SINTEF A311 — Unrestricted

REPORT

Maintaining Information Flow
Security under Refinement and
Transformation

Fredrik Seehusen, Ketil Stglen

SINTEF ICT

Cooperative and Trusted Systems

September 2006

SINTEF ICT
Address:

Location Trondheim:
S.P. Andersens v 15
Location Oslo:
Forskningsveien 1
Telephone;
Fax:

SINTEF

NQO-7465 Trondheim
NORWAY

+47 73 59 30 00
+47 73 59 43 02

Enterprise No.: NO 948 007 029 MVA

SINTEF REPORT

TITLE

Maintaining Information Flow Security under Refinement and
Transformation

AUTHOR(S)

Fredrik Seehusen and Ketil Stelen

CLIENT(S)

Research Council of Norway (Norges forskningsrad)

REPORT NO. CLASSIFICATION CLIENTS REF.

SINTEF A311 |Unrestricted 152839/220

CLASS. THIS PAGE ISBN PROJECT NO, NO. OF PAGES/APPENDICES
Unrestricted 82-14-04038-8 140332800)/ 24/1

ELECTRONIC FILE CODE

N/A

CHECKED BY {NAME, SIGN.)

Jan @yvind Aagedald-&. A‘ 5€ av(

PROJECT MANAGER (| ME’SI N. -
Ketil Stelen %}/4 i S/I'Z’/I%

We address the problem of maintaining information flow security
To this end we define a schema for the specification of secure information flow properties and show that
all security properties defined in the schema are preserved by a notion of refinement. Refinement is a
process that requires human guidance and is in general not subject for automation. A transformation on
the other hand, is an executable function mapping specifications to specifications. We define an
interpretation of transformations and propose a condition under which transformations maintain security.

FILE CODE DATE APPROVED BY (NAME, FOSITION, SIGN.)
N/A 2006-09-28 Bjern Skjellaug, Research diréctor
ABSTRACT

uu/;ryﬁnement and transformation.

KEYWORDS ENGLISH NORWEGIAN
GROUP 1 ICT, modelling IK'T, modellering
GROUP 2 Design Design
seLecTeD BY AUTHOR | MDA, Information flow security, MDA, Sikker informasjonsflyt

Refinement, Transformation

Raffinering, Transformasjon

Maintaining Information Flow Security under
Refinement and Transformation

Fredrik Seehusen!? and Ketil Stglen!?
! SINTEF ICT, Norway
{Fredrik.Seehusen, Ketil.Stolen}@sintef.no

* Department of Informatics, University of Oslo, Norway

September 28, 2006

Abstract

We address the problem of maintaining information flow security un-
der refinement and transformation. To this end we define a schema for
the specification of secure information flow properties and show that all
security properties defined in the schema are preserved by a notion of
refinement. Refinement is a process that requires human guidance and
is in general not subject for automation. A transformation on the other
hand, is an executable function mapping specifications to specifications.
We define an interpretation of transformations and propose a condition
under which transformations maintain security.

1 Introduction

We address the problem of maintaining information flow security during the
process of making an abstract specification more concrete. This problem has
received little attention, yet it is of relevance in any real-life scenario in which
security analysis is carried out on the basis of a specification that abstracts away
details of the full implementation. For example, it is of little help to know that
Java code or some state machine specification is secure w.r.t. some property
if validity of the property is not maintained by the compiler. Hence, we need
means and a corresponding theory to ensure that the transformation from the
abstract level to the more concrete level maintains the security of the abstract
level.

Proving security once and for all is in general not possible. One reason for
this is that the concrete level often includes peculiarities that do not have any
abstract equivalent. Consequently security must be proven again at the concrete
level to ensure that these additional peculiarities introduced via transformation
do not violate security. Although additional verification is often needed at the
concrete level, we still want to check and maintain security properties on the
basis of the abstract specifications. There are three main reasons for this, First,
analysis is in general more feasible at the abstract level since the concrete level
may include too much detail to make analysis practical. Second, abstract speci-
fications are in general more platform independent than concrete specifications.

(]

1 INTRODUCTION

This means that analysis results are more reusable at the abstract levels. Third,
abstract specifications tend to be more understandable than concrete specifica-
tions, hence it is in general easier to specily and check security requirements at
abstract levels as opposed to the concrete levels.

In this report we consider security in the sense of secure information flow
properties (see e.g. [4, 5, 16]). The notion of secure information flow provides
a way ol specifying security requirements by selecting a set of observers, i.e.
abstractions of system entities, and then restricting allowed Aow of information
between the observers.

The process of making an abstract specification more detailed is known as
refinement, and the relationship between information flow security and refine-
ment has been researched for a fairly long time. In 1989 it was shown by Jacob
[13] that secure information flow properties in general are not preserved by
the standard notion of refinement. It has later been observed that the problem
originates in the inability of most specification languages to distinguish between
underspecification and unpredictability! [10, 14, 19]. We argue that this dis-
tinction is essential if secure information flow properties are to be preserved
under refinement. To this end, both the standard notion of refinement and all
secure information flow properties proposed in literature have to be redefined
such that this distinction is taken into consideration. We show how to do this
in a formalism similar to STAIRS [7, 8, 9] by defining a schema (based on [16])
for specifying secure information flow properties such that all properties defined
in the schema are preserved by refinement.

Refinement is a relation on specifications that formalizes the process of step-
wise development by the removal of underspecification. A transformation on
the other hand is a computable function mapping specifications to specifica-
tions. For example, a compiler mapping a program to machine code is a kind
of transformation. Currently, there is much ongoing work on transformation in
relation to OMG's standardization activities on MDA (Model Driven Architec-
ture) [18], where transformations characterize the mapping of PIM's (Platform
Independent Model) to PSM’s (Platform Specific Model). Motivated by this we
give a semantic interpretation of transformations and propose a condition under
which transformations maintain security.

