

SINTEF ICT
Software Engineering, Safety and Security
2011-12-09

 SINTEF A21905 - Unrestricted

Report

FI – M2M D1.1 Platform architecture

Author(s)
Svein Olav Hallsteinsen
Babak Farshchian, Anna Burla, Shanshan Jiang, Bjørn Magnus Mathisen

SINTEF ICT
Software Engineering, Safety and Security
2011-12-09

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

2 of 52

Document history
VERSION DATE VERSION DESCRIPTION
V0.1 2011-05-11 Skeleton based on the Arcade template

V0.2 2011-05-30 Filled in initial content in selected sections

V0.5 2011-09-19 Comments from Babak and some changes to the scenario

V0.6 2011-12-05 More cleaning up of language and content.

V1.0 2011-12-09 Final version, changed author list to represent work.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

3 of 52

Table of contents

1 Introduction .. 5
1.1 Motivation and background .. 5
1.2 Summary ... 6
1.3 Structure of this document .. 6

2 Context Viewpoint .. 7
2.1 AAL Domain .. 7
2.2 Scenarios .. 7

2.2.1 Adaptation .. 8
2.2.2 Another adaptation scenario: .. 9
2.2.3 Development ... 10
2.2.4 Evolution .. 10

2.3 Environment ... 11
2.4 Work processes ... 11
2.5 Business to system Mapping ... 11

2.5.1 Stakeholders ... 11
2.5.2 Reference use cases currently supported ... 14

3 Requirements Viewpoint .. 16
3.1 High level requirements ... 16
3.2 Target System Mapping Model ... 17

3.2.1 System categories .. 18
3.2.2 The behavioural aspects (service collaboration patterns) ... 19
3.2.3 Runtime support provider .. 20
3.2.4 Community support provider ... 27
3.2.5 Developer support provider .. 32

4 Component viewpoint .. 34
4.1 System information model ... 34
4.2 System Decomposition Model ... 36
4.3 Component and Interface Specification Model ... 37
4.4 System Collaboration Model ... 40

4.4.1 M2M platform collaboration model ... 40

5 Realisation viewpoint ... 43
5.1 System Deployment Model .. 43
5.2 Technology Mapping Model ... 46

5.2.1 Community support .. 46
5.2.2 Development support .. 46
5.2.3 Network simulator ... 47
5.2.4 Context and adaptation middleware .. 48
5.2.5 Service discovery ... 49
5.2.6 Communication layer ... 49

6 Conclusion .. 51

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

4 of 52

APPENDICES

Appendix A MUSIC “Description” (paper submitted to the Journal of Software and Services, special issue on the state of the
art of adaptive systems.

Appendix B MUSIC Services (Book Chapter submitted to planned Springer book on Software Engineering for Self-Adaptive
Systems)

Appendix C Network simulator (paper accepted by NIK 2011)

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

5 of 52

1 Introduction

1.1 Motivation and background
With more than a billion users, today’s Internet forms an unparalleled information and communication
network. The EU 7th Framework Programme is addressing issues concerning the Future Internet, where the
fusion of The Internet of Things, Services, and Content and Media are central themes. The FI-M2M project
mainly focuses on the first of these themes, The Internet of Things, and in particular the flexible integration
of things into applications and services serving human needs. In this context, M2M (Machine-to Machine)
systems and sensor networks play central roles. A key objective in most M2M research initiatives is to
connect everyday objects (things) to form a ubiquitous network, so as to allow people to control them and
use the data they provide to assist everyday tasks related both to work and recreation.

The vision is that systems in the Future Internet will be characterized by that they:

• consists of many parts which are things, applications, or services.
• leverage services developed and deployed by third parties.
• form semi-automatically, driven by the availability of parts and the situation, and guidance by

humans defining high-level goals and making decisions.
• evolve dynamically over their lifetime.
• support mobility of both things and people.

The Future Internet and M2M service enablement project targets three main research objectives (RO). These
can be summarized as follows:

• RO1: Provide architectures, middleware, tools, and methodologies that can act as an open common
basis for M2M developers. Providing solutions that attract developers (professionals and non-
professionals) is central for promoting growth in the M2M communication sector. To this end we
will seek to produce architectures, tools, and methodologies that can contribute to simplify design,
development, and composition of M2M oriented applications for mobile and ubiquitous
environments. In particular, we will focus on providing better support for managing QoS in
dynamically composed systems by means of dynamic adaptation. The project will explore the
RESTful services paradigm and semantic description and discovery of services provided by
embedded devices, and will seek to integrate relevant existing results from earlier projects in both
Telenor and SINTEF.

• RO2: Identify easy and cost-effective means for deployment and evolution of M2M systems. The
deployment of M2M solutions is complicated and expensive. The same is the case with evolution
after initial deployment. This hampers the uptake of such solutions and there is the need to simplify
and automate these tasks. This calls for technology, which support self-configuration at deployment
time, and the ability to reconfigure automatically when parts are added or removed. Our approach
will be to investigate the potential of smart wholesale application stores that exploits the capabilities
of the platform provided by RO1 to simplify and partially automate deployment and evolution.

• RO3: Assess relevance and impact of M2M concepts in selected verticals and derive requirements
for a common platform. In order to broaden the application space for M2M concepts, and promote
acceptance and adoption of relevant tools and services, it is necessary to develop an understanding of
how to accommodate such specific application areas. A central part of this project will be to tailor
M2M concepts for selected verticals, and to conduct empirical evaluations to generate a better
understanding of the added value and benefits.

The project is planned in two major steps. In the initial step we focus on the exploitation of parts with self-
adaptation capabilities to ease the deployment and evolution of systems. In the next step we will focus on

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

6 of 52

special tools leveraging on the self-adaptation capabilities of software parts to further automate the
deployment and evolution process.

This document is a preliminary architecture document meant to serve in the first step. It will be extended and
matured in the 2nd step, to also reflect more completely the requirements related to more user driven and
automated deployment and evolution and to become a final platform architecture document.

1.2 Summary
This document specifies the requirements and the initial architecture of the target tools and middleware
platform. The document also elects a technology baseline for the realisation of the platform, building on
existing technologies in Telenor and SINTEF, and will serve as a blueprint for the implementation. The
design of the architecture has been elaborated following the architecture design method and description
framework Arcade, which again is based on ANSI/IEEE 1471-2000, Recommended Practice for
Architecture Description of Software-Intensive Systems. Arcade is open, while 1471-2000 is not (though you
can find a description of it here: http://en.wikipedia.org/wiki/IEEE_1471). Information about Arcade can be
found here: http://www.arcade-framework.org/.

In accordance with Arcade the document includes an analysis of stakeholders and scenarios from the AAL
domain as a basis for the requirements. The design of the architecture has been shaped by these
requirements, the constraints imposed by the baseline technologies and the wish to comply with the reference
architecture for the AAL domain proposed by the UNIVERSAAL1 project. UNIVESAAL is a European FP7
integrated project addressing specifically software engineering of AAL systems running in parallel with the
FI-M2M project.

1.3 Structure of this document
The structure of this document follows the guidelines of Arcade for the structure of architecture documents,
and describes the system from different viewpoints in accordance with ANSI/IEEE 1471 2000.
Section 2, Context viewpoint, presents the AAL domain and identifies stakeholders and typical usage
scenarios for AAL systems. Section 3, Requirements viewpoint, defines requirements. Section, Component
viewpoint, defines the information needed and manipulated by the system and identifies the main software
components of the platform and the relationships between them. Section 5, Distribution viewpoint, describes
the distribution aspect of the platform. Finally, section 6, Realisation viewpoint, specifies and justifies the
choice of baseline technologies for the realisation.

There are a few deviations from the Arcade guideline, primarily omission of some recommended sections,
because we felt that including them would only lead to repetition.

1 Project description can be found at:
http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&CAT=PROJ&RCN=93776

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

7 of 52

2 Context Viewpoint

2.1 AAL Domain
Although the project address the Internet of things and M2M and their integration into the future internet in
general, the AAL domain has been chosen as an example domain to drive the project. We believe that this
domain provides good examples of the kind of scenarios and requirements related to the integration of
sensors and embedded devices in general with services and applications hosted partly in the cloud and partly
on personal and/or mobile terminals.

The following definition of AAL is given by the ambient assisted living joint programme[ref http://www.aal-
europe.eu/about-us].

The concept of Ambient Assisted Living is understood as

• to extend the time people can live in their preferred environment by increasing their autonomy, self-
confidence and mobility,

• to support maintaining health and functional capability of the elderly individuals,
• to promote a better and healthier lifestyle for individuals at risk,
• to enhance the security, to prevent social isolation and to support maintaining the multifunctional

network around the individual,
• to support caregivers, families and care organizations,
• to increase the efficiency and productivity of used resources in the ageing societies.

2.2 Scenarios
To illustrate the intended use of the proposed architecture, we include some scenarios from the AAL domain,
exemplifying the kind of functionality typically provided by applications in this domain, the kind of devices
involved and their roles, and relevant adaptation and evolution behaviours.

The scenarios are about Mary, an elderly person living alone, and whose health condition worsens gradually.
She wants to continue living alone in her house, so her family together with health care personnel
incrementally build up a AAL system in the house to make that possible despite several severe health
problems. An overview of the system is shown in Figure 1. The system and its evolution and use is explained
in more detail below.

Mary suffers from Parkinson’s disease, and because of the shivering she has problems using ordinary keys to
lock and unlock the doors in her house. Therefore automatic door locks (L) are installed and Mary is
equipped with an arm wrist device (G) using NFC to communicate with the locks, so when she operates the
door lever, the lock opens automatically, and closes again when she close the door.

