
 SINTEF  REPORT 
 TITLE 

 

Extending the Lin-Kernighan algorithm to improve solutions to 
VRPs with Time Windows 

AUTHOR(S) 

Nina Holden, Geir Hasle 

CLIENT(S) 

SINTEF ICT 
 
Address: NO-7465 Trondheim 
 NORWAY 
Location: Forskningsveien 1 
 0373 Oslo 
Telephone: +47 22 06 73 00 
Fax: +47 22 06 73 50 
 
Enterprise No.: NO 948 007 029 MVA 

 

SINTEF ICT 

REPORT NO. CLASSIFICATION CLIENTS REF. 

SINTEF A13822 Open Geir Hasle 
CLASS. THIS PAGE ISBN PROJECT NO. NO. OF PAGES/APPENDICES 

Open 978-82-14-04459-1 90A34901 12 
ELECTRONIC FILE CODE PROJECT MANAGER (NAME, SIGN.) CHECKED BY (NAME, SIGN.) 

Nina Holden TSPTW.doc Geir Hasle Oddvar Kloster 
FILE CODE DATE APPROVED BY (NAME, POSITION, SIGN.) 

 2009-10-01 Martin Stølevik 
ABSTRACT 

Helsgaun’s implementation of the Lin-Kernighan algorithm (LKH) is an effective heuristic solver for the 
Traveling Salesman Problem (TSP). The report presents an extension of LKH to support time windows, 
i.e., to a solver for the TSPTW. The new solver is referred to as LKHTW. SINTEF’s solver for rich 
Vehicle Routing Problems, Spider, has been integrated with LKHTW. Several alternative methods for 
combining Spider’s VRP heuristics with optimization of each tour using LKHTW have been developed 
and investigated empirically on a set of test instances. The results show that small but significant 
improvements of the Spider solutions can be obtained in cases with few or very wide time windows, 
whereas only few and marginal improvements are obtained in cases with narrower time windows. 
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1 Background 
Helsgaun’s implementation of the Lin-Kernighan algorithm (LKH) is an effective heuristic solver 
for the Traveling Salesman Problem (TSP). 

SINTEF’s VRP solver Spider has a flexible and generic rich model that supports a variety 
of industrial cases and VRP variants in the literature. The algorithm is basically a combination of 
Iterated Local Search and Variable Neighborhood Search, utilizing a large repertoire of 
constructors, local search operators and diversifiers that have been designed to accommodate the 
rich VRP model. For details, see [1] and [2]. 
 

The research described in this report had two main objectives:  
• to investigate the quality of the individual tours of VRP solutions from Spider 
• to extend LKH to a solver for the TSPTW 

2 The Lin-Kernighan algorithm with time windows 
The basis for the TSPTW solver presented here is Helsgaun’s implementation 2.0.3 of the Lin-
Kernighan algorithm (LKH), see [3], [4] and [5] for code and documentation. To simplify the 
extension, some features of the LKH algorithm were removed. A test to check time window 
feasibility was added before the each suggested move. The removed features do not have a big 
impact on performance according to a limited computational study on TSP instances with few 
cities. Many of the features can be relatively easily rewritten to accommodate time window 
constraints in an efficient way. 

Here follows a description of the Lin-Kernighan algorithm LKH the way it works with the 
selected input parameters. More details can be found in [4] and [5]. With other input arguments 
the algorithm may work slightly differently. 

1. A number of independent runs (default: 100) are done, where we search for a solution with 
lowest possible cost in each run. After each run, we try to merge the solution from the run 
with the currently best solution, see [5] for details. 

2. Each run consists of a certain number (default: the number of nodes in the problem) of 
trials. 

3. In the beginning of each trial we choose an initial tour. We start out in a random node n1, 
then we pick n2, n3 etc, such that n1-n2-n3-etc becomes our initial tour. When we choose a 
new node ni, we give priority to candidate edges (see 6.), edges that belongs to the 
currently best tour and edges with alpha value equal to 0 (see 6.). 

4. After we have chosen our initial tour, we try to improve the tour by the Lin-Kernighan 
heuristics. When we have improved the initial tour, we try to improve this tour by merging 
it with the currently best tour. 

5. The Lin-Kernighan heuristics alternates between doing sequential and non-sequential 
moves, as long as improvements can be done. A sequential move consists of several 
submoves of length ≤ k, where each submove is sequential, feasible (i.e. performing the 
move gives us one closed tour containing all nodes once) and the accumulated gain along 
the move is positive, but where the cost reduction obtained by doing the move is not 
necessarily positive. See [5] for details. 