In summary, the main contributions of this report are: (1) the definition of
a schema for specifying secure information How properties that are preserved
by the STAIRS notion of refinement. (2) The definition of a notion of secure
transformation that preserves security properties defined in our schema.

This report is structured as follows: Sect. 2 formalizes a notion of system
specification. Sect. 3 describes what is meant by secure information flow. In
Sect. 4 we present the STAIRS notion of refinement and propose a schema for
specifying secure information flow properties that are preserved by this notion of
refinement. In Sect. 5, we discuss security maintaining transformations. Sect. 6
provides conclusions and related work. Proofs of all the results of this report
are given in the appendix.

! Also termed probabilistic non-determinism [19].

2 SYSTEM SPECIFICATIONS 3

Table 1: Notational conventions

Set Definition | Meaning

ae A Set of agents.
0O P(A4) Set of observers.
seS Set of signals.

meM | Ax Ax S | Set of messages.
ecé {7} x M | Set of events.

he™ Set. of high-level events.
le Ll Set of low-level events.
teT Ex Set of traces.

2 System Specifications

We model the input-output behavior of systems by finite sequences of evenis
called traces. An event represents the iransmission or the recepiion of a message.
Formally, an event is a pair (k,m) consisting of a kind & and a message m. An
event whose kind equals ! represents the transmission of a message, whereas an
event whose kind equals 7 represents the reception of a message. A message is
a triple (a;,an, 8) consisting of a transmitter a;, a receiver as, and a signal s
representing the message body. Both transmitters and receivers are referred to
as agents, i.e. system entities such as objects or components.

Definition 1 The semantics of a system specification, denoted ®, is a prefiz-
closed set of traces. A set of traces A is prefix-closed iff

teAANUCt=>t'e A
where C is the standard prefiz ordering on sequences.

The reason why we require prefix-closure is that the definition of many secure
information flow properties proposed in literature rely on this requirement [16,
23].

In the sequel, we will for short write “specification” instead “the semantics
of system specification” when it clear from the context what is meant.

2.1 Notational Convention

We define some notational conventions and standard operations. P(4) denotes
the power set of A defined {X|X C A}. A* denotes the set of all finite sequences
over the set A. A sequence of evenis, i.e. a trace, is written {e1,ez,...,e,). The
empty trace, i.e. the trace with no events is written {}. The projection of a trace
t on a set of events E, wriiten t|g, is obtained from ¢ by deleting all elements
not in E.

Further notational conventions are listed in Table 1. Here the notion a € A
means that the set A is ranged over by a.

3 INFORMATION FLOW SECURITY 4

3 Information Flow Security

By secure information flow we understand a restriction on allowed flow of in-
formation between observers, i.e. sets of agents. Secure information flow can
be described by a flow policy and a secure information flow predicate, relerred
to as a security predicate for short. The flow policy restricts information flow
between observers, while the security predicate defines what is meant by infor-
mation flow. Formally, a How policy is a relation on observers

= COx@

where (01,09) €= requires that there shall be no information flow from o; to
O9.

For simplicity, we will in the sequel assume a fixed flow policy {(H, L)}
consisting of two observers only: H, the high-level observer and L, the low-level
observer.

Security predicates that describe what is meant by information flow are
expressed in terms of the observations that observers can make. Formally, the
observation that an observer o can make of a trace t is obtained from t by
deleting all events that can not be observed by o:

t](r.0)

Here E.o yields the set of all events that can be observed by o, i.e. all events
that can be transmitted from or received by the agents in o:

E.02 {(k,(a,a',m)) €E|(k=!Aa€o)V(k=7Ad €0)}

For short, we let £ and H denote E.L and E.H, respectively.

To ensure that L cannot observe high-level events directly, we demand that
HNL = @. This alone does not in general prevent information flow from H to L
because L may infer confidential information from H based on the observations
that L can make. A central notion in defining what is meant by inferences is
that of low-level indistinguishability.

Definition 2 Two traces t end i’ are indistinguishable from L’s point of view,
written t ~yp t', iff
il;; = t"l;_:

That is, iff L’s observation of t is equal to L’s observation of t'.

In the sequel we assume that L has complete knowledge of the specification
® that describes the set of all possible behaviors represented by traces. This
means that L may construct the set of all traces in @ that are indistinguishable
or compatible with a given observation. Formally, I may from the observation
of any trace t, construct a so-called low-level equivalence set [23] (abbreviated
LLES in the sequel):

{t'ed|t~ t'}
In other words, if L makes an observation ¢, then L can infer that some trace in
the LLES constructed {rom ¢ has occurred, but not which one. Security predi-
cates must demand that L shall not be able to deduce confidential information
from the LLESs that L may construct. This is illustrated in the following ex-
ample.

4 REFINEMENT 5

Example Let ® = {{}, ({1}, {(h1}, (o), (h1,11), (M1, 2}, {ha,l2)}, and assume that
L may observe events {; and l» and that h; and hs are high-level events. Assume
further a definition of security that states that L shall not with certainty be able
to infer that a high-level event has occurred. If L makes the observation (1),
then L may infer that either trace (I;) or trace {f1,!;) have occurred. Since L
cannot know which of these has occurred (because L cannot observe high-level
events directly), and the former trace does not contain any high-level events,
L cannot infer with certainty that a high-level event has occurred. If L on the
other hand observes the trace {l»), then L can infer that (hy,la) or (ha,la) have
occurred. Again, L does not know which of these has occurred, but since both
traces contain a high-level event and there are no other traces in @ that are
compatible with L’s observation, L can infer with certainty that a high-level
event has occurred. Hence, @ is not secure w.r.t. our definition of security.

In order for @ to be secure, one must demand that the LLESs that L can con-
struct be closed w.r.t. some criterion [16]. In the above example, this amounts
to demanding that there must be a trace with no high-level events in each LLES
that L can construct.