Mary also suffers from auricular fibrillation. At irregular intervals her heart will start beating very fast while
hardly pumping blood for a short period. In some cases this may cause her to faint and be in acute need of
medical treatment. To deal with this Mary is equipped with a heartbeat sensor (S) which reports abnormal
heartbeat to a nearby hospital via the arm wrist device and a WLAN installed in the house, so the hospital
can send a medic team to assist when an attack occurs.

To help filter out the harmless cases, input from the motion detectors (M) initially installed as part of the
burglary alarm system are used to detect if Mary is moving. The WLAN is extended with more base stations
so the arm-wrist device can locate her accurately. A PC in the house (C) collects this information and
triggers the alarm if Mary has an attack and is not moving. It also reports all irregular heart activity to a
logging service hosted in “the cloud”, where it can be inspected by authorised health personnel (K). When

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

8 of 52

Mary leaves the house, the role of the PC is taken over by her Smartphone (P), which reports to the Shepherd
server via GSM and uses its built-in GPS for localisation.

Figure 1 Example deployment scenario

The smartphone also serves as a backup for the PC and can also use the WLAN for more precise localisation
inside and around the house. Services in the cloud also monitors the PC and smartphone and alarms the
hospital or family about failures.

To make sure that Mary always brings her smartphone when she leaves the house, the arm wrist device and
the smartphone keeps track of the distance between them, and if Mary attempts to leave the house (detected
by the door lock application) without carrying the phone, the arm wrist device will remind her using her
hearing aid (H).

Finally Mary has started to develop dementia, meaning that she easily forgets appointments and she may get
lost in neighbourhoods where she normally knows her way. To cope with this problem Mary uses a calendar
to remind her about appointments and a navigation system installed on her smartphone, advising her in
situations when she gets lost using the hearing aid and the smartphone display. If this is not sufficient the
navigator will notify a family member or caring service about the situation so she can be picked up.

We assume that the arm wrist device serves as a gateway for a body area network integrating the hearing aid
and the heartbeat sensor (and possibly other biometrical sensors) into the system. The door locks, in addition
to communicating with the arm wrist unit via NFC, also communicate with the burglary alarm system via
WLAN. These devices do not run the FI-M2M runtime platform.

2.2.1 Adaptation
The first scenario is an example of how the system is used to tackle a common task, namely a visit to the
health centre where Mary have appointments with the doctor more or less regularly to follow up on her
health status. Additional actors in this scenario are:

• the Bus which Mary uses to get from her house to the health centre.

G

HBAN

S

wlanP

C

Inter/ net

L

Family

Health personnel

Services in
the cloud

NFC

wlan

wlan

M M

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

9 of 52

• the public transportation company operating the bus line.

Mary has difficulties remembering appointments and sometimes she does not recognise where she is, even in
well-known environments. To help her overcome these difficulties she makes use of the calendar on her
smartphone, which keep track of and alert about upcoming appointments and a travel assistant application to
plan an itinerary on public transport to go to appointments when necessary and guide her on her way.

The city where Mary lives has an electronic ticketing system for its public transportation system, and the
travel assistant application also takes care of buying and validating tickets.
The following flow of events could be imagined.

• At the end of the last visit to the health centre the secretary entered a new appointment in Mary’s
calendar.

• The TA notices the appointment, plans an itinerary and sets the advance notice time so that Mary has
ample time to get ready and walk to the bus stop. Several itinerary services are available, one with a
fee that guarantees that information about the itinerary is not spread to 3rd parties, and one that is free
to use, but without such a guarantee. In accordance with her profile, the TA prefers the service with a
fee that does not spread information about her movements.

• The TA alerts Mary that it is time to get ready for the appointment.
• Mary leaves the house and starts walking to the bus stop.
• The TA tracks the route so it can advice Mary if she takes the wrong way, which because of her

dementia symptoms she sometimes does.
• The TA buys the ticket on the way to the bus stop, using the ticket service of the bus line. The bus

line offers payment by credit card and Paypal. Mary has both a credit card and a Paypal account, so
the TA may use both. Mary normally prefers payment by credit card. However this day a security
issue has been detected with the credit card service, so Paypal is used instead.

• Mary needs to be reminded to leave the bus at her destination stop, otherwise she may easily forget.
Some bus companies offer a service that allows the TA to ask the driver to make sure that Mary gets
off the bus at her destination stop. Alternatively the TA may remind her itself through the hearing
aid. According to Mary’s profile, she prefers to be reminded by the driver, but only if privacy is
respected, i.e. trip data is deleted as soon as she leaves the bus. The local bus company where Mary
lives guarantees this, so the driver assistance is selected.

2.2.2 Another adaptation scenario:
Mary is visiting her daughter’s family in another city. The daughters house is not equipped in the same way
as Mary’s flat, so the applications on Marys arm wrist device and phone has to adapt to the new
environment:

• The house does not have motion detectors in the rooms. However, it is a big house and the in-house
WLAN has several base stations and therefore can be used for fairly accurate indoor positioning.
The heartbeat monitoring application adapts accordingly.

• The house does not have electronic door locks, so the heartbeat monitoring application on the arm
wrist device uses WLAN location instead to detect if Mary is about to leave the house without her
phone, and therefore must be reminded.

• The local bus company in the city where the daughter lives does provide the driver assistance
service, but does not provide the privacy guarantee. Therefore the TA will not use this service, but
rather do the reminding itself.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

10 of 52

Figure 2 Visiting Family scenario

2.2.3 Development
To enable the initial deployment, usage and evolution scenarios described above require the development of
a set of flexible/extendable software applications and services and publishing them in the app store hosted in
“the cloud”. Several independent development groups may contribute and the software may be developed,
released and published incrementally. These processes are supported by several of the use cases mentioned
later in this document, but will be further elaborated upon in step two of this project.

2.2.4 Evolution
This AAL system has been installed in steps following the development of Mary’s need for assistance. For
each step in the evolution of the AAL system, family members and/or health personnel use the smart
deployment and evolution assistant to find and select the required functionality, to select (and possibly
purchase) the necessary hardware, and to deploy the required software parts on the relevant devices.

• First Mary develops Parkinson’s disease, and electronic locks were installed and Mary got the arm
wrist device functioning as an electronic key. A key administration service is available in “the
cloud” and both Mary (using a client application on her home pc) and the home care centre may
hand out and destroy keys.

• After a while, when Mary develops auricular fibrillation and the system is extended with the
heartbeat sensor, the motion detection sensors already present in the house are integrated, and indoor
positioning is improved by installing more WLAN base stations. Furthermore, the door lock

30/05/2011

1

! plan &trip
! time&to&leave
! unlock /lock &door

! time&to&leave
! unlock /lock &door
! notif y &daughter
! guide&to&bus&stop

! bus&arrives
! notify &driver
! (enter&bus)
! (prevent&early &exit)
! alert&exit&(p&d)
! (exit&bus)

!guide&to&train
! position &on&
platform

! train &arrives
! notify &attendant
! (enter&train)
! (prevent&early &exit)
! alert&exit&(p&d)
! (exit&bus)

guide&service

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

11 of 52

application is extended to report when Mary enters or leaves the house to the heartbeat monitoring
application.

• Finally Mary also starts to develop dementia and the personal assistant application is installed on her
smart-phone.

2.3 Environment
As illustrated by the scenarios above, the environment where AAL systems will be deployed and used can be
characterised as follows:

• Many heterogeneous sensors and other small devices, ranging from tiny severely resource
constrained ones like the heartbeat sensor and the hearing aid, via more powerful but still battery
powered devices like the arm wrist unit and the motion sensors, to powerful handheld terminals like
the smartphone.

• Heterogeneous communications infrastructure (BAN, WLAN, GSM, …)
• Heterogeneous service publication and discovery technologies, including SENSEI - RD / SensiNode

NanoServices
• Professional Infrastructure providers, offering a managed “cloud” environment where common

shared services, applications and application specific services may be hosted, for example Telenor
Objects with their Shepherd platform.

2.4 Work processes
The following work processes should be supported by the proposed platform. The work processes are related
to the concerns documented through the scenarios above and the stakeholder analysis in section 2.5. In
addition to these the scenarios outlined in subsection 2.2 has some extended requirements related to the work
processes.

• Develop an application, component or service
• Extend an existing application with new functionality and/or context awareness and adaptation

capabilities (Requirement from scenario)
• Release an application to the SW repository. (Ability of easy interaction, Business concerns,

Compliance to standards)
• Release an application extension to the SW repository (Ability of easy interaction)
• Configure and install an initial system for a new user (Ability of easy interaction)
• Configure and install an extension for a new assistance function for an already installed system

2.5 Business to system Mapping

2.5.1 Stakeholders
This subsection contains a stakeholder analysis for the AAL domain. This work is done in the context of the
universAAL project, which has a wider scope than this project. Therefore the stakeholder analysis also
covers aspects, which in the context of this project belongs to step two.
Figure 3 shows a high-level view of a value network that has been used as a basis for creating the
UNIVERSAAL Reference Architecture (RA)2.

2 UniversAAL D1.3-PartIII: http://universaal.org/images/stories/deliverables/D1.3-B.pdf

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

12 of 52

Figure 3: The AAL value network supported by universAAL

We are concerned with platforms for AAL. AAL stakeholders are grouped into two groups:

• Platform stakeholders (rounded rectangles in Figure 3): These are stakeholders who provide and
operate platform components in an AAL environment. We envision a value network where these
platform stakeholders will provide services of value to each other and to client stakeholders.

o Runtime Support Provider – provides support for proper functioning of AAL runtime
environments. The AAL runtime environment is where users (the elderly, but also their
caregivers) live and interact with the AAL technologies. Typical examples are smart homes.

o Developer Support Provider – provides software engineering support for AAL solutions
developers. AAL services contain a large amount of software, and support for proper
development, testing and maintenance of this software is crucial.

o Community Support Provider – provides infrastructure for end users, service providers and
developers to build community. The community can be used to trade services, collect user
requirements, enable collaboration among service providers etc.