6. Candidate edges: Each node has a number of other nodes associated with it through so 
called candidate edges. An edge is a candidate edge if it is likely that the edge is part of the 
final tour. For each edge we calculate the minimum length of a 1-tree containing the 
specified node, minus the length of the network’s minimum 1-tree, and this is the edge’s 
alpha value. We look at an edge’s alpha value to determine whether it is a candidate edge 
or not. We also adjust the candidate set when we have improved a tour, such that an edge 
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is more likely to become a candidate edge if it belongs to the two currently best tours. The 
candidate set is reset between each run, but saved between each trial. 

 
Relative to LKH, the changes in LKHTW are as follows: 

1. The solution from each run is not merged with the currently best solution. There are fewer 
runs because of more determinism/less randomness. Otherwise this part of the algorithm is 
unchanged. 

2. Unchanged, except that fewer trials are normally performed for the same reason as 
described in 1. 

3. As the initial tour needs to be feasible (i.e. satisfy the time windows), this part of the 
algorithm had to be changed. The assumption is that the sequence of nodes in the input file 
is feasible. This sequence determines the initial tour in each trial. 

4. Unchanged, except that the tour returned from the Lin-Kernighan method is not merged 
with the currently best tour. 

5. The LKHTW algorithm does only sequential moves. Before we perform each sequential 
move, there is a test checking whether the move satisfies the time windows. If the move 
satisfies the time windows, it is performed, otherwise it is rejected, and we continue to 
search for feasible sequential moves. 

6. Unchanged. 
 
The possible and necessary input parameters for LKHTW are different from the input parameters 
to LKH: 

• All node distances must be Euclidean, and the problem must be 2D. 
• The problem file, containing all city locations in LKH, must also contain the time window 

constraints in LKHTW. The file consists of 6 columns: The first column describes the 
number of the node, the second and third columns describe the x and y coordinates, the 
fourth and fifth columns describe the beginning and end of the feasible time window, 
whereas the last column describes the service time. 

 
Some of the input parameter choices not possible in LKHTW are easy to include by making small 
changes in the code. 

3 Integrating LKHTW and Spider 
The Spider code is modified such that it is possible to improve a solution by calling LKHTW. An 
option “lkhtw” has been added to the menu, and when choosing this option, each tour in the 
currently best Spider solution is sent to LKHTW. Each tour in a Spider solution is a TSP with 
time windows, and can therefore be improved by LKHTW. The solution obtained by Spider is 
used as a starting solution in LKHTW. After LKHTW has tried to improve the tours, the solution 
from LKHTW is transported back to Spider, such that we can continue to improve this solution 
with Spider. 
 
The program only supports VRPs where 

1. all orders are either pickup orders or delivery orders 
2. each time constraint is a single time interval 
3. the city locations are given by x and y coordinates, and all distances are 2D Euclidean 

distances 
4. the time it takes to travel between two places has the same numeric value as the distance 

between the places 
5. there are no waiting costs – the cost function only consists of the distance traveled, plus an 

additional cost for each tour 
6. there is only one possible location for each task 
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It is possible to allow multiple time windows, non-Euclidean distances and variable speed with 
relatively small changes in the code and algorithm, i.e. it is relatively easy to remove the 
requirements 2, 3 and 4. 

4 Computational experiments 
The input parameters to Spider were:  
-ins –rel –two 0 –rar 100 1 1 1 –rem 1 –cro 10 –nex 10 1 1 5 0. 
 
The input parameters to LKH that did not take default value were:  

• PATCHING_C = 3. The maximum number of disjoint cycles to be patched in an attempt 
to find a feasible and gainful move. 

• PATCHING_A = 2. The maximum number of disjoint alternating cycles to be used for 
patching. 

• RUNS = 3. The number of runs (see 2.1) were set to 3. 
• MAX_TRIALS=10. The number of trials per run (see 2.2) were set to 10. 

 
Four different combined optimization methods were developed and investigated: 

• opt1. The input solution was optimized for 8 times 300 seconds with Spider (=40 minutes 
altogether), using Spider’s tiop function to interrupt the optimization each 5 minutes. 

• opt2. Same as opt1, except that the currently best solution from Spider is optimized with 
LKHTW after the 40 minutes of optimization with Spider. 