3.1 Mantel’s Assembly Kit

The schema we propose for describing security predicates is based on a schema
proposed by Mantel [16]. He presents an assembly kit in which different notions
of security can be defined. We give here a brief description of this assembly kit.
The reader is referred to [16] for a more details.

In Mantel’s framework, security properties are represented as security pred-
icates where a security predicate SP is either a single basic security predicate
Bsp, or a conjunction of basic security predicates. Each basic security predicate
Bsp demands that for any trace t of the specification @ there must be another
trace t’ that is indistinguishable from t from L’s point of view, and which fulfills
a condition @, the closure requiremeni of Bsp. The existence of ¢/, however, is
only required if a condition R, the resiriction of BsP, holds. This results in the
following schema for the formal definition of basic security predicates:

Definition 3 Specification ® satisfies the basic securily predicate BSPggr(®)
Jor restriction R and closure requirement Q iff

Vied R(®,6) = € d-trt' AQ(L) (1)

Example The notion of security that is informally described in Ex. 3, may be
defined by instantiating the schema as follows: R £ TRUE, and @ £ t'|3; = ().
That is, for every trace t there must be a trace {’ such that ¢ is indistinguishable
from ¢t w.r.t. L and such that ' does not contain any high-level events.

4 Refinement

Refinement is the process of making an abstract specification more concrete by
removing underspecification. The standard notion of refinement [11] states that

4 REFINEMENT 6

a system specification @’ is a refinement of a system specification @ iff
P Co (2)

Intuitively, there are at least as many implementations that satisfy ® as there
are implementations that satisfy ®'. In this sense @' describes its set of imple-
mentations more accurately than @, ergo @' is less abstract than ®.

The reason why secure information flow properties are not preserved by
refinement becomes apparent when one considers again the manner in which
these properties are defined (see Def. 3). That is, @ is secure i some of its
traces satisfy the closure requirement . However, by (2) there is no guarantee
that a refinement of @ will include those traces that satisfy ¢, hence secure
information flow properties are in general not preserved by refinement.

Intuitively, the cause of this problem is that security properties depend on
unpredictability. E.g. the strength of ones password may be measured in terms
of how hard it is for an attacker to guess the password one has chosen. The
closure requirement @ may be seen as the security predicate’s requirement of
unpredictability, but traces that provide this unpredictability may be removed
during refinement. This motivates a redefinition of the notions of specification
and refinement where the distinction between underspecification and unpre-
dictability is taken into consideration.

Definition 4 A system specification, denoted Q, is a set of trace sets. Each
lrace sel in a specification is called an obligation. We demand that the set
obtained by collapsing 2 into a setl of traces must be prefiz-closed, i.e. we demand

tefQatCi=t'el
where 0 is defined Ugea @ -

Definition 5 System specification (V' is a refinement of system specification §,
written £ ~ ', off
(VoeQ - e - CHANY €Q -3peQ-¢' Cd)

This corresponds to so-called limited refinement in STAIRS [20]. For an arbi-
trary obligation ¢ at the abstract level, there must be an obligation ¢’ at the
concrete level such that ¢ is a refinement of ¢ in the sense of the standard
notion of refinement (see (2)). Moreover, each obligation at the concrete level
must be a refinement of an obligation at the abstract level. The latter ensures
that behavior that was not considered at the abstract level is not introduced at
the concrete level.

The intuition is that the traces within the same obligation may provide
underspecification, while the obligations provide unpredictability in the sense
that an implementation is required to fulfill all obligations of a specification. Any
valid implementation must potentially exhibit the behavior described by at least
one trace in each obligation. By implementation we understand a specification
with no underspecification. Given some program P, let Traces(P) be the prefix-
closed set of traces that can be generated by executing P, and let

[P]= {{t}|t € Traces(P)}

4 REFINEMENT 7

Then P implements specification Q iff
-~ [P]

Example Let & = {{(}, {{O}, {{), (b1}, (ha}, (h1,1), (ha, 1)}, and assume that
it is confidential that high-level events have occurred. (2 is secure in this respect;
it is easy to verify that this holds for all implementations of Q.

Lemma 1 ~ is {ransitive:
Q= QA -0"=Q~ Q"

Instances of the schema of Def. 3 are in general not preserved by our notion
of refinement. We need to modify the schema such that the distinction of
unpredictability and underspecification is exploited. Instead of demanding that
there is a trace f' that satisfies some criterion, we demand that there is an
obligation ¢ such that all its traces satisfy that criterion.

Definition 6 Specification §) satisfies the basic security predicate BsPor(f2)
for restriction R and closure requirement Q iff

Vie RO, =3 eQ-VE g -t~ t' AQ(HE)

The intuition of (Def. 6) is that obligations, as opposed to individual traces, may
be seen as providing the unpredictability required by instances of the schema.
Note that the schema may be instantiated by the same instances of R and @
that are presented in Mantel’s paper.

In order to ensure that instances of the schema are preserved by refinement,
we need to disallow some restrictions £ whose truth value depend on the ab-
sence of traces. We therefore require that all restrictions R satisfy the following
condition

P C T AR)y == BT 1) (3)
for arbitrary traces ¢ and trace sets T and 7". All instances of R presented in
Mantel’s paper satisfy condition (3).