• Client stakeholders (ovals in): These are stakeholders who use the AAL platform functionality
provided by the above three groups of platform stakeholders. Client stakeholders considered so far in
our RA are:

o End users - non-technical end users such as assisted persons and their caregivers who
consume AAL services.

o Developers - developers of AAL solutions and technologies.

o AAL service providers - providers of AAL services to the end users

The above classification can be easily mapped onto the stakeholder classification provided by AALIANCE3:

3 G. Van Den Broek, F. Cavallo, and C. Wehrmann, eds. 2010. Ambient Assisted Living Roadmap. IOS Press.
http://www.aaliance.eu/public/documents/aaliance-roadmap/ambient-assisted-living-roadmap.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

13 of 52

• Primary stakeholders: These correspond to our end users.

• Secondary stakeholders: They correspond to the three platform stakeholders above (if we consider
platform in general as a service provided to platform users). Also AAL service providers are
secondary stakeholders.

• Tertiary stakeholders: This category can be mapped to our developer category.

Another class of stakeholders, i.e. authorities, is not yet addressed in the RA but is planned for the next
iteration. For now it suffices to say that requirements such as support for audits and privacy protection are
being considered in designing the RA.

The list of stakeholders above is highly generalized. In many specific cases involving specific solutions a
more specific list of stakeholders will be required. Deliverable UNIVERSAAL D1.1 has a more elaborate list
of stakeholders, with examples of specific types of each stakeholder group presented above. For the
discussions regarding the reference architecture, the list above suffices.

Figure 4: The two purposes of our Reference Architecture in form of the two dimensions of

traceability and specialization

After identifying the stakeholders of relevance to the RA, we would like to look into their major concerns,
i.e. overall expectations that each stakeholder has from the RA (see the traceability axis Figure 4).
Deliverables D1.1 and D1.2 in universAAL document a thorough concerns and requirements analysis. What
is important for us here is to point out the concerns that have been addressed in the current version of the
RA. The RA addresses a number of concerns as briefly described below based on each client stakeholder:

Concrete
Rererence

Traceability

AAL1
Stakeholders

AAL1
Concerns1

AAL1RUCs
AAL1

Reference1
ArchitectureAAL1

Requirements

Evaluation

Concrete1
Stakeholders

Concrete1
Concerns1

Concrete1
Use1Cases

Concrete1
ArchitectureConcrete1

Requirements

EvaluationEvaluationSpecialization

Problem Solution

have

addressed
by

im
plem

ented
by

Consolidation/1
instantiation1
processes

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

14 of 52

• End users: Elderly, their families and caregivers are mainly concerned with service quality, which is
related to how services are developed (supported by developer support provider, see), acquired
(supported by community support provider) and operated (supported by runtime support provider).
Good development environments will lead to better quality software to run the AAL service, and
will attract talented developers. Efficient communication with service providers and among service
providers will result in services that are better personalized for each end user. High quality runtime
support will guarantee e.g. fault-tolerance and timely response, and protect privacy. The RA tries to
address these concerns by supporting the platform stakeholders in the three central areas shown in .

• Developers: are mainly concerned with good development environments, a knowledgeable
community of developers (addressed by developer support providers, see), and access to a market
for their software (addressed by community support providers). Our RA supports developers as a
major stakeholder and allows developers to participate in a community together with service
providers and end users.

• AAL service providers: are concerned with efficient communication with their end users (supported
by community support provider), fluent interaction with the runtime environment for their services
(supported by runtime support provider), and access to talented developers for development and
personalization of their services (supported by community support provider and developer support
provider). The services provided by our RA allow service providers to deploy, monitor and
otherwise manage their services as provided to their end users.

For platform stakeholders in general, the RA addresses a major concern, which is to promote the
standardization of the platform ecosystem for AAL technologies.

It is these concerns (documented in more details in UNIVERSAAL D1.14) that have guided the development
of our RA. These concerns have resulted in a set of reference use cases (RUCs) that play a central role in
laying out the requirements for AAL platforms.

2.5.2 Reference use cases currently supported
In order to make stakeholder concerns more tangible and understandable to multiple parties, and make them
easily mapped onto a technical architecture, we have developed a set of Reference Use Cases (RUCs). RUCs
demonstrate, in an easy-to-understand way, what specific concern of a stakeholder means and how it can be
supported by AAL technologies. Current RUCs are documented in UNIVERSAAL D1.1, but we will here
discus shortly how the RA is addressing each RUC. Three categories of RUCs have been defined in
UNIVERSAAL D1.1:

o Category 1: A platform for creating innovative and commercial grade AAL services. These are use
cases that show how a platform can support higher QoS for AAL services at runtime.

o Category 2: A platform for creating a market place for AAL services. These are use cases that show
how a platform can promote an online community for AAL stakeholders, and remove barriers for
uptake of such services through promoting collaboration and business.

o Category 3: A platform for supporting developers and users in innovating the AAL market. These
are use cases that show how the platform can help building a knowledgeable and capable community
of developers who can produce high-quality AAL services in collaboration with users and service
providers.

4 http://universaal.org/images/stories/deliverables/D1.1-B.pdf

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

15 of 52

There is an obvious mapping of the three categories to the three platform stakeholders as we believe platform
stakeholders wish to specialize in their own area of expertise. However, the RA also considers
communication among the three platform stakeholders as we will see later. Table 1 below shows an
overview of which RUCs are supported in the current version of RA. The column called “How supported?”
denotes an RA Service (RAS) that is identified as part of the services provided by our RA. The RAS
definitions are provided later in Sections 3.2.2 through 3.2.5. For detailed description of each RUC please
consult UNIVERSAAL D1.1. The column marked “ACT” describes which if any of the FI-M2M project
activities are relevant for the RUC. Some RUCs will be marked “N/A” if they can’t be applied to our project
directly and some will be marked as not supported at all (“N/S”)

Table 1: List of Reference Use Cases and their support in the current Reference Architecture

Cat.‘ RUC name and description Currently
supported?

How supported? ACT

1 RUC#1: Supporting rich human computer
interaction

Yes RAS#1.7, 1.24 N/A

1 RUC#2: Supporting intelligent context
management and hardware abstraction

Yes RAS#1.28, 1

1 RUC#3: Enabling system driven interaction Yes RAS#2.17 1

1 RUC#4: Supporting continuity of care in different
AAL Spaces

Yes RAS#1.8 N/A

1 RUC#5: End user security and privacy
management.

Partially RAS#1.5, 1.8, 1.9,
1.38, 1.39, 1.47

N/S

1 RUC#6: Installation, configuration and
management of Platform components

Yes RAS#2.4,1.24,
1.21, 1.2, 1.20

2

1 RUC#7: Remote/local operation and provision of
AAL Services

Yes RAS, 1.20, 1.4, 1.2 1

1 RUC#8: Support for multi-user AAL Services in
one AAL Space

Yes RAS#1.4, 1.23, 1.8 N/A

1 RUC#9: Interfacing with existing information
systems

No 1

2 RUC#10: Services providers offering AAL
Services in uStore

Yes RAS#2.13,
RAS#2.18,
RAS#2.19

2

2 RUC#11: uStore allows users to easily find and
acquire AAL services

Yes RAS#2.4,
RAS#2.5,
RAS#2.7,
RAS#2.9,
RAS#2.11

2

2 RUC#12: uStore supports exploitation of different
business models

Partially RAS#2.9,
RAS#2.15,

2

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

16 of 52

Cat.‘ RUC name and description Currently
supported?

How supported? ACT

RAS#2.19,
RAS#2.23,
RAS#2.24

2 RUC#13: Capturing and utilizing user feedback
through the uStore

Yes RAS#2.8,
RAS#2.10,
RAS#2.12,
RAS#2.20,
RAS#2.22,
RAS#2.25,
RAS#2.26

2

3 RUC#14: IDE for rapid development of AAL
services, including templates, wizards, libraries
and process support tools

Yes RAS#3.1,
RAS#3.2

1

3 RUC#15: Model-based development of AAL
services through integrated model transformation
tools

Yes RAS#3.2 1

3 RUC#16: Support for online elicitation of
requirements and collection of runtime feedback
from users of AAL services

No 2

3 RUC#17: IDE support for advanced search, reuse
and sharing of service components and developer
resources through the Developer Depot

Partially RAS#3.1,
RAS#3.2,
RAS#3.4

2

3 RUC#18: Generic tool support for utilizing
personalization capabilities offered by
universAAL runtime environment

No 2

3 Requirements Viewpoint

3.1 High level requirements
Based on the understanding of the needs of the domain presented in chapter 2, we have derived the following
high-level requirements:

• Support the development of dynamically adaptive SoA style systems, i.e. systems consisting of many
parts collaborating by providing services to and using services from each other and where system
topology forms dynamically and adapts to changes in the environment:

o Nodes and services appearing and disappearing.
o Resources becoming exhausted (e.g. batteries running flat).
o Communication links appearing and disappearing and varying in capacity and other

characteristics.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

17 of 52

• Support temporarily disconnected “islands”, i.e. subsystems which continue to work despite being
disconnected from the “Internet”, possibly with reduced functionality.

• Enable extension of already deployed systems, both in terms of extended functionality and in terms

of extended context awareness and adaptation capabilities.