• opt3. Same as opt1, except that currently best solution from Spider is optimized every 5 
minutes with LKHTW. Every 5 minutes the solution is sent from Spider to LKHTW, 
LKHTW improves the solution, and Spider continues to optimize the solution that was 
found by LKHTW. The optimization with LKHTW comes in addition to the optimization 
with Spider, so the total optimization time is above 40 minutes. 

• opt4. Same as opt3, except that LKHTW improves the solution from Spider after every 
100 seconds of optimization with Spider, instead of after 300 seconds (5 minutes). 

 
Three different sets of problem instances were investigated: 

1. One set of 30 data files where all the cities have time windows, and the time windows are 
predominantly narrow. The 30 instances are the first instance in each of the six problem 
classes in Gehring and Homberger’s well known VRPTW benchmark over five different 
sets corresponding to number of customers (200, 400, 600, 800, 1000). The average 
number of orders per tour in the best known solution was between 10 and 56. 

2. One set of 30 data files, where none of the cities had time windows. Except for the time 
windows the problem data (the number of cities, the number and capacity of the vehicles, 
the location of the cities etc.) were identical to the problem data described in 1. 

3. One set of 27 data files, where the time windows were wider than for the files described in 
1, or where only a certain percentage of the cities had time windows. Five of the instances 
from Set 1: RC1_8, R1_6, C2_4, RC2_2 and RC2_4 were selected. For each of these 
instances, derived instances with six different time window characteristics were generated 
(except for R1_6, where only three variants were generated). Time window width varied 
between 3, 5 and 7 on a scale from 1 to 7 (7 meaning wide time windows), and the number 
of cities that had time window constraints varied between 25%, 50% and 75%. The time 
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window width was 1 in the cases where only some of the cities had time windows, and all 
the cities had time constraints in the cases where the time windows were wide. 

5 Results 
In Appendix 1, there are three tables describing the result for each of the three problem data sets, 
see Table 5.1, Table 5.2 and Table 5.3. The different columns in the tables have this meaning: 

• Case. The name of the corresponding Gehring and Homberger case. If the name has only 2 
numbers in it, it means that the cities do not have any time constraints. The second number 
in each name gives the number of cities divided by 100, for example are there 400 cities in 
the case with name C2_4_1. 

• Orders with TW. The percentage of the orders that have time window constraints. 
• TW width. Gives the width of the time windows on a scale from 1 to 7, with 7 meaning 

wide time windows and 1 meaning narrow time windows. 
• Best known solution. The best known solution to the given case. 
• opt1, opt2, opt3, opt4. Gives the optimization method used, see “4 Computational 

experiments” for description. 
• Distance. Gives the distance corresponding to the value of the objective function after the 

optimization has been performed. Includes only the traveling distance, not the cost 
associated with the number of tours. 

• Avg orders per tour. The average number of orders per tour in the solution. 
• Relative improvement. Gives the relative improvement of the cost function when using 

optx compared to opt1 (x = 2, 3, and 4). 
• Time. Gives the CPU time it took to perform the optimization, in seconds. 
• LKHTW improvement. Gives the number of different starting tours that was given to 

LKHTW during the optimization, and the number of times LKHTW managed to improve 
the initial tour it was given. 

 
Data set 1: Problems with narrow time windows 
Table 5.1 shows that LKHTW does not manage to improve solutions from Spider in cases where 
the time windows are narrow and all the cities have time constraints. 
 
Data set 2: Problems without time windows 
Table 5.2 illustrates that LKHTW can be used to improve problems without any time windows on 
the cities. On average, the improvement is 0.21%.  

• opt2 gave a better result than opt1 in 25 of the 30 runs. The solution was on average 0.21% 
better when using opt2 compared to opt1, and the maximum improvement was 0.838%. 

• opt3 gave better results than opt1 in 20 of 30 cases, gave a worse result in 9 cases, and 
gave the same result in one case. The average improvement was 0.25%, with an estimated 
standard deviation of 0.016. Assuming the relative difference of the solutions with opt3 
and opt1 has a normal distribution, [-0.0026, 0.0076] is a 90% confidence interval for the 
relative improvement.  

• There was no significant difference between the results for random, clustered and 
random/clustered problems. 