Theorem 1 BSPgp is preserved by refinement for arbitrary resirictions R sal-
isfying (3) and closure requirements Q:

Q ~ Q' A Bspggr(fl) = BsPgr(Y)

The notion of refinement introduced above corresponds to what is often referred
to as property refinement or behavioral refinement [2]. Property refinement does
not capture change in data-structure, i.e. the replacement of abstract event rep-
resentations by concrete event representations. This is in contrast to refinement
notions such as data refinement [12], interface refinement [2], or action refine-
ment [22] which roughly speaking may be understood as property refinement
modulo a translation between the concrete and the abstract data structure.
Our notion of property refinement may be generalized into a notion of action
refinement (actually event refinement in our case) using upwards and down-
wards simulation [3, 12] in a [airly standard manner. To characterize under
which conditions this notion of refinement is security preserving is, however, far
from trivial. In the following, attention is restricted to a special case of this
problem, namely under which conditions {ransformations are security preserv-
ing. A transformation may be understood a special case of action refinement
where the concrete specification is generated automatically from the abstract
specification.

5 TRANSFORMATION 8

sdHTTP) sdTCP)
o] [

L | Xalt J —.

: reguest : ’Lf/' Session1 ,

I I . e |
] | I £ |

| I i : I

[response ! —_ — — — = — —f—_— —
| !

I |

[} |

Figure 1: HTTP to TCP

5 Transformation

The notion of refinement addressed above is a binary relation on specifications
that formalizes the process of stepwise development by removal of underspeci-
fication. A transformation on the other hand is an executable function taking
an abstract syntactic specification as input and yielding a concrete syntactic
specification as output. Thus transformation is a syntactic notion. Since secu-
rity properties are defined on the semantics of specifications (i.e. on traces), we
define a semantic interpretation of transformations which enables us to assert
whether a transformation maintains security.

In Sect. 5.1, we give an example of a transformation that motivales our
semantic interpretation of transformations given in Sect. 5.2. In Sect. 5.3, we
propose a condition under which interpretations of transformations maintain
security. Sect. 5.4 gives an example that clarifies some of the points made in
Sect. 5.3.

5.1 Example: Transforming HTTP Specifications to TCP
Specifications

The HTTP protocol is bound to the TCP protocol. One way of doing this
binding during runtime is to create a new so-called TCP session for each HTTP
request-response pair. A TCP-session consists of three phases: First a connec-
tion is established between the two sides of communication, then the HTTP
request and response messages are segmented, encapsulated by TCP frames,
and transmitted. Finally the connection is explicitly terminated.

A transformation that takes a specification that describes communication
at the HTTP level and produces a specification that describes communication
at the TCP level may be defined in accordance to how the HTTP protocol is
bound to the TCP protocol. Such a transformation may be regarded as a trans-
formation from the abstract to the concrete if one takes HTTP specifications
as being at the abstract level and TCP specifications as being at the concrete
level.

The UML interaction diagram on the left hand side of Fig. 1 describes a
simple communication scenario at the HTTP level. The diagram on the right
hand side is the result of applying a transformation from HTTP to TCP to
the HTTP diagram. Here the so-called xalt-operator from STAIRS [8] speci-

5 TRANSFORMATION 9

fies unpredictability? between different interaction scenarios. The ref-operator
references other interaction diagrams that in this example describe different
TCP-sessions. The reason why the HTTP request-response pair described in
the diagram on the left hand side is translated to more than one TCP-session
is that the TCP protocol must handle issues that are transparent at the HTTP
level, e.g. message overtaking. One TCP session may for example describe the
situation in which messages are received in the same order that they are trans-
mitted, another may describe the situation in which this is not the case and so
on. The reader is referred to [7, 8, 9, 21] to see how UML interaction diagrams
can be given trace semantics.

To assert whether the transformation from HTTP to TCP maintains secu-
rity, we need to interpret the transformation in terms of how abstract traces
(representing HTTP communication) are translated to concrete traces (repre-
senting TCP communication). There are three considerations that need to be
taken into account when defining such an interpretation. First, an abstract trace
may correspond to several concrete traces. The reasons for this is that TCP
protocol must handle issues that are transparent at the HTTP level. Second,
an abstract event may be decomposed into several concrete events because each
HTTP package may be segmented into more than one TCP package during the
TCP transmission phase. Third, there may be traces at the concrete level that
have no abstract equivalent. To see this, let (e} represent the transmission of
a HTTP package. Since a HTTP package may be segmented into several TCP
packages, (e) may for example be translated into the trace (e;,es,e3) where
events e;, es, and e3 represent the transmission of TCP packages. Traces {e;)
and {e;, es) may also be valid traces at the TCP level (these traces are in fact
required to be present in a concrete specification since we assume that speci-
fications are prefix-closed). Now, the TCP trace (e, es, e3) corresponds to {e)
at the HTTP level since the TCP trace is complete in the sense that it repre-
sents the transmission of the entire HTTP message. But what about the TCP
traces {e;) and {ey, ez), do these traces correspond to (e) at the abstract level?
The answer is no if the trace (e) is meant to represent the transmission of an
entire HTTP package. The TCP traces (e;) and {e;,e2) do not correspond to
the empty HTTP trace ((}) either, because the empty trace is meant (by any
reasonable interpretation) to represent a scenario in which no communication
occurs. From this we can conclude that, in general, there may be traces at the
concrete level for which there are no corresponding traces at the absiract level.

5.2 Transformations from a Semantic Perspective

Syntactically, a transformation is an executable function translating abstract
(syntactic) specifications to concrete (syntactic) specifications. Semantically,
we interpret traces in terms of how abstract traces are translated to concrete
traces.

In the following, let A denote some fixed but arbitrary abstract syntactic
specification, T" be a some transformation, and T(A) denote the concrete spec-
ification obtained by applying T to A. Let 2, denote the semantics of A and
2, denote the semantics of T(A). T is interpreted by a set of functions

Fgﬁa—»ﬁ,:

2Termed explicit non-deterministic choice in STAIRS

5 TRANSFORMATION 10

mapping traces in Q, to traces in Q.. The reason why we use a set of func-
tions and not a single function is, as explained in the example, that a syntactic
transformation may represent the same abstract trace by several concrete traces.