In addition the following requirements are imposed by the project owners:

• Base as far as possible on technologies available in Telenor and SINTEF.
• Comply as far as possible with emerging standards in the Internet of things domain.

3.2 Target System Mapping Model
We have so far seen who our major stakeholders are, what major concerns each of them have, and which of
these concerns are currently addressed in the RA. In this section we take the first step to bridge the so-far
business-related context to what will come in the following sections, i.e. the technical ICT architecture. We
will look at how each of the concerns is addressed in form of services exchanged among stakeholders.
A first step in this process is to map stakeholders to services they provide to each other. We have already
seen the interactions among the stakeholders in Figure 3. The lines among the stakeholders in Figure 3
denote services of value exchanged among the stakeholders. Our RA is concerned with these services and
how they can be implemented in a standardized way.
The value network illustrated in Figure 3 is mapped to a SOAML Services Architecture diagram in Figure 5
below. In this figure participants (rectangles) denote stakeholders and service contracts (ovals) denote
services that are exchanged among stakeholders. Client stakeholders are shown in orange (grey in B/W
print), and platform stakeholders are shown as rectangles with thick borders.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

18 of 52

Figure 5: Services Architecture for AAL main stakeholders and their services capabilities

According to SOAML services that are exchanged among stakeholders are modelled using a specific type of
collaboration called service contract. In the figure above each of the service contracts (ovals) is a placeholder
for all the services that are exchanged between the two parts of the service contract. E.g. the service contract
between Community Support Provider and Runtime Support Provider denotes all the services provided by
each of the two to the other. We will see the details of these services in Sections 3.2.3 through 3.2.5.

In this section we will present the different collaboration models in the stakeholder analysis (2.5.1 and 2.5.2)
and M2M platform (4.4.1). The models for the stakeholder analysis are included to give the reader a better
context to interpret the stakeholder analysis. The reader should note that the interfaces and collaboration
models does not directly represent the M2M platform, but rather a more exhaustive description of interfaces
and interactions that covers the requirements provided in earlier sections. As such the subsections 2.5.1 and
2.5.2 should be regarded as examples from the AAL domain that the stakeholder analysis is based on. Only
parts of these subsections will be generalised into the M2M architecture.

During the service analysis part of this section we have marked the relevant services mapped from the RUCs
we support.

3.2.1 System categories
In order to assign a high-level implementation (by a stakeholder) to the service capabilities, we map each of
the participants in Figure 5 onto a UML component as shown in Figure 6. In addition we have a component
called AAL service, which is the incarnation of the AAL service itself in the platform. The information
concepts in Figure 6 show how an AAL service is represented in the platform. Seen from our standpoint, an
AAL service is a third party component. Nevertheless it is a central component to relate to since a major part

 soaml Reference Architecture Serv ices Architecture

«servicesArchitecture»
Overall collaboration model

«participant»
Community support

provider

«participant»
Developer support

provider

«participant»
Runtime support

provider

«serviceContract»
Services

«serviceContract»
Services

«serviceContract»
Services

«participant»
End user

«serv iceContract»
Serv ices

«participant»
Developer

«participant»
AAL service provider

«serv iceContract»
Serv ices

«serv iceContract»
Serv ices

«serviceContract»
Services

«serviceContract»
Services

«serv iceContract»
Serv ices

«serviceContract»
Services

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

19 of 52

of the services provided by Runtime support for AAL spaces is provided to AAL services. In the RA, AAL
service will only consume services provided by Runtime support for AAL spaces.

Figure 6: Top level platform components for AAL platform reference architecture

In addition to these top-level platform components (which represent service provided and consumed by
platform stakeholders), we introduce three top-level tools components as shown in Figure 7. Each of these
tool components represents interactions with client stakeholders. Seen from another perspective, these tools
mainly represent the “presentation layer” in the architecture, while the platform components in Figure 6
represent the “business logic”.

Figure 7: Each client stakeholder is presented a tool component for emphasizing user friendly

interaction

3.2.2 The behavioural aspects (service collaboration patterns)
In the following sections we will look into the details of each of the three platform components and
associated tool component. The goal is to identify the high-level services that are provided at four different
directions as shown in Table 2. Each type of service will be described in its own section using a table and a
diagram. Each service is labeled with an ID RAS#A.B where RAS means Reference Architecture Service,
and A and B are numbers. These IDs are used as short-cut reference to the services.

 soaml Top lev el components

«participant»
Community support prov ider

«participant»
Dev eloper support prov ider

«participant»
Runtime support prov ider

Runtime Support for AAL
Spaces

AAL Serv ice

«participant»
AAL serv ice prov ider

Community Support Dev eloper Support

provided by provided byprovided by provided by

 cmp Tools

Serv ice prov ider
tools

Dev eloper toolsEnd user tools

«participant»
Dev eloper

«participant»
End user

«participant»
AAL serv ice prov ider

interact interactinteract

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

20 of 52

Table 2: Types of services exchanged in the Reference Architecture.

Type of service Meaning

Platform-to-
Platform

Services that are provided by one platform stakeholder to other platform stakeholders of
a different type.

Platform-to-
Client

Services that are provided by a platform stakeholder to client stakeholders.

Peer Services that are provided by one type of platform stakeholder to other platform
stakeholders of the same type (e.g. services exchange among runtime support providers).

Platform-to-
AAL Service

Services provided at runtime to operational AAL Services. This category of services is
only relevant for AAL Runtime Support Providers.

The following three sub-sections describe the above types of services for each of the three platform
stakeholders.

3.2.3 Runtime support provider

3.2.3.1 Platform-to-Platform services
In the following sections (4.2.3 to and including 4.2.5) the column marked “ACT” describes which if any of
the FI-M2M project activities are relevant for the RUC. Rows without any value in this column is not
applicable to our project. Thus some tables will not have this column, as none of the RASes listed is
applicable, these tables are included for completeness.
Table 3: Platform-to-platform services provided by Runtime support providers

id Service Provided to Description ACT

RAS#1.1 Provide access Community support
provider

Provide usage data
and profile
information

RAS#1.2 Remote maintenance Community
support provider

Remote
Configuration,
management and
maintenance of
software’s

1,2

RAS#1.3 Get audit logs Community support
provider

Getting usage data
and profile
information

RAS#1.4 Remote personalization Community
support provider

No description 1

RAS#1.5 Security Keys management Community support
provider

Manage security
certificates e.g. after
expiry or issue a
new certificate or a
revoke an already
issued certificate

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

21 of 52

id Service Provided to Description ACT

RAS#1.6 Testing applications Developer support
provider

Support for sandbox
testing of
applications? E.g.
deploying
applications in a test
runtime?

Figure 8: Platform-to-platform services provided by Runtime support providers

3.2.3.2 Platform-to-Client services

Table 4: Platform-to-client services provided by Runtime support provider

Id Service Provided to Description ACT

RAS#1.7 Manage user interaction End User Facilitates interaction of the End user
with the system such as by providing
consisting look and feel and
adaptability etc.

RAS#1.8 Encryption, signing,
authentication etc.

End User End user can use encrypt and sign
their data. They can also authenticate
with the remote service.

RAS#1.9 Consent policy
specification

End User End user can specify his/her consent
preferences which denotes who can
access his /her data

RAS#1.20 Remote configuration AAL service AAL service provider can remotely 1,2

 cmp Runtime Support for AAL Spaces (platform)

Runtime
SupportCommunity

Support

Developer
SupportProvide access

Remote maintenance

Testing application

Get audit logs

Remote personaliztion

Security keys management

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

22 of 52

Id Service Provided to Description ACT
provider configure the service

RAS#1.21 Remote maintenance AAL service
provider

AAL service provider can do the
maintenance remotely.

2

RAS#1.22 Communicate Audit
trail

AAL service
provider

Audit trail is communicated to the
AAL service provider which may
contain information such as usage
etc.

RAS#1.23 Runtime Orchestration
of services

AAL service
provider

Service orchestrator is needed for
runtime orchestration of services
which decides which sub-services
can be offered from a set of services.

RAS#1.24 Pluggable user
interfaces

AAL service
provider

Support the inclusion of new
components/interfaces at any time
without the need to restart the
system.

2

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

23 of 52

Figure 9: Platform-to-client services provided by Runtime support provider

3.2.3.3 Peer services

Table 5: Peer services provided by Runtime support provider

Id Service Provided to Description ACT

RAS#1.25 Communication Other runtime support
provider

An AAL aware
node has the
capability to
communicate
with another
AAL aware node

RAS#1.26 Discovery Other runtime support
provider

An AAL aware
node has the
capability to

 cmp Runtime Support for AAL Spaces (clients)

Developer
tools

End user
tools

Service
provider tools

Runtime
Supportmanage user interaction

encryption, singning, authentication

consent policy specification

Remote Configuration

Remote maintenance

Communicate audit trail

Runtime orchestration of services

Pluggable user interfaces

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

24 of 52

Id Service Provided to Description ACT
discover another
AAL aware
node.

RAS#1.27 Peering Other runtime support
provider

An AAL aware
node has the
capability to peer
with another
AAL aware node

RAS#1.28 Share context information and
history

Other runtime
support provider

An AAL aware
node has the
capability to
share context
history with
another AAL
aware node

1

RAS#1.29 Share platform information Other runtime support
provider

An AAL aware
node has the
capability to
share platform
specific
information with
another AAL
aware node

RAS#1.30 Share profiling information Other runtime support
provider

An AAL aware
node has the
capability to
share profile
information of
an end user with
another AAL
aware node.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

25 of 52

Figure 10: Peer services provided by Runtime support provider

3.2.3.4 Platform-to AAL service
Services provided to AAL service at runtime are a special case for the runtime support part of our platform.
These services are described here.

