

An exact decomposition approach for the real-time

Train Dispatching problem

Leonardo Lamorgese ∗ Carlo Mannino ∗

Abstract

Trains movements on a railway network are regulated by o�cial timetables.
Deviations and delays occur quite often in practice, demanding fast re-scheduling
and re-routing decisions in order to avoid con�icts and minimize overall delay.
This is the real-time train dispatching problem. In contrast with the classic "holis-
tic" approach, we show how to decompose the problem into smaller subproblems
associated with the line and the stations. The decomposition is the basis for a
master-slave solution algorithm, in which the master problem is associated with
the line and the slave problem is associated with the stations. The two subprob-
lems are modeled as mixed integer linear programs, with their speci�c sets of
variables and constraints. Similarly to the classical Bender's decomposition ap-
proach, the slave and the master communicate through suitable feasibility cuts in
the variables of the master. By applying our approach to a number of real-life
instances from single and double-track lines in Italy, we were able to (quickly)
�nd optimal or near-optimal solutions, with impressive improvements over the
performances of the current operating control systems. The new approach will be
put in operation in such lines for an extensive on-�eld test-campaign as of April
2013.

1 Introduction

In a �rst and general picture, a rail network may be viewed as a set of stations connected
by tracks. Each train runs through an alternating sequence of stations and tracks (train
route). Each route also includes the (possibly complicated) movements performed by
a train within each station. Trains run along their routes according to the production
plan; the latter speci�es the movements (routing) and the times when a train should
enter and leave the various segments of its route (schedule), including station arrival and
departure times, which de�ne the o�cial timetable. The generation of the production
plan is typically decomposed into two successive phases. In the �rst phase a tentative
o�cial timetable is established and the arrival and departure times are �xed. In the

∗SINTEF ICT, Oslo, e-mail: leonardo.lamorgese@sintef.no, carlo.mannino@sintef.no

1

second phase, called train platforming or track allocation (see [7], [10]) the complete
routes (including station movements) for trains are established, sometimes by allowing
moderate deviations from the tentative timetable.

With some exceptions, the production plan ensures that no two trains will occupy
simultaneously incompatible railway resources (con�ict free schedule)1. However, when
actually running, one or more trains can be delayed and potential con�icts in the
use of resources may arise. As a consequence, re-routing and re-scheduling decisions
must be taken in real-time. These decisions are still, in most cases, taken by human
operators (dispatchers), and implemented by re-orienting switches and by controlling
the signals status, or even by telephone communications with drivers. Dispatchers take
such decisions trying to alleviate delays, typically having in mind some train ranking or
simply following prescribed operating rules. What the dispatchers are actually doing
(without being aware of it) is solving an optimization problem - and of a very tough
nature. Following [34], we call this problem the real-time Train Dispatching problem
(RTD).

In short, the RTD problem amounts to establishing, for each controlled train and in
real-time, a route and a schedule such that no con�icts occur among trains and some
measure of the deviation from the o�cial timetable is minimized. As such, the RTD
problem falls into the class of job shop scheduling problems, where trains correspond to
jobs and the occupation of a railway resource is an operation. Two alternative classes
of formulations have been extensively studied in the literature for job shop scheduling
problems and consequently applied to train scheduling and routing problems: time
indexed formulations [16] and disjunctive formulations [4].

In time indexed formulations (TI) the time horizon is discretized, and a binary
variable is associated with every operation and every period in the time horizon. Con-
�icts between operations are prevented by simple packing constraints. Examples of
applications of (TI) to train optimization can be found in [7], [8], [9], [10], [19], [34],
[39]: actually the literature is much wider, and we refer to [25] for a survey. To our
knowledge, basically all these works deal with the track allocation problem, which is
solved o�-line and where the number of time periods associated with train routes is
reasonably small. In contrast, in the RTD problem the actual arrival and departure
times may di�er substantially from the wanted ones. Consequently, the number of time
periods grows too large to be handled e�ectively by time-indexed formulations within
the stringent times imposed by the application, as extensively discussed in [28]. An-
other drawback with (TI) formulations is that, if the time step is not chosen carefully,
they may easily lead to solutions which are practically unattainable (see [19]).