We say that the set of functions F is a valid inlerpretation of T w.r.t. A if
1. is a translation of Q, w.r.t. F as defined below. We first define the notion of
translation for obligations, then we lift this notion to (semantic) specifications.

Definition 7 Obligation ¢, is a translation of obligation ¢, w.r.t. function f,
written ¢q — 1 ¢, Hf

de S {S(8)]t € ¢}

Definition 8 Specification Q. is a translation of specification Q, w.r.t. inter-
pretation F, written, Qg —p Qp, iff

Vf € F Voo € Qg b € U o > de

Our interpretation of transformations is similar to data refinement in that both
notions roughly speaking may be understood as refinement modulo a translation
of traces. More precisely:

Lemma 2 Let Q. be contained in the image of §), under the identity transfor-
mation id, then
‘Qa i Qc A Qu o s.?-'c

Here im(§2q, F'), the image of @, under some F, is the set of obligations that
are translations of obligations in Q, w.r.t. F:

":m(QmF) = {d)c | 3¢a S Qa * af eF. (r’l)a =f (:bc} (4)

A concrete specification is not necessarily contained in the image of the abstract
specification it is translated from. The reason for this is, as explained in the
previous example, that there may be concrete traces that do not have any
abstract equivalent.

If /7 and F are interpretations, then I} o I is understood as the interpre-
tation obtained by functional point-to-point composition of all functions from
F) and Fs. That is,

FloF 2 {fiofalfi € Fi A f2 € o} (5)

where f1 o fo(t) = f1(fa(2)).

Lemma 3 < is {ransitive:
Qo —=p A —p Q2= Qo = Ror, Qo

We denote by F~1(f.), the set of all traces in £}, that can be translated to ¢,
by the functions in F":

F Ut 2 {ta € Qa|3f € F - f(ta) =t} (6)

5 TRANSFORMATION 11

5.3 Secure Transformations

A transformation T" maintains the security of an abstract specification A if there
is a walid secure interpretation of T' w.r.t. A. The notion of secure interpretation
obviously depends on what is meant by secure, and should therefore be param-
eterized by security properties. In doing so, one must take into account that
the security requirement at the abstract level may be syntactically and seman-
tically different from the “corresponding” security requirement at the concrete
level. One reason for this is that events at the abstract level may differ from
the events at the concrete level. Another reason is that there may be concrete
traces that do not have any corresponding abstract trace. The concrete security
requirement must therefore handle traces that may not be taken into account
by the security requirement at the abstract level.
The naotion of secure interpretation is formally defined in the following

Definition 9 Let £, —p Q., then the interpretation F is secure w.r.i. the
abstract and concrete restrictions R, and R, and abstract and concrete closure
requirements (}, and Q. if the following conditions are satisfied

Re(Qe,te) = 3t € F7U(t) - Ra(Qa,t) &)

(Re(Qeste) AV € g - ta ~ ' A Qultat')) = (8)
3¢c € Qc ' th S ¢c % tc el | t, A Qc(tcat’)

for all t. € Q,, ¢o € N, and t, € F1(&,).

Def. 9 may be understood to capture a rule that allows us to exploit that we
have established @), at the abstract level when establishing). at the concrete
level. We believe that verifying (7) and (8) in most practical situations will be
straightforward and more feasible than checking the security property at the
concrete level directly.

Put simply, the first condition of Def. 9 just ensures that the transforma-
tion does not weaken the restriction R. The second condition ensures that the
transformation does not strengthen the closure requirement @ and that low-level
equality is preserved.

It follows from (7) that the concrete restriction 2. must filter away (i.e. yield
false for) the concrete traces t. that do not have any corresponding abstract
trace. This is reasonable because one cannot take advantage of the fact that
the abstract specification is secure when proving that ¢, does not compromise
security. It may therefore be the case that a new security analysis must be
carried out at the concrete level for those traces that do not have an abstract
equivalent.

When we relate Del. 9 to rules that describe date refinement in an assumption
/ Buarantee or pre-post setting, we note that weakening/strengthening is the
other way around. E.g., when refining a pre-post specification, one may weaken
the pre-condition and strengthen the post-condition. The reason is that a pre-
post condition is a specification that is refined into another specification while
a restriction-closure predicate is a property that has been proved to hold for
a specification that is translated to a concrete specification and whose validity
should be maintained.

5 TRANSFORMATION 12

(Clienl-server specification |

Figure 2: Client-server example

Theorem 2 Let F' be a inlerpretation that is secure w.r.t. restrictions R, and
R., and closure requirements Q. and Q., then F maintains security in the
following sense:

BSPQ" R. (QQ) Ay —p Q.= BSPQ”RE (.Qc)

5.4 Example: Why security requirements change

Let §2, be an abstract specification consisting of two clients ¢; and ¢ that com-
municate with a server s via the HTTP protocol (see Fig. 2). Assume that ¢,
based on its observation of its communication with s and its knowledge of the
system specification, should not be able to deduce information about the behav-
ior of ¢;. More formally, both the clients and the server can be represented as
agents (recall the role of agents from Sect. 2). Thus the low-level observer is de-
fined {;} and the high-level observer is defined {¢;}. The security requirement
on the HTTP level may be formalized by instantiating the schema of Def. 6 by
some predicates R, and Q.

Assume that F' interpreis a transformation from HTTP to TCP defined such
that each event representing the transmission or reception of a HTTP message
is translated into a complete (in the sense of the previous example) sequence of
events describing the corresponding TCP messages. Let £, be a translation of
2, w.r.t. I' and assume that 2, also contains non-complete traces that do not
correspond to any traces at the HTTP level.