• The improvement by using opt2 instead of opt1 was larger for problems with many cities. 
The average improvement was -0.028%, 0.22%, 0.25%, 0.27% and 0.30% for problems 
with 200, 400, 600, 800, and 1000 cities, respectively. 

• The improvement by using opt2 instead of opt1 was larger for problems that had long and 
few tours, compared to problems with more and shorter tours. There are 15 problems 
where the average number of cities per tour in the optimal solution is between 10 and 12, 
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there are 5 problems where the same number is between 33 and 37 cities, and 10 problems 
where the number is between 50 and 56 cities. In these cases the average improvement 
was 0.029%, 0.39%, and 0.40%, respectively. 

For the opt3 runs, the number of cases where LKHTW was able to improve the tour it got from 
Spider, was observed. LKHTW improved the tours more often when the number of cities was 
large, and when the tours were long. The fraction of the times LKHTW managed to improve the 
Spider solution was 9/21 (43%), 16/34 (47%), 23/33 (70%), 22/33 (67%), and 19/30 (63%) for 
problems with 200, 400, 600, 800 and 1000 cities respectively. The similar fractions were 34/73 
(47%), 17/24 (70.8%) and 38/54 (70.4%) for problems with 10-12, 33-37 and 50-56 cities per tour 
in average, respectively. See table 5.2 for details. 
 
Data set 3: Problems with wide or few time windows 
LKHTW may improve solutions from Spider in cases where few of the cities have time 
constraints, or where the time windows are wide: 

• LKHTW improves the solutions from Spider more if the time windows are wide. The 
travelling distance when using opt2 was averagely 0.019% less than when using opt1 for 
the problems with the widest time windows (width 7). For problem data with width 5 and 
width 3 the average improvement was 0.0088% and 0.0006% respectively. LKHTW 
improved the solution from Spider in 3/4, 3/4 and 1/4 cases for time window widths 7, 5 
and 3 respectively. When using opt3 LKHTW improved the solution from Spider in 15/22, 
13/23 and 4/19 cases for time window widths of 7, 5, and 3, respectively. 

• LKHTW improves the solution from Spider more if not all the orders have time 
constraints. The solutions from opt2 were averagely 0.21% less for the data sets where 
25% of the cities had time window constraints. The similar number for data sets where 
50% and 75% of the cities had time constraints was 0.00098% and 0.00344%. LKHTW 
improved the solution from Spider in 5/5, 1/5, and 1/5 of the cases for the problem sets 
where respectively 25%, 50%, and 75% of the orders had time windows. When comparing 
opt1 and opt3, the similar numbers were 21/34, 8/37 and 2/34 respectively.  

 
See Table 5.3 for detailed results. 

6 Conclusion 
LKHTW is a generalized version of the Lin-Kernighan Heuristic for TSP that can be used to 
improve solutions of TSP/VRP problems with time windows. Four new methods that combine the 
heuristics of SINTEF’s VRP solver Spider with the LKHTW for optimization of individual routes 
have been developed. Experimental investigation show that LKHTW can improve the results from 
Spider in cases where the time windows are wide, or in cases where only some of the cities have 
time constraints. 
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Appendix 1. Detailed experimental results 
 

Table 5.1. Result of the runs with data set 1. 
 

Best known 
solution 

Opt1 Opt2 Opt3 Case 

Num-
ber of 
tours 

Distance  Distance Num-
ber of 
tours 

Avg 
orders 
per 
tour 

Distance Rela-
tive 
im-
prove-
ment 
(%) 

Time 
(s) 

Distance Rela-
tive im-
prove-
ment 
(%) 

Time 
(s) 

LKHT
W im-
prove-
ment 

C1_2_1 20 2704,57 2704.568 20 10 2704.568 0 2405 2704.568 0 2439 0/1 
C1_4_1 40 7152,02 7152.057 40 10 7152.057 0 2410 7152.057 0 2468 0/1 
C1_6_1 60 14095,64 14095.644 60 10 14095.644 0 2415 14095.644 0 2518 0/1 
C1_8_1 80 25030,36 25190.822 80 10 25190.822 0 2422 25190.822 0 2552 0/2 
C110_1 100 42478,95 42479.055 100 10 42479.055 0 2426 42483.123 -0.0096 2569 0/3 
C2_2_1 6 1931,44 1929.394 7 28.6 1929.394 0 2402 1929.394 0 2412 0/2 
C2_4_1 12 4116,05 4160.807 13 30.8 4160.807 0 2405 4160.327 0.0115 2436 0/3 