In disjunctive formulations, continuous variables are associated with the starting
times of operations, whereas a con�ict is represented by a disjunctive precedence con-
straint, namely, two standard precedence constraints one of which (at least) must be

1The problem of designing optimal production plans is of crucial relevance for railway operators.
As pointed out in [25] optimum resource allocation can make a di�erence between pro�t and loss for a

railway transport company

2

satis�ed by any feasible schedule. A disjunctive graph ([3]), where disjunctions are rep-
resented by pairs of directed arcs, can be associated to such disjunctive formulation
and its properties can be exploited in solution algorithms. This type of disjunctive
formulations can be easily casted into mixed integer linear programming models by
associating a binary variable with every pair of (potentially) con�icting operations and,
for any such variables, a pair of big-M precedence constraints representing the original
disjunction. These constraints contain a very large coe�cient and tend to weaken the
overall formulation, which is the main reason why (TI) formulations were introduced.

The connection between railway tra�c control problems, job shop scheduling and
corresponding disjunctive formulations was observed quite early in literature. However,
a systematic and comprehensive model able to capture all relevant aspects of the RTD
was described and studied only in the late 90s by Mascis ([27]) and further developed
in [29]. In these works, the authors also introduce a generalization of the disjunctive
graph to cope with this class of problems. After these early works there has been a
�ourishing of papers representing the RTD by means of disjunctive formulations and
exploiting the associated disjunctive graph. Recent examples can be found, e.g., in
[13] and [36]. The great majority of these papers only use disjunctive formulations
as a descriptive tool and eventually resort to purely combinatorial heuristics to solve
the corresponding RTD problems. The explicit use of the disjunctive formulation or
their reformulations as mixed integer linear programs (MILPs) to compute bounds is
quite rare, and typically limited to small or simpli�ed instances. Examples are [28],
which handles small-scale metro instances, and [36], which introduces several major
simpli�cations, drastically reducing the instances' size.

So, mixed integer linear programming is rarely applied to solve real life instances of
the RTD problem: time-indexed formulations tend to be too large and often cannot even
produce a solution within the time limit; big-M formulations tend to be too weak and
can also fail to produce feasible solutions within the time limit. Actually, the lack of real
life implementations of the many theoretical studies a�ects all known approaches, exact
or approximated, as recently observed in [19]. In the same paper the author conjectures
that the application of optimization to regular dispatching activities is imminent: in
this paper we somehow con�rm his conjecture.

Indeed, we introduce a new modeling approach to the RTD and a solution method-
ology which allow to overcome some of the limitations of natural big-M formulations
and solve to optimality (or nearly) a number of real life instances in single-track rail-
ways within the stringent time limits imposed by the application. The methodology
is based on a decomposition of the RTD into two sub-problems: the Line Dispatching
Problem (LD) and the Station Dispatching Problem (SD). The LD amounts to estab-
lishing (in real-time) a timetable that minimizes the deviation from the o�cial one
while ensuring that trains never occupy simultaneously incompatible line tracks. The
SD problem is the problem of routing and scheduling trains in a station according to
a given timetable. The LD problem and the SD problem give raise to distinct sets of
variables and constraints. Our approach resembles the classical Benders decomposition

3

or, better, its combinatorial variant introduced by Codato and Fischetti in [15]. In our
decomposition, the LD problem acts as the master problem, whereas the SD problem
is the slave. The LD problem is de�ned on a simpli�ed network, in which each sta-
tion is represented by a node, and is solved exactly. The solution of the LD problem
produces, for each train, tentative arrival and departure times in the stations of the
railway line. The slave problem is a feasibility problem and amounts to �nding, for
each train, a route in each station which is compatible with the tentative arrival and
departure times and is con�ict-free. Similarly to [15], if the slave problem is infeasible,
then a violated (combinatorial) cut in the variables of the master problem is added to
the master, and the process iterates. One fundamental property of the slave is that
it naturally decomposes into many independent problems, one for each station. Each
slave sub-problem is then rather small and can be easily solved.