Assume that £, is secure (i.e. BSPp, g, () is true) and that we want to
check if the traces on the concrete level that have a corresponding abstract
representation are secure w.r.t. our information flow property. In order to
do this, we can create predicate on the concrete level that filters away those
traces that do not have a corresponding abstract representation. More formally,
the concrete restriction R, is defined R.(Q,t) £ Ro(Q,1) A TCP_OK(t) where
TCP_OK is a predicate that yields true if the TCP trace ¢ corresponds to
a HTTP trace and false otherwise. Noie that we are assuming that R, may
take HTTP traces as well as TCP traces as arguments. The concrete security
property can now be obtained by instantiating the schema of Def. 6 by the
predicates R, and (J, (since the closure requirement @ is left unchanged in this
example).

If one wants to check that the TCP traces that do not correspond to any
HTTP traces are secure w.r.t. some requirement, one cannot take advantage
of the fact that €2, is secure. Therefore additional security analysis may be
required w.r.t. these traces.

6 CONCLUSIONS AND RELATED WORK 13

6 Conclusions and Related Work

In [21], we defined a secure information flow property in the semantics of
STAIRS [7, 8, 9] and showed that this property was preserved by refinement
and transformation. This report simplifies and generalizes these results by con-
sidering, not only one, but many kinds of information Aow properties. This
report also considers a more general notion of security preservation than con-
sidered in [21]. More precisely, this report makes two contributions to the study
of secure information flow. The first is a schema for specifying information flow
properties that are preserved by the STAIRS notion of refinement. The second
is the definition of a semantic interpretation of transformations and a condition
under which transformations maintain security.

There are a number of papers related to information Aow security and re-
finement. Jacob is the first person that we are aware of to show that secure
information flow properties are not preserved by the traditional notion of re-
finement [13]. This became known as the refinement paradoz. It has later been
observed that this “paradox” is a manifestation of failing to clearly distinguish
between underspecification and unpredictability. As far as we are aware of, this
observation was first made in [19].

To the extent of our knowledge, the work of Heisel. et. al. [10] is similar to
ours in that they both distinguish between underspecification and unpredictabil-
ity and consider the notion of data refinement. The main differences between
their work and ours are: (1) They work in a probabilistic setting, and thus
their formalism differs from ours. (2) They do not consider information flow
properties but a notion of confidentiality based on low-level indistinguishability
only. (3) Their notion of confidentiality preserving refinement is different from
ours in that they build the condition of confidentiality preservation into the
definition of refinement. W.r.t. refinement, we have taken the dual approach of
strengthening the notion of security.

The work of Jiirjens [14, 15] is also related to ours. Some of the main differ-
ences between his work and ours are: (1) His formalism differs from ours. (2)
While Jiirjens distinguishes between underspecification and unpredictability in
order to define refinement preserving properties of confidentiality (secrecy) and
integrity, he does not rely on this distinction in the definition of his information
flow property. That is, the secure information How property is satisfied iff each
behavior refinement to a deterministic specification satisfies this property, i.e.
he effectively closes the property under a notion of behavior refinement that
does not distinguish between underspecification and unpredictability.

Three notable papers that addresses information fow security and refine-
ment are [1, 6, 17]. The main difference between these papers and ours is that
all these investigate conditions under which certain notions of refinement are
security preserving without distinguishing between underspecification and un-
predictability. Since this distinction is made in our formalism, we consider one
notion of refinement only, and strengthen instead our notion of security in an
intuitive manner. Hence, there is no need to propose conditions with which to
check that a given refinements preserve security.

We are not aware of any work that explicitly address transformation and
information flow security. Moreover, we are not aware of any work that show
how to preserve secure information Aow properties under a notion of refine-
ment that takes the distinction of underspecification and unpredictability into

REFERENCES 14

consideration.

The main emphasis of this report is on semantics. In future work, we will ad-
dress syntactic transformations in more detail. We are also planning to address
composition and transformation of security predicates. Eventually, we would
like to develop a computerized tool that will check whether transformations
maintain security.

Acknowledgments

This work has been [unded by the Research Council of Norway through the
project SECURIS (152839/220). We would like to thank the anonymous referees
for their useful comments and suggestions.

References

[1] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement operators and
information flow security. In Isi International Conference on Software Fn-
gineering and Formal Methods (SEFM 2008), pages 44-53. IEEE Computer
Society Press, 2003.

[2] M. Broy and K. Stplen. Specification and development of interactive sys-
tems. FOCUS on streams, interface, and refinerment. Springer, 2001.

[3] W.-P. de Roever and K. Engelhardt. Datae Refinement: Model-Oriented
Proof Methods and their Comparison. Number 47 in Cambridge tracts on
theoretical computer science. Cambridge University Press, 1998.

[4] R. Focardi and R. Gorrieri. Classification of security properties (part i:
Information flow). In Foundations of Security Analysis and Design, volume
2171 of Lecture Notes in Computer Science, pages 331-396. Springer, 2001.

[5] J. A. Goguen and J. Meseguer. Security policies and security models. In
IEEE Symposium on Security and Privacy, pages 11-20. IEEE Computer
Socity Press, 1982.

[6] J. Graham-Cumming and J. W. Sanders. On the refinement of non-
interference. In Proceedings of the IERE Compuler Security Foundations
Workshop, pages 35-42. IEEE Computer Society Press, 1991,

[7] @. Haugen, K. E. Husa, R. K. Runde, and K. Stglen. Why timed sequence
diagrams require three-event semantics. Research Report 309, Department
of Informatics, University of Oslo, 2004.

[8] @. Haugen, K. E. Husa, R. K. Runde, and K. Stglen. STAIRS towards
formal design with sequence diagrams. Journal of Software and Systems
Modeling, 4(4):355-367, 2005.

[9] @. Haugen and K. Stglen. STAIRS - steps to analyse interactions
with refinement semantics. In Sizth International Conference on UMIL
(UML’2003), volume 2863 of Lecture Notes in Computer Science, pages
388-402. Springer, 2003.