C2_6_1 18 7774,10 7833.604 19 31.6 7833.604 0 2407 7832.245 0.0173 2444 0/3 
C2_8_1 24 11654,81 11886.948 26 30.8 11886.948 0 2411 11847.131 0.3350 2454 0/3 
C210_1 30 16879,24 17318.923 33 30.3 17318.923 0 2415 17521.434 -1.1693 2468 0/2 
R1_2_1 19 5024,65 3493.205   3493.205 0  3493.205 0  0/4 
R1_4_1 38 11084,00 7678.351   7678.351 0  7768.076 -1.1686 2425 0/7 
R1_6_1 59 21131,09 22191.810 64 9.38 22191.810 0 2413 22080.283 0.5026 2439 0/5 
R1_8_1 79 39612,2 38474.128 83 9.64 38474.128 0 2411 38576.059 -0.2649 2454 0/3 
R110_1 100 53904,23 56945.883 102 9.8 56945.883 0 2412 57121.130 -0.3077 2473 0/3 
R2_2_1 4 4483,16 2822.215 13 15.4 2822.215 0 2401 2822.215 0 2411 0/3 
R2_4_1 8 9213,68 7702.763   7702.763 0 2405 7768.076 -0.8479 2425 0/7 
R2_6_1 11 18291,18 15738.952 32 18.8 15738.952 0 2408 15681.992 -0.3619 2437 0/7 
R2_8_1 15 23274,22 26301.950 36 22.2 26301.950 0 2414 26572.211 -1.0275 2453 0/8 

R210_1 19 42467,87 39982.418   39982.418 0 2418 40449.027 -1.1670 2469 0/6 
RC1_2_
1 

18 3602,80 3590.080 20 10 3590.080 0  3569.178 0.5821  0/6 

RC1_4_
1 

36 8630,94 8954.024 39 10.3 8954.024 0 2404 8985.991 -0.3570 2435 0/5 

RC1_6_
1 

55 17317,13 18121.453 58 10.3 18121.453 0 2407 18096.562 0.1374 2452 0/4 

RC1_8_
1 

72 35102,79 32536.597 76 10.5 32536.597 0 2411 32628.959 -0.2839 2480 0/4 

RC110_
1 

90 47143,90 49844.908 95 10.5 49844.908 0 2417 49822.969 0.0440 2490 0/4 

RC2_2_
1 

6 3099,53 2822.215 10 20 2822.215 0 2401 2822.215 0 2411 0/3 

RC2_4_
1 

11 6688,31 6198.853 17 23.5 6198.853 0 2404 6279.458 -1.3003 2425 1/8 

RC2_6_
1 

15 13163,03 12491.805 28 21.4 12491.805 0 2408 12548.448 -0.4534 2442 0/8 

RC2_8_
1 

19 20520,49 20062.227 28 
28.6 

20062.227 0 2413 20315.440 
-1.2621 

2456 2/7 

RC210_
1 

21 29754,06 30553.460 27 
37 

30553.460 0 2419 30651.390 
-0.3205 

2481 0/7 

Average       0   -0.2649   
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Table 5.2. Result of the runs with data set 2. 
 
 

Opt1 Opt2 Opt3 Case 
 Distance Number 

of tours 
Avg 
orders 
per 
tour 

Distance Relative 
improve-
ment (%) 

Time 
(s) 

Distance Relative 
improve-
ment (%) 

Time 
(s) 

LKHTW 
improve-
ment 

C1_2 2584.132 18 11.1 2583.563 0.0220 2411 2582.336 0.0695 2493 0/3 
C1_4 6814.015 37 10.8 6810.379 0.0534 2416 6837.298 -0.3417 2519 2/6 
C1_6 13953.718 56 10.7 13942.566 0.0799 2429 13923.584 0.2160 2630 2/3 
C1_8 24383.616 72 11.1 24372.371 0.0461 2441 24257.181 0.5185 2714 2/4 
C110 40279.442 90 11.1 40262.988 0.0409 2443 40180.915 0.2446 2730 1/3 
C2_2 1494.266 6 33.3 1494.266 0 2406 1485.004 0.6198 2453 2/3 
C2_4 3293.729 11 