Table 6: Services provided to AAL service at runtime

Id Service Provided to Description

RAS#1.31 Manage multicast
communication

AAL service An AAL service has the capability to
manage multicast communication through
runtime support provider.

RAS#1.32 Manage stream
communication

AAL service An AAL service has the capability to to do
stream communication with the runtime
support (or AAL aware node).

RAS#1.33 Manage peer
communication

AAL service

RAS#1.34 Join AAL Space AAL service AAL service has the capability to join an
AAL space.

RAS#1.35 Get information about
AAL Space

AAL service An AAL service has the capability to get
the information about an AAL space

RAS#1.36 Discover peers AAL service

RAS#1.37 Manage applications AAL service An AAL service has the capability to

 cmp Runtime Support for AAL Spaces (peers)

Runtime Support Another Runtime
Support

communication

peering

discovery

share context information and history

share profil ing information

share platform information

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

26 of 52

Id Service Provided to Description
perform functions related lifecycle
management of an application.

RAS#1.38 Manage security keys AAL service An AAL service has the capability to
manager certificates on an AAL aware
node.

RAS#1.39 Encryption, signing
and authentication

AAL service An AAL service has the capability to
receive encrypted and signed information.
It can also authenticate the user.

RAS#1.40 Run a test AAL service An AAL service can run a test.

RAS#1.41 Activate monitoring AAL service An AAL service has the capability to
remotely activate monitoring

RAS#1.42 Manage service
workflows

AAL service

RAS#1.43 Get context history AAL service An AAL service has the capability to
obtain context history from an AAL aware
node

RAS#1.44 Register reasoning
rules

AAL service

RAS#1.45 Obtain platform
information

AAL service An AAL service has the capability to
obtain the platform specific information
from AAL aware node.

RAS#1.46 Obtain profiling
information

AAL service An AAL service has the capability to
obtain the user profile information from
the AAL aware node.

RAS#1.47 Obtain End user
consent

AAL service An AAL service can get the user consent
through AAL aware node.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

27 of 52

Figure 11: Services provided to AAL service at runtime

3.2.4 Community support provider

3.2.4.1 Platform-to-Platform services

Table 7: Platform-to-Platform services provided by Community support provider

Id Service Provided to Description ACT

RAS#2.1 Publish
development tools

Developer support
provider

Upload, publish and advertise development
tools, training courses, related
documentation, etc.

 cmp Runtime Support for AAL Spaces (AAL serv ice)

Runtime
Support

AAL Service

Register reasoning rules

Manage stream communication

Manager peer communication

Manage certificates

Obtain profile information

Discover peers

Manage application

Manage keys

Manage multicast communication

Obtain platform information

Access context history

Activate monitoring

Run a test

Join AAL Space

Context awareness

Manage service workflows

Get info about AAL space

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

28 of 52

Id Service Provided to Description ACT

RAS#2.2 Get feedback Developer support
provider

Get feedback on published tools

RAS#2.3 Get ideas Developer support
provider

Get feedback about market needs

RAS#2.4 Manage profiles Runtime support
provider

Storing and accessing/synchronizing user
and AAL space profiles

2

RAS#2.5 Download
software

Runtime support
provider

Download software to runtime platform 2

RAS#2.6 Get feedback Runtime support
provider

Get feedback about runtime support provider

Figure 12: Platform-to-Platform services provided by Community support provider

3.2.4.2 Platform-to-Client services

Table 8: Platform-to-Client services provided by Community support provider

Id Service Provided
to

Description ACT

RAS#2.7 Look for
AAL Services

End user Look for AAL Services based on user needs,
preferences and existing environment

2

RAS#2.8 Create a
request

End user Create a request describing new AAL Service or
new functionality needed

2

RAS#2.9 Acquire AAL
Service

End user Purchase or freely acquire AAL Service according
to their status using legal framework (SLA, licences

2

 cmp Community Support (platform)

Publish development
tools

Manage
profiles

Get
feedback

Get
ideas

Download
software

Get
feedback

Community Support

Publish development
tools

Manage
profiles

Get
feedback

Get
ideas

Download
software

Get
feedback

Dev eloper Support Runtime Support

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

29 of 52

Id Service Provided
to

Description ACT

etc.)

RAS#2.10 Provide
feedback

End user Provide feedback (comments, ratings etc.) on
existing AAL Service or service provider/developer

2

RAS#2.11 Request
assistance

End user Request assistance from AAL Service Providers to
install software etc.

2

RAS#2.12 Communicate End user Communicate with other users inside AAL User
community (exchange experience etc.)

RAS#2.13 Publish AAL
Services

AAL
service
provider

Publish AAL services using legal & business
framework

2

RAS#2.14 Explore the
market

AAL
service
provider

Explore existing AAL Services & AAL Applications

RAS#2.15 Communicate
with
developers

AAL
service
provider

Find and manage business connections with
developers from AAL Developer Community

2

RAS#2.16 Communicate AAL
service
provider

Communicate inside AAL Service Provider
community

RAS#2.17 Service
bundling

AAL
service
provider

Join services of different service providers in
packages

1

RAS#2.18 Run
conformance
tests

AAL
service
provider

Run conformance testing on software part of AAL
Services

2

RAS#2.19 Require
certificate

AAL
service
provider

Require certificate for AAL Service 2

RAS#2.20 Receive
feedback

AAL
service
provider

Receive feedback from AAL User Community 2

RAS#2.21 Create a
request

AAL
service
provider

Create a request for new AAL Application from
AAL Developer Community

2

RAS#2.22 Receive
requests

AAL
service
provider

Receive requests for new services or updates of
existing one from AAL User Community

2

RAS#2.23 Upload AAL Developer Upload software and software updates as AAL 2

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

30 of 52

Id Service Provided
to

Description ACT

Applications applications for free or fee usage

RAS#2.24 Make
business
agreements
with service
providers

Developer Make business agreements with service providers
to provide uploaded AAL applications as part of
AAL services

2

RAS#2.25 Receive
feedback

Developer Receive feedback from AAL User Community 2

RAS#2.26 Receive
requests

Developer Receive requests for new applications or updates of
existing ones from AAL User Community and AAL
Service Provider Community

2

RAS#2.27 Communicate
inside AAL
Developer
Community

Developer Communicate between developers in AAL Developer
Community

RAS#2.28 Run
conformance
tests

Developer Run conformance testing on uploaded software

RAS#2.29 Require
certificate for
AAL
Application

Developer Require certificate for AAL Application (based on
conformance test results)

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

31 of 52

Figure 13: Platform-to-Client services provided by Community support provider

3.2.4.3 Peer services

Table 9: Peer services provided by Community support provider

Id Service Provided to Description

RAS#2.30 Explore market Community Support
Provider

Explore proposed AAL Services
and interchange information with
users from different communities

RAS#2.31 Link to AAL
Services

Community Support
Provider

Allow purchasing or acquiring of
AAL services from another
community support tool

 cmp Community Support (clients)

Look for AAL
Services

Create a
request

Publish AAL
Service

Explore the
market

Acquire AAL
Service

Provide
feedback

Request
assistance

Communicate
inside
community

Communicate
with developers

Service
bundling
Communicate
inside community

Run conformance
tests
Require
certificate

Receive
feedback

Create a
request

Receive requests

Upload AAL
Applications

Make business
agreements

Run
conformance
tests

Receive
feedback

Receive
requests

Communicate
inside community

Require
certificate

Community Support

Look for AAL
Services

Create a
request

Publish AAL
Service

Explore the
market

Acquire AAL
Service

Provide
feedback

Request
assistance

Communicate
inside
community

Communicate
with developers

Service
bundling
Communicate
inside community

Run conformance
tests
Require
certificate

Receive
feedback

Create a
request

Receive requests

Upload AAL
Applications

Make business
agreements

Run
conformance
tests

Receive
feedback

Receive
requests

Communicate
inside community

Require
certificate

End user tools Serv ice prov ider
tools

Dev eloper tools

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

32 of 52

Figure 14: Peer services provided by Community support provider

3.2.5 Developer support provider

3.2.5.1 Platform-to-Platform services
N/A.

3.2.5.2 Platform-to-Client services

Table 10: Platform-to-Client services provider by Developer support provider

Id Service Provided
to

Description ACT

RAS#3.1 Use IDE Developer Provide IDE with plug-ins etc. 1

RAS#3.2 Use development tools Developer Allow using wizards, modelling
tools, conformance tools, build
tools etc during development
process

1

RAS#3.3 Develop in community Developer Develop inside AAL Developer
community (Exchange ideas,
discuss technical issues etc)

RAS#3.4 Contribute code Developer Contribute code to platform 1

RAS#3.5 Read and provide
documentation

Developer Read and provide documentation,
guides, tutorials etc

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

33 of 52

Figure 15: Platform-to-Client services provider by Developer support provider

3.2.5.3 Peer services

Table 11: Peer services provided by Developer support provider

 Service Provided to Description

RAS#3.6 Link artefacts Developer Support Provider Allow linking of artefacts between
developer support tools

RAS#3.7 Exchange Developer Support Provider Exchange code, documentation
(about concrete architecture etc.)

RAS#3.8 Provide external
interoperability

Developer Support Provider Provide any needed information,
documentation and tools that
developers would need in order to
interact with another platform

 cmp Dev eloper Support (clients)

Use IDE

Use development tools

Develop in community

Contribute code

Read and provide
documentation

Dev eloper Support Use IDE

Use development tools

Develop in community

Contribute code

Read and provide
documentation

Dev eloper tools

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

34 of 52

Figure 16: Peer services provided by Developer support provider

4 Component viewpoint
In this section we identify the main components of the platform, their responsibilities and the collaboration
between them, and we outline some of the major information concepts that are used and manipulated by the
platform.