REFERENCES 15

[10] M. Heisel, A. Pfitzmann, and T. Santen. Confidentiality-preserving refine-
ment. In 14th IEEE Computer Security Foundations Workshop (CSFW-14
2001}, pages 295-306. IEEE Computer Society Press, 2001.

[11] C. A. R. Hoare. Communicating Sequenitial Processes. Series in computer
science. Prentice-Hall, 1985.

[12] C. A. R. Hoare, J. He, and J. W. Sanders. Prespecification in data refine-
ment. Information Processing Letters, 25(2):71-76, 1987.

[13] J. Jacob. On the derivation of secure components. In Proc. of the IEEE
Symposium on Security and Privacy, pages 242-247. IEEE Computer So-
ciety Press, 1989.

[14] J. Jiirjens. Secrecy-preserving refinement. In FME’01, volume 2021 of
Lecture Noles in Computer Science, pages 135-152. Springer, 2001.

[15] J. Jiirjens. Secure systems development with UML. Springer, 2005.

(16] H. Mantel. Possibilistic definitions of security - an assembly kit. In
IEEE Compuer Security Foundations Workshop (CSFW’00), pages 185-
199. IEEE Computer Society Press, 2000.

(17] H. Mantel. Preserving information flow properties under refinement. In
IEEE Symposium on Security and Privacy, pages 78-91. IEEE Computer
Society Press, 2001.

[18] Object Management Group. Architecture Board ORMSC. Model Driven
Architecture (MDA). Document number ormsc/2001-07-01, 2001.

[19] A. Roscoe. CSP and determinism in security modelling. In IEEE Sym-
posium on Security and Privacy, pages 114-127, IEEE Computer Society
Press, 1995.

[20] R. K. Runde, @. Haugen, and K. Stplen. Refining uml interactions with
underspecification and nondeterminism. Nordic Journal of Computing,
12(2):157-188, 2005.

[21] F. Seehusen and K. Stglen. Information flow property preserving trans-
formation of UML interaction diagrams. In SACMAT 2006, 11th ACM
Symposium on Access Control Models and Technologies, pages 150-159.
ACM Press, 2006.

[22] R. J. van Glabbeek and U. Geltz. Refinement of actions and equivalence
notions for concurrent systems. Acta Informatica, 37(4/5):229-327, 2001.

(23] Aris Zakinthinos and E. Stewart Lee. A general theory of security prop-
erties. In Proc. of the IEEE Computer Society Symposium on Research in

Security and Privacy, pages 94-102. IEEE Computer Society Press, 1997.

—_

A PROOFS 16

A Proofs
Al Lemmal

~~ 18 transitive.

AssuMmME: 1. Q~

2, Q' ~— QF
Prove: O — Q"

()1, (V6 € Q34" € Q" ¢ C o) A (V8" € Q- Fp € Q- ¢ C)
(23, Yo e Q- 3" € Q" . " C o
(3y1. Ap" € Q" . ¢" C ¢ for arbitrary ¢ € O
{4)1. Choose ¢' € Q' and ¢"” € Q" such that ¢’ C ¢ and ¢” C ¢’
Proor: By assumptions 1 and 2 and definition of ~+ (Del. 5).
2. ¢ C
Proor: By {4)1 and transitivity of C.
(4)3. Q.E.D.
PROOF: By (4)1 and (4)2.
(3)2. Q.E.D.
PROOF: V-rule.
(2)2. Vo" € -JpeQ-¢" C o
(3y1. dp € Q- ¢” C ¢ for arbitrary ¢" € O
{4)1. Choose ¢’ € ' and ¢ € Q such that ¢" C ¢’ and ¢' C ¢
Proor: By assumptions 1 and 2 and definition of ~ (Def. 5).
(4)2. 9" C ¢
Proor: By {4)1 and transitivity of C.
(4)3. Q.E.D.
Proor: By (4)1 and (4)2.
{3)2. Q.E.D.
PROOF: V-rule.
(2)3. Q.E.D.
Proor: By (2)1 and (2)2.
{1)2. Q.ED.
ProorF: By (1)1 and definition of ~+ (Def. 5).

A.2 Theorem 1

BspPgy is preserved by refinement for arbitrary restrictions R satisfying (3) and
closure requirements Q.

AgsuME: 1. (TV CT A R(T',t)) = R(T,t) for arbitrary T, T" and t.
2. O~
3. BSPQR(Q)

Prove: Bspggr(f))

(1)1. AssuME: 1.1te (¥
1.2 R(Y, 1)

A PROOFS 17

Prove: ¢ € -Vt €' -t~ ' AQ', 1)
(291, R(%,4)
(3)1. ¥ c
Proor: By assumption 2, definition of ~ (Del. 5), and definition of ™
(Def. 4).
(3)2. QE.D.
Proor: By assumption 1.2, {3)1, and assumption 1.
{2)2. Choose ¢ € 2 such that ¢ ~; ¢’ and Q(¢,t') for arbritrary t' € ¢
Proor: By (2)1, assumption 3 and definition of BSPgpr (Del. G).
(2)3. Choose ¢' € & such that ¢’ C ¢
Proor: By assumption 2, (2)2 and definition of ~~ (Def. 5).
(2)4. ¢~ t' and Q(#',t) for arbritrary ¢’ € ¢/
Proor: By (2)2 and (2)3.
(2}5. Q.E.D.
Proor: By (2)3 and {2)4.
{1)2. Q.E.D.
PrROOF: By (1}1 and definition of BsPgp (Def. 6).

A3 Lemma 2

Let {1, be contained in the image of £, under the identity transformation id,
then
Qﬂ i 1. & Qa 3 ch

Proof: By lemma 2.1 and 2.2.