36.4 
3276.265 

0.5302 
2418 3208.438 

2.5895 
2496 4/7 

C2_6 6696.678 17 35.3 6670.680 0.3882 2416 6605.315 1.3643 2570 4/4 
C2_8 10063.562 22 36.4 9989.517 0.7358 2434 10086.242 -0.2254 2600 4/6 
C210 15350.952 28 35.7 15304.798 0.3007 2434 15332.498 0.1202 2964 3/4  
R1_2 2930.257 18 11.1 2930.257 0 2404 2916.610 0.4657 2460 1/4  
R1_4 7355.765 37 10.8 7355.765 0 2415 7467.987 -1.5256 2505 3/6 
R1_6 16213.517 55 10.9 16213.517 0 2420 16249.421 -0.2214 2584 4/5 
R1_8 29018.181 73 11 29016.349 0.0063 2433 29017.068 0.0038 2631 3/5 
R110 44383.062 92 10.9 44358.310 0.0558 2434 44409.677 -0.0600 2658 3/7 
R2_2 1626.348 4 50 1626.348 0 2405 1626.348 0 2456 2/3 
R2_4 3464.082 8 50 3462.992 0.0315 2407 3406.073 1.6746 2485 3/4 
R2_6 6638.056 12 50 6627.388 0.1607 2420 6587.559 0.7607 2509 4/7 
R2_8 11057.492 15 53.3 10995.036 0.5648 2422 11034.284 0.2099 2683 4/5 
R210 16665.491 19 52.6 16551.261 0.6854 2425 16524.609 0.8454 2896 5/7 
RC1_2 2858.039 19 10.5 2856.916 0.0393 2406 2847.586 0.3657 2456 2/5 
RC1_4 7463.856 37 10.8 7462.210 0.0221 2416 7466.348 -0.0334 2515 1/6 
RC1_6 15398.261 56 10.7 15395.315 0.0191 2429 15306.199 0.5979 2624 3/6 
RC1_8 27826.810 74 10.8 27822.552 0.0153 2442 27946.018 -0.4284 2687 5/7 
RC110 43245.758 91 11 43233.826 0.0276 2448 43664.373 -0.9680 2766 2/3 
RC2_2 1522.735 4 50 1521.073 0.1091 2404 1626.348 -6.8044 2456 2/3 
RC2_4 3210.806 8 50 3189.128 0.6751 2431 3193.324 0.5445 2543 3/5 
RC2_6 6197.925 12 50 6145.991 0.8379 2423 6036.489 2.6047 2536 6/8 
RC2_8 10096.730 15 53.3 10073.173 0.2333 2415 9915.143 1.7985 2591 4/6 
RC210 15162.124 18 55.6 15060.667 0.6692 2511 14785.030 2.4871 3034 5/6 
Average     0.2117   0.2498   
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Table 5.3. Result of experiments with data set 3. 

 
Best know solution Opt1 Opt2 Opt3 Opt4 Case Ord-

ers 
with 
TW 

TW 
wid-
th 

Num-
ber of 
tours 

Distance Distance Time 
(s) 

Num-
ber of 
tours 

Avg 
orders 
per 
tour 

Distance Relative 
improve
-ment 
(%) 

Time 
(s) 

Distance Relative 
improve-
ment (%) 

Time 
(s) 

LKHT
W 
improve
-ment 

Distance Relative 
improve-
ment (%) 

Time 
(s) 

LKHT
W im-
prove-
ment 

RC1_81
0 

100% 7 72 31766,56 29869.08 2403 75 10.7 29868.96 0.00043  30176.76 -1.030 2535 1/5 30106.035 -0.7933 2760 1/5 

C2_410 100% 7 11 4115,46 3782.494 2401 13 30.8 3782.274 0.0058 2407 3750.384 0.848905 2413 3/3 3834.72 -1.38073 2432 4/8 
RC2_21
0 

100% 7 4 2015,60 2011.006 2401 6 33.3 2011.006 0  2011.651 -0.03207 2406 3/6 2011.006 0 2418 2/7 

RC2_41
0 

100% 7 8 4311,59 4480.97 2401 9 44.4 4477.898 0.069 2401 4455.565 0.566953 2444 8/8 4543.750 -1.40104 2494 6/14 

RC1_8_
8 

100% 5 72 33188,75 30297.3 2401 75 10.7 30295.22 0.0069  30420.12 -0.40536 2526 4/7 30390.253 -0.30679 2803 2/8 

C2_4_8 100% 5 12 3787,08 3960.268 2401 14 28.6 3959.293 0.025  3914.328 1.160023  3/4 3943.854 0.414467 2435 3/9 
RC2_2_
8 