4.1 System information model
As part of specifying any information system one needs to be specific about the information that will be
processed by that system. This is the purpose of the System information model. An overview of the
Information Model is depicted in the diagram in Figure 17.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

35 of 52

Figure 17: Major platform information concepts related to AAL service management

In addition to the information objects themselves we also icluded some real world object, which typically
creates, uses or manipulates the information, in order to ease the understanding of the model. In the
following we briefly explain the main concepts of the model.

A type specifies a piece of software in terms of its interfaces to its surroundings, i.e users and/or other pieces
of software. A type may be defined as an aggregation of simpler types. An implementation plan describe the
implementation of a piece of software, either in terms of program code (atomic component plan) or in terms
of an abstract composition of types of smaller pieces (composition plan). Types and plans are stored in the
Software repository.

An application instance is the instantiations of an implementation plan on a node (computer). Application
instances are created by end users or service providers by launching a type. The platform then finds a
suitable implementation plan matching the type installed on the node, and configures and instantiates an
application instance fitting as far as possible the current context of user needs and preferences, the resources
of the node on which it is executing, and services offered by other running application instances, either on
the same node or on other nodes connected to the current node through a communication network it supports.

Application
instance

Varying
property

specification

Implementation
plan

Type

Property
dimension-v alue

pair

Node

Communication
link

Communication
network

Atomic
component

plan

Composition
plan

End user or
Serv ice
prov ider

End user
serv ice

spec

Software
repository

Serv ice
offer

Serv ice
request

Serv ice
contract

Collaboration
specification

Serv ice and
resource
directory

Node
description

Serv ice
prov ider

has

launches and uses

launches

instanciates

*

executes

*
*

is installed on

*

2

connects
1realises

*supports

*

stores

*

has

stores

Specifies
abstract
composition
of

implements

stores

stores

has

*

has

needs and
preferences
and other
relevant
context

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

36 of 52

The collaboration specifications associated with an application instance describes its current and potential
collaborations with the surroundings, in the form of either i) a user interface allowing a dialogue with an end
user, or a service contract representing an ongoing collaboration with another application instance, or a
service offer representing the capability and willingness to provide a service to another instance.

Varying property specifications specify properties of objects which vary between different instances of a
type and which may vary over time for a given instance. They are used for several purposes: They describe
QoS properties of offered services, or capabilities and capacities of nodes and links (node descriptions), or
end user needs and preferences, or other relevant context information. They have the form of a set of
property dimension – value pairs.

The capabilities and capacities of nodes and link, and service offers are stored in and retrieved from the
Service and resource directory
The platform will monitor varying properties and adapt the running application instances to ensure best
possible compliance with policies embedded in the implementation plans.

4.2 System Decomposition Model
Figure 18 shows an architectural sketch of the FI-M2M platform. The architecture is represented as a matrix,
where the columns represent different dimensions of support provided by the platform, and the rows
represent architectural layers.

There are 3 columns representing dimensions of support reflecting the stakeholder model in section 2.5.1. To
the right there is Runtime Support in the form of middleware. To the left we have Development support in
the form of modelling languages and tools supporting the development of context aware and adaptive
applications and services. In the middle we have Community support which serves as a bridge between
developers, supporting cooperative development between independent developer teams, and between
developers and users, supporting the need.

There are 4 architectural layers. At the bottom there is the Device Discovery and Communications layer
responsible for enabling devices to discover each other and establish communication links between them.
Next there is the Services and Resources layer responsible for publishing services provided by a node and
discovering services published by other nodes. Then we have the Context Awareness and Adaptation layer
responsible for supporting context sensing and adaptation to context changes. At the top there is the
Functionality layer responsible for implementing the functional behaviour of applications and services.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

37 of 52

Figure 18 Architectural sketch of the FI-M2M tools and middleware platform

Note that this architecture is an initial sketch and may be subject to changes in the future as we progress
further into the investigation of the demands on the technologies when they are integrated.

4.3 Component and Interface Specification Model
This section specifies the functionality and interfaces for the components identified in Figure 18.

The Context & Adaption mw component (Figure 19) is responsible for context monitoring and reasoning,
adaptation reasoning and reconfiguration. It provides an interface IConfigurable that every reconfigrable
component needs to implement. The IConfigurable interface provides methods to get and change the
component state.

Once the application has been compiled and deployed into the middleware (mw) platform, the runtime
support environment builds a runtime model of the application, by instantiating all the components needed
for the execution and compose them according to the context and application models defined at design time.
The Context & Adaptation mw takes care of monitoring the context-related data required or provided by the
application. Upon the detection of context changes the Context & Adaptation mw, based on specific utility
functions provided by the developer at modelling time, evaluates all the possible configurations and
combinations for the application components and selects the composition providing the best utility (cf.
Figure 27).

Network(
simulator

Instanciated apps(and(
services

Context(&(
Adaptation(

mw

Java(
code Model

Deployment(
&(Evolution

Development
support

Community
support

Runtime
support

Context
Awareness and

Adaptation

Device
Discovery and

Communication

Service(
discovery

Communication(network

Service(&
Resource((
Directory

Services and
Resources

Application(
modelling

Context((&(
variability(
modelling

Service(
types&class.

Resource(
needs

Functionality

Service(
binding

Apps(&(
shared(
services(

device(
monit
oring

Common(ontology

SW(
reposit
ory

Pr
og

ra
m
m
in
g

SW
(d
ev
el
op

m
en

t(r
ep

os
ito

ry

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

38 of 52

Figure 19 Interfaces for Conext & Adaptation mw component

The Service discovery component (Figure 20) is responsible for service publication and discovery. It can
discover services via the IDirectory interface from the Service & Resource Directory component. It can
discover services based on events from the Communication network (cf. Figure 26). This component
provides the IDiscovery interface.

Figure 20 Interfaces for Service discovery component

The Service binding component (Figure 21) is responsible for communication with the remote service
providers or consumers located in other nodes. It has two main functions: 1) It creates proxies (stubs and
skeletons) for remote communication. When a service is discovered and imported, it generates a stub for
invoking the remote service. When a service is published and exported, it generates a skeleton to accept
method calls from remote clients. 2) The Service binding component generates service plan variants for
discovered services. Such service plan variant contains information about service properties obtained from
the service description as well as information about the link properties obtained via the ICommunication
interface. Such information is used by the Context & Adaptation mw for adaptation planning to select
remote services. In addition, the proxies are also associated with link properties, so that the adaptation mw
can choose which link to use for the remote communication via proxies. The component provides IBinding
interface for remote communication, and uses ICommunication interface to get link properties from the
communication layer.

cmp Context & Adaptation mw

IDiscovery IBinding

Context &
Adaptation mw IConfigurable

IDiscovery IBinding

«interface»
IConfigurable

+ finit() : void
+ getComponentState() : Object
+ getConfigState() : int
+ init() : void
+ setComponentState(Object) : void
+ startActivity() : void
+ suspend() : void

cmp Serv ice discovery

ICommunication

IDirectoryIBinding

Serv ice discoveryIDiscovery ICommunication

IDirectoryIBinding

«interface»
IDiscovery

+ discover() : ServiceDescription[]
+ newEvent(Event) : void
+ publish(ServiceDescription) : boolean
+ unpublish(ServiceDescription) : boolean

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

39 of 52

Figure 21 Interfaces for Service binding component

The Communication network module (Figure 22) provides information about the communication links and
sends messages between nodes. It provides the ICommunication interface. Events about the Communication
network are sent to the Service discovery component for proper handling. e.g., New Link event may trigger
service discovery via the link if no links exist before with the remote node (cf. Figure 26). To realize cross-
layer adaptation, the Communication network provides link properties to the application layer so that the
link properties are incorporated in adaptation planning. Examples of link properties are delay, bitrates,
transmission power, energy consumption and forwarding cost. The forwarding cost of a link is based on its
resource usage (such as CPU, memory and battery level). For example, in an application, we may simply
represent the forwarding cost of a multi-hop link as the average value of the battery levels for all the relay
nodes.

Figure 22 Interfaces for Communication network component

The Service & Resource Directory component (Figure 23) is responsible for resource and service
registration and lookup. It provides IDirectory interface. This component and interface should be compatible
with the IETF emerging standards, e.g., use CoRE for resource description, use publish/subscribe mechanism
to disseminate events, access via HTTP REST and GUI interfaces.

cmp Serv ice binding

ICommunication

IDiscoveryServ ice binding
IBinding

ICommunication

IDiscovery

«interface»
IBinding

+ createServicePlanVariantForLink(LinkProperties) : void
+ exportService(ServiceInstance) : ServiceDescription
+ getServicePlanVariant(String) : ServicePlanVariant
+ importService(ServiceDescription) : void
+ removeServicePlanVariantForLink(Link) : void
+ unexportService(ServiceDescription) : void
+ unimportService(String) : void

cmp Communication network

IDiscovery

Communication
network

ICommunication

IDiscovery

«interface»
ICommunication

+ getLinkProperties(Link) : LinkProperties
+ getLinks() : Link[]
+ sendMessage(Message) : Reply

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

40 of 52

Figure 23 Interface for Service & Resource Directory component

The Device monitoring component (Figure 24) is responsible for monitoring of devices. It provides IDevice
interface.

Figure 24 Interface for Device monitoring component

4.4 System Collaboration Model

4.4.1 M2M platform collaboration model
This section provides a high level view of interactions between different components.