A.3.1 Lemma 2.1
ASSUME: 1. id € Q4 — {, and id(t) = ¢ for all £ € 0,
2. Q. Cim(Q,, {id})

3. Qu =gy Qe
Prove: 0, ~ £,

(1)1 (V(}J)ﬂ = na 3 ac’{)c € Q‘c ' Qf)c c Ql"a) A (vd)c € QC i 9¢)a = Qa . ¢c c (e’i’u)
(2)1- V(rf)a € Qa : 3(;)0 € Qc 2 fﬁc c ‘}f)a
(3Y1. Jpe € Qe - e © @q for arbitrary ¢, € Qg
(4)1. Choose . € £, such that ¢, —;q dc
Proo¥F: By assumption 3 and definition of — (Def. 8).
(4)2. e C G0
PROOF: By (4)1, assumption 1, and definition of — (Def. 7).
(4)3. Q.E.D.
Proor: By (4)1 and (4)2.
{3)2. Q.E.D.
PRroor: By Y-rule.
<2>2- vd)c € Qc ' Hd)a € Qa : frf)c c ‘f)a
(3)1. iy € Q- de C &, lor arbitrary ¢, € Q,
(4)1. Choose ¢, € Q, such that ¢, —iq ¢
PROOF: By assumptions 2 and 3, and definition of im (4) and —
(Def. 8).
(42, g C g

A PROOFS

ProoF: By (4)1, assumption 1, and definition of < (Def. 7).

(4)3. Q.E.D.
Proor: By {(4)1 and (4)2.
(3)2. Q.E.D.
Proor: By V-rule.
(2)3. Q.E.D.
PRrooF: By {2)1 and (2)2.
(1)2. Q.E.D.
ProoF: By (1)1 and definition of ~~ (Def. 5).

A.3.2 Lemma 2.2

AssumE: 1. Q, ~
2. id € flg — Qe and id(t) =t for all ¢ € {,
PROVE: Qg —(ig} Qe
(131. Voo € 0y - Fohe € Qe - o —ig P
(2], Ao, € Q¢ - Pa —iq @ for arbitrary ¢, € Q4
{3)1. Choose ¢ € §}. such that ¢, C ¢,
PROOF: By assumption 1 and definition of ~ (Del. 5).
<3>2' ba —id Pc

Proor: By (3)1, assumption 2, and definition of — (Def. 7).

(3)3. Q.E.D.
Proor: By (3)1 and (3)2.
(2)2. Q.E.D.
ProOF: By V-rule.
(1y2. Q.E.D.
Proor: By (1)1 and definition of — (Def. 8).

A.4 Lemma 3
— (Def. 8) is transitive.

ASsUME: 1. Q—p Qy for F} € F

2. Q1 —r 92 for Fs e F
ProvE: @ —pep 22

(1. Vfe(FooF) Vo eQ Ids € Qo-) — o
(2)1. 3¢a € Q- ¢ — o for arbritrary f € (Fao Fy) and ¢ € Q
{3)1. Choose fi € F} and fa € F such that f = fao fi
Proor: By definition of o (Eq. 5).
(3)2. Choose ¢ € { such that ¢ <y, ¢
Proor: By (3)1 and assumption 1.
(3}3. Choose ¢z € 2y such that ¢; —y, ¢o
Proor: By (3)1 and assumption 2.
(3. ¢ —prap, b2
ProorF: By (3)2, (3)3, and Lemma 3.1.
(3)5. Q.E.D.
PRroOT: By (3)4.
{2)2. Q.E.D.

18

A PROOFS 19

Proor: By V-rule.
(1)2. Q.E.D.
ProoF: By definition of < (Def. 8).

A.41 Lemma 3.1

— (Def. 7) is transitive.

AssUME: 1. ¢ <y, ¢y
2. @1 =y, ¢

PROVE: ¢ —p0p, the

LET: f2 fa0 fy
(D1 2 C{f(L)|L € b}
(2)1. Vig €gp- Tt - ft) =ta
(3)1. 3t € ¢+ f(t) = ta for arbritrary t2 € ¢
{(4)1. Choaose i, € ¢y such that fat1) =t
PRrooF: By assumption 2 and definition of — (Def. 7).
(4)2. Choose t € ¢ such that fi(f) = {;
PrRooOF: By assumption 1 and definition of < (Def. 7).
(4)3. f(t) =t
Proor: By transitivity of o.
(4)4. Q.ED.
Proor: By (4)3
(3)2. Q.E.D.
PROOF: By V-rule.
(2)2. Q.E.D.
PROOF: By (2)1.
(12. Q.E.D.
ProorF: By definition of — (Defl. 7).

A.5 Theorem 2

If there is a wvalid secure interpretation of a given iransformation, then that
transformation maintains security.

FeF
. Qa —F Qrc
- Re(Qc,te) = 3 € F1 (k) - Ra(Qa,t') for all i € Q.
 (Be(Qyte) AVE € g -t ~p 8 A Qalta, t) = T € Qe -Vt €
@ te it A Qelle, ') for all b, € Q,, ¢ € Oy, and ¢, € F1{t,)
5. BSPQ:1 R. (ﬂa)
PROVE: BsPgo_g, (82:)
{(1)1. AssuMmE: 1.1t. € Q.
1.2 R.(Qe, te)
ProVE: ¢ € Qo -Vt € -t~ t) A Qelte, t)
(2)1. Choose t, € F~1(t.) such that R,(Qq,t,)
Proor: By assumptions 1.1, 1.2, and 3.

ASSUME:

= W N

A PROOFS 20

(2)2. Choose ¢, € £, such that Vi’ € ¢ -ty ~ t' A Qta, t')
Proor: By (2)1, assumption 5, and definition of Bsr (Def. 6).
(2)3. Q.E.D.
Proor: By assumption 1.2, (2)2, and assumption 4.
(1)2. Q.E.D.
PROOF: By definition of Bsp’s (Def.6).

