbulence corresponding to the expected flow in Figure 1 are
given in Figure 2.



3 Meteorological Norms for Flight Safety

3.1 Wind-shear

The dynamics and control of flight are classical scientific subjects (Stengel 1994, 2004).
Simplified norms for flying safety are the F-factor, the intensity of the turbulent energy
spectrum and the crosswind component near the runway (Clark et al 1994, Proctor and
Hinton 2000). The F-factor is relevant for the change along the trajectory of the aeroplane
potential and kinetic energy relative to the flow, in geophysical notations:

d(1/2(c — u1)* + gx3)
dt

~oogl Lh o C0m L U
- ggM g 011 c

Here the aeroplane ground speed, mass are and trust-drag are c, M, and Tr. The F-
factor is: F' = [—(c¢/g)0u1/0x1 + us/c]. If the F-factor is too small over a sufficiantly long
distance If, and sufficient trust is not added soon enough or is not available, the energy
loss may be so large that it cannot be stopped. As originally defined in the Equation
above, the windshear term has a spectrum like the spectrum of u; (Equation 8) times the
wavenumber to the second power. This means that the F-spectrum have a maximum near
Kolmogorovs microscale, which is obviously irelevant for the energy of the aeroplane. The
averaging over Iy, in Equation 14 is supposed to represent a more realistic lengthscale
for energy responce. The faster and larger the aeroplane (c,ls), the more important the
windshear term. For conventional airliners in landing configuration the speed is typically:
¢ ~75 m/s and the response time and distance is comparable to t; ~7's, [y ~ cty ~
0.5 km. The available trust ratio is comparable to 0.15, but delays in recognition of a
wind-shear situation suggest that the response distance should be larger, and the FAA-
standard for jet transports is [;= 1Km. The corresponding alert F-factor is about -0.05
an the hazardous F-factor is -0.1 (Proctor and Hinton 2000). For the Hong Kong wind-
shear warning system this corresponds to a wind-shear of 15 m/s beeing considered as

hazardous and alerts are already issued when the estimated wind-shear is larger than 7.5
m/s (Shun 2003).

P T— —ly
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Examples of realizations of the F-factor is given in Figure 3. Although u; may be almost
Gaussian, with a Kurtosis equal to 3, the derivetive du;/0z;, and the difference [u;(z +
14/2) — ui(zy — 1;/2)], may have a Kurtosis as large as R2/'® = (uyly/v)*/'6 ~20 (Pope
2000). The probability of extreme and hazardous F-values are therefore significantly larger
than for a Gaussian process. Nevertheless, for the purpose of approximative estimation,
we imagine that the distribution of F (conditional to known mean flow) is quite Gaussian
and spesified in terms of its mean and variance. When the flight trajectory and the 1-
direction are specified, the expected value of F can be estimated from the numerical model
like in Equation 15.

1
< F >= —g%[< u>y (@41 /2)= <u>y (3= 1p/2)]+ —<u 57 (15)
f



The variance of F is estimated in Equation 16. Both < K >, and the dissipative length-
scale l;3, are estimated in the numerical model (Equations 6, 7 and 5). If the flow is
dominated by specific structures such as microbursts or gust fronts, the expected value
(Equation 15) may be most important, but in locally homogeneous flows with intense
turbulence, the stochastic variation is normally largest (Equation 16).

, 21 I Ir . Qs3(0)
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3.2 Turbulent Forcing, Flight Control

With a linear airplane response, the spectrum of forcing is proportional to the wind
spectrum (Equations 8 and 9). At a given frequency relative to the aeroplane w = k¢,
the forcing spectrum in the inertial subrange is then proportional to:

En(w)=ag <e >2/3 213,513

so that the linear forcing is proportional to < e >'/3 ¢!/3. This forcing may load the
aeroplane and give attitude variations, which have to be controlled by means of elevator,
rudder and ailerons. Too large < € >'/3 may therefore give structural damage or loss
of attitude control. For commercial aircrafts at a cruising speed ¢ ~250 m/s, a value of
< € >'/3 smaller than about 0.3 m?3s~! is considered as light turbulence, values in the in-
terval (0.3 — 0.5)m?/3s~ ! as moderate turbulence and values larger than about 0.5 m?/3s~*
is considered as severe turbulence (Clark et al 1997. ICAO). In terms of the turbulent
intensity and length-scale this norm can be expressed like below (Pope 2000), so that a
turbulent field characterized with (in SI-units): V< K > > 0.75@/ > ~ 3.5 m/s, is to be
considered as severe. It is to be noted from Equations 16 and 17 that both the stochas-
tic part of the wind-shear and structural norms depend quite similarly upon the model
variables < K > and [;. It should be kept in mind that the “instantaneous dissipation
rate” e = v(du,/0x;)?, is approximately log-normally distributed with a variance like the
velocity-derivative Kurtosis, as large as < (e— < € >)2 > / < e >2~ R/'® ~20 (Pope
2000). For a given < € >, extreme and intermittent e-values and forcing do therefore occur
more commonly than for a Gaussian variable.

(Ch? < K >)3/2

2 )3 2 0.67 < K V20713 (17)

<e>Vr(

Near the landing and departure the wind conditions may also be unacceptable because
of to large crosswind component near the ground. We are not familiar with commonly
accepted norms for this, so we suggest that the crab angle near tuchdown ¢¢, as given
in Equation 18 may be relevant. For conventional commercial aircrafts the stall speed is



about ¢; ~50 m/s an expected crosswind component of < uy >~ 10m/s, corresponding to
< ¢c >~ 10 deg, is normally considered to be large. In moderate turbulence conditions,
with VK ~ 2.5 m /s, the crab angle will then also have a standard deviation comparable
to o4 ~2.5 deg, so that if “accurate control” were possible, the crab angle would exceed
the interval 2 < ¢¢ < 18deg with a probability comparable to 1072,

< Uy >

o

< ¢pc >= Arsin( ), oy~ Arsin(=2) (18)
S CS

At a given occasion, flying safety requires that there is an acceptably small probability

of exceeding limits of F, €'/3 and crosswind component. If the predicted “local weather

conditions”, with prediction errors accounted for, give too large exeedance probability,

flying may be hazardous.

3.3 Probability of False Warnings

For general confidence, a system for low level wind-shear warnings should preferably pre-
dict a correct warning with a large probability and a false warning with a small probability.
Although this is commonly applied as an important design criterium, it appears that it
could be difficult to achieve with any prediction method.

One reason is that both the F and €'/3-norms have large variance and Kurtosis. This
means that the probability of extreme values are large, so that hazardous conditions can
occur even if the average conditions are not very “extreeme”.

Warning techniques based upon estimating actual values of F by means of local ob-
servations of various kind, must have similar properties. Since the spectrum of velocity
differences is almost white, the wind-shear over /¢ can only be estimated with considerable
uncertainty, say like expressed from a Markovian shear model. The wind-shear estima-
tion error is then comparable to 1.4v/K. In addition the Kurtosis is still large so that
hazardous conditions can occur even if the average conditions are not very “extreeme”.

It therefore appears that a significant level of false warnings should be accepted as
normal with any prediction method.
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Figur 1: Predicted turbult intensity, v/K . Upper: isosurface for vK = 3.0 m/s. Lower:
turbulent intensity along ground and along vertical cross section Color scale for /K (m/s).
Grid resolution Az, ~ 35m
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Figur 2: Three realisations of longitudinal-, transversal- and vertical wind components
along the final to runway 05 Hammerfest, 1-5-05 kl 14:00. The standard deviations and
lengthscales are extrapolated from /K arnd e as indicated in the text. Distance from
treshold in km. Grid resolution as in Figure 1.



F= —(c/g)(dul/dx) +u3/c
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Figur 3: Three realizations of the F-faktor estimated on a grid resolution of Az; ~ 180m.
The moderate grid resolution turns out to underestimate v/ K by at least a factor of 1.5, so
that the F-factor is also underestimated by this factor (Equation 16). Commonly applied
alert- and warning- levels are: F' < —0.05 and F' < —0.1 respectively.
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