Figure 25 represents the exportation and publication of a local service. The exportation and publication of a
local service makes this service available in the network and other nodes might import it. The
ServiceInstance reference includes some meta-information about the service to be exported as well as a
reference to the service instance. The Service binding component uses this meta-information to create the
skeleton (server-side service proxy). By default, an exported service is also published so that it is possible to
discover this service from other nodes. The Service discovery component then sends the service description
to all available nodes via the Communication network.

cmp Serv ice & Resource Directory

Serv ice & Resource
Directory IDirectory

«interface»
IDirectory

+ deregister(Deregistration) : int
+ lookup(LookupRequest) : LookupResponse
+ notify(Event) : void
+ register(Registration) : int
+ update(Registration) : void

cmp Dev ice monitoring

Dev ice monitoring
IDevice

«interface»
IDev ice

+ deregister(Device) : int
+ getStatus(Device) : Status
+ register(Registration) : int
+ updateStatus(Device, Status) : int

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

41 of 52

Figure 25 Sequence diagram for exporting and publishing a local service

Service discovery can be implemented by different approaches. Figure 26 shows the sequence diagram for an
event driven service discovery. This discovery protocol takes account for the network topology changes
based on the events from the Communication network. When a new link appears, middleware asks for the
available services through this new link. If this is the first link between two nodes, a new service discovery
request is sent. The discovered services are then imported, i.e., stubs (proxy at the client side) and service
plan variants with the link properties are created. Otherwise, the middleware just creates a new service plan
variant with link properties for each of the discovered services provided by the provider node. When a link
disappears, all the service plan variants associated with this link will be deleted (i.e., unavailable from the
link, not shown in the figure). In addition, when a provider updates service properties of a published service
or retires a published service, it re-publishes or un-publishes the service (cf. Figure 25).

sd Exporting and publishing a local serv ice

Context &
Adaptation mw

Service binding Service discovery Communication
network

exportService(ServiceInstance) :
ServiceDescription

createSkeleton(ServiceInstance) :
ServiceDescription

publish(ServiceDescription) :boolean

getLinks() :Link[]

sendMessage(PublishMessage) :int

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

42 of 52

Figure 26 Sequence diagram for event driven service discovery

Figure 27 shows the adaptation process. The adaptation is triggered by context change events like new
services or service disappearing. The Context & Adaption mw calculates the utility of a composition based
on the service properties and link properties contained in the service plan variants, and selects the
configuration that can optimize the utility.

Figure 27 Sequence diagram for adaptation process

sd Ev ent driv en serv ice discov ery

Communication
network

Service discovery
(Node1)

Service binding
(Node1)

Service discovery
(node2)

alt

[Not first l ink]

[Is first l ink]

newEvent(NewLink)

sendMessage(DiscoveryRequest)

sendMessage(DiscoveryRequest)

discover() :ServiceDescription[]

sendMessage(DiscoveryReply)

sendMessage(DiscoveryReply)

[For all discovered services]:importService(ServiceDescription)

getLinkProperties(Link) :LinkProperties

[For each discovered services of node2]:createServicePlanVariantForLink(LinkProperties)

sd Adaptation process

Context &
Adaptation mw

Service binding

triggered by context
change events like new
services and service
disappearing

Service properties and
link properties are
considered in the util ity
computation

adapt()

computeUtil ity()

getServicePlanVariant(String) :ServicePlanVariant

reconfigure()

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

43 of 52

5 Realisation viewpoint
In this section we outline how the target platform can be realised by integrating and extending existing
technologies, the kind of computers typically involved and how the main component will be deployed..

5.1 System Deployment Model
An overview of the kind of computers on which the platform and the systems running on it will typically be
deployed, and where the different parts will typically be deployed is depicted in Figure 28.
.

Figure 28 Deployment of the platform

Not all the runtime support components need to be present on all nodes. Some nodes may be to small for the
full adaptation mw. An overview of the possible deployments is given in Table 12.

Table 12 Alternative deployments of the runtime support on different kinds of devices

PCs,%Smartpones,%tiny%
computers,%sensors

Community%servers
(“the%cloud”)

Developer%workstations

Instanciated apps%and%
services

Context&Adaptation mwDeployment%
&%Evolution%

tools

Development
support

Community
support

Runtime
support

Context
Awareness and

Adaptation

Device
Discovery and

Communication

Service%
discovery

Communication%network

Service%&
Resource%%
Directory

Services and
Resources

Application%
modelling

Context%%&%
variability%
modelling

Service%
types&class.

Resource%
needs

Functionality

Service%
binding

App%&%
shared%
services%

device%
monit
oring

Common%ontology

SW%
reposit
ory

Pr
og

ra
m
m
in
g

Adapt.
planning Reconfig

Registry
and,
provision,
of,services

Discovery,
and,use of,
services

Re4
configurati
on

Context
moni4
toring

Adapt4
ation
planning

Master x x x x x

Slave x x x (x)

Static/slave x x

Tiny/slave x

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

44 of 52

Figure 29 Example deployment of the AAL system described in the scenarios

To illustrate the deployment model we include an example deployment of a system built on the platform.
The example is the AAL system described in the scenario section (section 2.2).

The arm wrist device has the full configuration of the runtime support and acts as a gateway and master node
for the hearing aid and the heart sensor. It communicates with them through a Body Area Network, and with
the outside world through WLAN.

The heartbeat sensor (labelled S in Figure 30) is implanted in Mary’s body and is a very resource poor device
where battery lifetime is a major concern, since when the battery is depleted, surgery is required to replace it.
Therefore it uses a special protocol and is integrated through an edge component. The edge component will
register it in the resource directory and bind it to the heartbeat monitoring service offered by heartbeat
application in the arm wrist device.

The hearing aid is also a resource poor device, but it has the service discovery and binding components
installed so when it is switched on, it will discover the resource directory and register itself and the services
it offers. It also has the reconfiguration mw installed so its functionality can be dynamically extended to
support the transmission of audio messages.

The door lock uses the BAN to detect if a valid key is close enough. This means about 1 meter.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

45 of 52

Figure 30 Example deployment

WiFi

Armwrist GW

S

E

WiFi

REST

Doorlock

REST

Hearing aid

REST

C

In
te
rn
et

BAN

Smartphone

REST

Home PC

REST

R1mw

Srv D&B

Motion Sr

REST

C&A&R1mw

Srv D&B

Health Care PC/SM

REST

Hospital ”cloud”

REST

TO server
/ Shepherd

REST

C&A&R1mw

Srv D&B

Family PC/SM

REST

GSM

R1mw

Srv D&B

C&A&R1mw

Srv D&B

C&A&R1mw

Srv D&B

C&A&R1mw

Srv D&B

EPR

R1mw

Srv D&B

DMDS

C&A&R1mw

Srv D&B

C&A&R1mw

Srv D&B

REST

Community ”cloud”

RD

M

Heart monitoring and alarm system element

Dementia compensation system element

Electronic doorlock system element

DM

DS Sensor data storage

Device monitoring & management

Link using COAP

Link using Http

Link using native protocol

Legend:

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

46 of 52

5.2 Technology Mapping Model
In this section we describe how we intend to realise the platform reusing and/or adapting available
technologies. An overview of the technology mapping is presented in Figure 31. Explanation and
justification is presented in the following subsection.

Figure 31 Technology mapping

5.2.1 Community support

5.2.1.1 Shepherd
Shepherd is a platform for hosting and provisioning managed services for M2M systems operated by Telenor
Objects. This fits nicely in our architecture as a host for community services. The services provided by the
Shepherd platform include sensor data storage and access, and device registration and management.
Shepherd services are accessible through REST interfaces. Alternatively, both community services and
application specific services may be hosted in "the cloud".

5.2.2 Development support

5.2.2.1 MUSIC modelling notation and tools
MUSIC was an IP project funded by the EU 7th framework programme. MUSIC has developed a
comprehensive software development framework, which includes models, methods and tools that allow
automation of the adaptation of the software to the varying user needs and operating conditions at runtime.
An overview of the MUSIC framework is given in Figure 32. The development is alleviated by extensive
support from the framework, including

Shepherd

app(
store(

Deployment(
&(Evolution(
assistant

Community
support

SensiNode
Resource((
Directory

Application(
services(

Shepherd(
services

Eclipse

MUSIC(tools

Development
support

Device
Discovery and

Communication

Appl.((arch.(
modelling

Context((&(
variability(
modelling

Service(
types&class.

Resource(
needs

Runtime
support

OSGi/JVM

MUSIC(Applications

MUSIC(
Adaptation(

mw

MUSIC(
Context(
mw

Java(
code

MUSIC(
model

Service(
discovery((
plugin

Service(
binding(
plugin

Prosus
network(
simulator

COOS/REST

REST

Diverse(device(&(comm.(technologies

Co
de

(g
en

Ja
va
(to

ol
s

Common(ontology

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

47 of 52

• a modelling language which supports separation of concerns; and where self-adaptation and business
logic are addressed separately to avoid the explosion in complexity;

• generic, reusable middleware components which automate context monitoring and management, and
adaptation;

• tools which support the development of design models annotated with context and adaptation
concerns and transform them into run-time knowledge available to the middleware.

Figure 32: Overview of the MUSIC development framework

The MUSIC tools provide appropriate tool development support required to develop services and
applications planned in the project. These services will need adaptability and context awareness. This is the
main focus of, MUSIC, and therefore MUSIC was selected as a providing technology. The MUSIC platform
was developed in a project where SINTEF was highly involved, thus SINTEF has the necessary competence
with regards to integrating and tailoring the technology to the needs of this project.