100% 5 4 2293,35 2207.706 2400 6 33.3 2207.706 0 2400 2196.441 0.510258 2414 1/5 2200.797 0.312949 2437 0/6 

RC2_4_
8 

100% 5 8 4848,87 4948.691 2401 11 36.4 4948.506 0.0037  4919.085 0.598249 2443 5/7 4821.6468 2.567221 2511 6/18 

RC1_8_
6 

100% 3 72 34849,96 31624.18 2403 76 10.5 31623.42 0.0024  31556.1 0.215263 2498 0/5 31546.169 0.246666 2694 3/14 

C2_4_6 100% 3 12 3875,94 3928.153 2401 13 30.8 3928.153 0  3893.692 0.877288 2413 1/3 3988.476 -1.53565 2435 3/9 
RC2_2_
6 

100% 3 4 2975,13 2508.735 2401 7 28.6 2508.735 0 2402 2517.651 -0.3554 2415 0/5 2504.776 0.157809 2452 1/5 

RC2_4_
6 

100% 3 8 5863,56 5530.885 2401 13 30.8 5530.885 0  5470.788 1.086571 2425 3/6 5463.144 1.224777 2472 3/13 

RC1_8_
4 

25% 1 72 28363,65 28481.53 2402 75 10.7 28473.27 0.029  28503.46 -0.07699 2615 2/5 28736.436 -0.89497 3017 2/3 

R1_6_4 25% 1 54 15947,03 16776.15 2401 57 10.5 16775.25 0.0054  16797.27 -0.1259 2533 3/5 16592.912 1.092241 2802 8/12 
C2_4_4 25% 1 11 3865,45 3830.122 2401 14 28.6 3808.118 0.57  3810.054 0.52396 2413 5/8 3850.574 -0.53397 2437 5/11 
RC2_2_
4 

25% 1 4 2043,05 1890.548 2400 7 28.6 1890.476 0.0038  1884.256 0.332814 2407 3/4 1878.330 0.646268 2417 2/10 

RC2_4_
4 

25% 1 8 3635,04 3803.872 2401 11 36.4 3787.682 0.43  3777.044 0.705281 2441 8/12 3797.131 0.177214 2532 4/8 

RC1_8_
3 

50% 1 72 30608,16 29721.37 2402 76 10.5 29719.92 0.0049  29904.21 -0.61516 2557 3/6 29842.179 -0.40647 2894 6/10 

R1_6_3 50% 1 54 17216,16 18124.88 2401 56 10.7 18124.88 0  18102.11 0.125656 2465 2/7 18041.737 0.458745 2633 3/9 
C2_4_3 50% 1 11 4109,88 3951.172 2401 14 28.6 3951.172 0  3991.529 -1.02139  0/5 3991.529 0.263719 2439 3/11 
RC2_2_
3 

50% 1 4 2043,05 2252.373 2401 8 25 2252.373 0  2251.127 0.055319 2407 1/5 2245.374 0.310739 2420 0/5 

RC2_4_ 50% 1 8 4958,74 4762.827 2401 14 28.6 4762.827 0  4728.368 0.723499 2428 2/14 4757.419 0.113546 2480 2/7 



 
 

12 

 
3 
RC1_8_
2 

75% 1 72 33361,67 30784.62 2402 77 10.4 30784.62 0  30725.64 0.191573 2500 1/6 30934.64 -0.48734 2704 2/8 

R1_6_2 75% 1 54 19147,38 19727.74 2402 59 10.2 19724.35 0.017  19720.48 0.036796 2453 0/4 19722.639 0.025857 2453 0/7 
C2_4_2 75% 1 12 3929,89 4057.531 4802 14 28.6 4057.531 0  4027.316 0.744665 4824 0/11 4040.104 0.429498 4865 0/13 
RC2_2_
2 

75% 1 5 2825,24 2495.908 2401 8 25 2495.908 0 2402 2495.908 0 2436 0/6 2500.853 -0.19812 2421 0/5 

RC2_4_
2 

75% 1 9 6355,59 5509.967 2391* 15 26.7 5509.967 0  5592.915 -1.50542 2427 1/7 5573.353 -0.9689 2478 2/15 

Average          0.043   0.153    -0.017   

 
*One of the Spider runs was interrupted 10 seconds too early. 
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