The MUSIC modelling notation and tools covers application architecture modelling, context and variability
modelling, service specification, and include code generation tools translating these models into a runtime
representation (Java code) needed by the MUSIC middleware. The tools are embedded in Eclipse and
together with standard Java development tool form a complete development environment.

5.2.3 Network simulator
The Prosus network simulator was originally designed to investigate the suitability of the MUSIC platform to
support subsea sensor networks based on acoustic communication, but basically it is suited to simulate

C
om

po
ne

nt
re

po
si

to
ry

builds,
maintains

& uses

builds &
adapts

Context

C
om

pi
le

 ti
m

e
R

un
 ti

m
e Runtime

adapt.
model

Running
appl.

variants

Encoded
adapt

models

Comp.
impls

Design
models

Transformation
and

checking tools

Context
changes

Modelling
notation

Modelling
tool

developer

MUSIC middleware

Method

MUSIC Studio

MW
monitor

detect plan

adapt

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

48 of 52

heterogeneous and dynamic networks in general, and thus may serve to allow testing of complex
heterogeneous distributed systems in simulated environments, to verify both their functional and adaptive
behaviour before deployment on real networks and devices. It will be adopted as a network simulator
component. The network simulator is described in Appendix C.

5.2.4 Context and adaptation middleware

5.2.4.1 MUSIC Middleware
The MUSIC middleware implements a central control loop which monitors the relevant context. When
significant changes are detected, it triggers a planning process to decide if adaptation is necessary. When it
this is the case the planning process finds a new configuration that fits the current context better than the one
that is currently running, and triggers the adaptation of the running application. To do this the middleware
relies on an annotated QoS aware architecture model of the application available at runtime, which specifies
its adaptation capabilities and its dependencies on context information. The planning process evaluates the
utility of alternative configurations, selects the most suitable one (i.e. the one with the highest utility for the
current context which does not violate any resource constraints) for the current context and adapts the
application accordingly. A number of different adaptation mechanisms are supported, including parameter
setting, component replacement and redeployment (Geihs, et al. 2009) (Floch 2006), and service rebinding
(Rouvoy 2008).

The MUSIC middleware is available as an open source project under LGPL license [21]. The MUSIC
middleware can be applied for the development of adaptive applications for any type of target devices such
as PCs, Laptops or mobile phones, which support at least Java 1.4 and must have OSGi available at run-time.
The MUSIC middleware platform utilizes the dynamic deployment and bundle management functionalities
provided by OSGi as a basis for dynamic reconfiguration, and supports incremental evolution of running
applications by deployment and retirement of bundles containing MUSIC components and compositions
plans.

MUSIC has an extensible architecture based on plug-ins, which is ideal for integration with other
technologies. For example, plug-ins can be implemented to support different service discovery protocols or
realize different reasoning algorithms.

A remarkable feature of the MUSIC middleware is the configurability of the middleware itself. MUSIC has
separate bundles for adaptation reasoning (i.e., Adaptation Reasoner) and configuration execution (i.e.,
Configurator). Some bundles are also optional, e.g., SLA bundles can be omitted if services without SLA
capabilities are preferred. MUSIC allows multiple configurations of the MUSIC middleware by selecting
which bundles to be deployed (i.e., depending on the operating system, the device hardware or the role of the
node). A MUSIC node can take different roles, such as MASTER, SLAVE, REASONER and Configurator.
A MASTER node is responsible for coordinating the whole process of adaptation in the adaptation domain
and needs to run a full configuration with both an Adaptation Reasoner and a Configurator. A SLAVE node
only provides resources to the adaptation domain (e.g., to host some resource demanding components), thus
does not run an Adaptation Reasoner or a Configurator. A (remote) REASONER node performs adaptation
reasoning and hosts only the Adaptation Reasoner. For a resource-constraint node, it is possible to run a
minimal configuration, i.e., only a Configurator, and perform reconfiguration scripts decided by other
REASONER nodes.

The DIVA project has also provided notations and tools for modelling context aware and adaptive systems.
DIVA uses aspects as the primary variability mechanism and may complement the MUSIC platform.

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

49 of 52

More elaborate description of MUSIC is available in Appendix A and B In conclusion we consider that
MUSIC naturally supports the needs for adaptation and evolution exhibited by the scenarios in section 2.2.

5.2.5 Service discovery
Missing from MUSIC is a service registry supporting system wide dynamic publishing and discovery of
services. In the MUSIC trials SLP (in P2P mode without the use of registries) was used, but this only works
in a limited network context. Also in SLP, discovery is based on a polling approach, meaning that client
nodes will regularly issue multicast requests checking the availability of service providers in the
environment. This is not a good approach for tiny battery powered devices.

5.2.5.1 SensiNode NanoService Platform
A candidate technology was developed in SENSEI, an EU project that Telenor Corporate Development
participated in, namely the SENSEI Resource Directory. It provides a global registry through the federation
of multiple local registries and was implemented using COOS (see section 5.2.6.3) for the federation
protocol. This is one of the most promising results that came out of the project and the project initiated an
effort to standardise the interface to the resource directory through IETF. This effort is continued after the
end of the project and appears to be successful. At the time of writing a draft specification has been
submitted to IETF (see http://tools.ietf.org/id/draft-shelby-core-resource-directory-00.txt)

The implementation done by the SENSEI project is a bit immature. However, SensiNode, one of the SENSEI
partners and main supporters of the standardisation effort, is in the process of implementing support for this
interface as part of their NanoServices platform5.

Our investigation of the proposed standard interface for the resource directory, indicate that this may serve
our needs regarding service discovery. However, at the time of writing, the availability and implementation
status is only partly known, so this must be considered as a tentative choice.

5.2.6 Communication layer

5.2.6.1 REST
We will assume a REST interface to the communications layer, ensuring compatibility with HTTP and
COAP protocols. REST (REpresentational State Transfer) [1] is a resource-oriented software architectural
style for building Internet-scale distributed applications and systems. It applies constraints like uniform
interfaces, self-descriptive data, stateless communication, cache components, on a client-server architecture.
The RESTful architecture is built on principles for encoding (i.e. representation), addressing and accessing
resources. Resources in REST are encoded using different representations, such as XML, JSON, YAML,
addressed via URI and accessed using Internet-based protocols such as HTTP. REST has been a promising
technology for the integration of heterogeneous computational entities and has been applied for sensors and
sensor networks. For example, TinyREST6 uses HTTP-based REST architecture to obtain and change the
state of sensors.

5.2.6.2 COAP
Today web services are the standard way of communicating over the internet for an application. CoRE
(Constrained RESTful Environments)[3] working group in IETF[4] are working on defining a RESTful (see

5 http://www.sensinode.com/media/flyers/sensinode-nsp-flyer-web.pdf
6 http://www.sics.se/realwsn05/papers/luckenbach05tinyrest.pdf

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

50 of 52

section 2) protocol that provides such capabilities on computationally constrained resources. Typically
embedded sensor networks are made available as services through such constrained devices. CoRE's
proposal is the Constrained Application Protocol (CoAP)[5] that would enable these constrained devices to
communicate easily through web services. The protocol aims to provide very low overhead and simplicity to
satisfy the requirements of the target audience of devices. As such the protocol benefits M2M and sensor
networks in general. In our demonstrator we will use the CoAP implementation provided by Sensinode as
part of their Nano services platform.

5.2.6.3 COOS
The COOS message bus7 (Figure 33) has been used in the Shepherd platform and many relevant devices has
been interfaced to it. Therefore we plan to also support communication via this message bus. COOS has two
important interfaces the Consumer interface and the Exchange interface. The Consumer interface is
implemented by every plugin to the COOS bus and will be called by the bus when an incoming message
arrives for the UUID address of that plugin. The Exchange interface is used by the COOS plugins to send
messages to the COOS UUID specified along with the message.

Figure 33 COOS message bus

Translation between the M2M platform and COOS plugins (Figure 34) is done via a translator edge that at
all times should be connected to a COOS message bus to support the M2M platform service bindings. The
COOS plugin will be published in the service discovery component (Figure 20) with a URI that contains the
RESTlet URL and the COOS UUID. This way the service-binding component (Figure 21) will send any
message directed at the plugin to the RESTlet URL hosted by the translator edge with the COOS UUID and
message as payload. The translator edge will then relay this message to the specified COOS UUID and wait
a given amount of time for any reply. If the service (provided by the coos edge) is available on the COOS
bus and replies this reply will be given as a reply to the HTTP query to the RESTlet call.

As mentioned in the previous paragraph any coos plugin supported in this M2M platform has to publish itself
to the discovery component, this will be done in the same manner as depicted in the “alt if service available”
part of Figure 29. The translator edge will then recognize the payload as a message publishing the service,
and relay the payload to the service discovery component (with the addition of the COOS UUID)

7 https://telenorobjects.onjira.com/wiki/display/coos/Home

PROJECT NO.
90C329

REPORT NO.
SINTEF A21905

VERSION
1.0

51 of 52

Figure 34 Translation from M2M platform to COOS services.

6 Conclusion

In this document we have documented the architectural analysis and design phase of the first step of the FI-
M2M project. The architecture defines a tool and middleware platform aiming to demonstrate the benefits of
context awareness and self-adaptation to simplify the deployment and evolution of M2M systems. The
document covers scenario and stakeholder analysis, requirements definition, high level design, and
technology mapping. AAL has been used as an example application domain to investigate the needs related
to the deployment and evolution of M2M systems.

In this first step we have primarily focused on the evolution of deployed system instances by the addition or
replacement of available artefacts, and not so much on the continued development of the body of artefacts,
which is meant to be addressed in the next step. However, the scenario and stakeholder analysis, and the
requirements also to some degree covers the latter aspect.

Technology for a better society
www.sintef.no