The decomposition has two major advantages. First, the number of variables and
big-M constraints is drastically reduced with respect to the big-M formulation. Second,
depending on the speci�c infrastructure, we may choose di�erent models to represent
stations in the SD problem. As we will show in Section 4, the (general) SD problem is
NP-hard. However, in some cases of practical impact, simpler models can be exploited,
leading to polynomial cases. One such case (occurring in our real-life instances) is
described in Section 4 along with two di�erent solution approaches. Actually, since
the lines may contain quite di�erent station layouts, di�erent models can be applied
simultaneously. Also, one can start by using the simpli�ed version in every station
of the line, re�ning the model only if a violation of the associated constraints occurs.
Interestingly, this decomposition resembles the normal practice of railway engineers to
distinguish between station tracks and line tracks and of actually tackling the two prob-
lems separately. However, the master-slave scheme allows us to �nd globally optimal
solutions.

A solution algorithm based on this decomposition approach has been integrated into
a semi-automated tra�c control system developed by Bombardier Transportation, one
of the largest multinational companies in the sector, and is currently operating in a
number of single and double-track lines in Italy. However, the current implementation
only makes use of simple heuristics to solve the sub-problems of the decomposition.
In addition, the LD and SD sub-problems are solved independently, which may even
result in infeasible solutions. Indeed, the �nal decisions are still in the hands of the
dispatchers, which may accept or refuse the solutions proposed by the system. The
exact algorithm presented in this paper has already been massively tested on instances
from the lines mentioned with signi�cant improvements with respect to performances
of the system currently in operation. Bombardier Transportation is planning to release
an operative implementation of the new approach by the end of 2013: an extensive
on-�eld test-campaign has been scheduled by the end of April 2013 on some relevant
single and double-track lines in Central Italy.

Summarizing the major contributions of this paper to the current practice:

4

• We introduce an exact decomposition approach to the real-time Train Dispatching
problem.

• We give some complexity results on variants of the sub-problems in the decom-
position which are relevant to the practice.

• We show how to e�ectively model the sub-problems by mixed integer programs
and how to apply delayed row generation to couple them.

• We are able to solve real life instances of single and double-track lines from various
regions of Italy within the stringent time limits imposed by the application.

• Our computational results show signi�cant improvements over the performances
of the system currently in operation.

2 Problem description

In this section we introduce the main ingredients of the RTD problem. For sake of
brevity, we omit here and in the subsequent modeling sections a number of details
which are necessary in a practical implementation but irrelevant to describe the crucial
modeling and algorithmic issues.

A Railway Network is a set S of stations and a set B of tracks (called blocks)
connecting pairs of stations. Blocks are often partitioned into sections, and, for safety
reasons, trains running in a same direction on the same block will be separated by
(at least) a �xed number of such sections. We neglect sections in the remainder of
the paper but extending the model to handle such case is immediate. We also neglect
other railway infrastructures, such as sidings and cross-overs, but again the extension
is straightforward. Similarly, safety constraints can be easily modeled, but we do not
discuss them here. Next, we examine the elements of the railway network.

Stations. A station can be viewed as a set of track segments, the minimal controllable
rail units, which in turn may be distinguished into stopping points and interlocking-
routes. A stopping point is a track segment in which a train can stop to execute an
operation. Two special stopping points are those associated with the entrance and the
exit to the station. An interlocking-route is the rail track between two stopping points,
and is actually formed by a sequence of track segments. For our purposes, a station
s ∈ S is represented by means of a directed graph G(s) = (Ns, Es) where Ns is the set
of stopping nodes (corresponding to points) and Es ⊆ Ns×Ns is the set of interlocking
arcs (corresponding to routes). A train going through a station s is running a directed
path in the station graph. The path usually contains a platform node, where a train
can, if required, embark or alight passengers. Also, if the train enters (exits) the station,
the path will contain an entrance (exit) node.

5

In Figure 1 we give the classical schematic representation of a station along with the
associated graph. The three platforms correspond to nodes 2, 3, and 4 in the graph,
whereas node 0 and 1 are the incoming and exit nodes.

1

2

3

4

0

Figure 1: From the station scheme to the oriented graph. Nodes 2, 3, and 4 correspond to
platforms

Trains and routes. Our purpose is to model the real-time movements, along the
line, of the set T of controlled trains. Some of the trains will not have entered the line
yet, while others will be in stations or running on tracks between stations. A train
i ∈ T running through the line from an initial position to the destination station will
traverse all intermediate stations and blocks. We represent this movement by a graph
R(i) = (V i, Ai) called train route. The nodes of R(i) are associated with blocks, with
(station) stopping nodes and with (station) interlocking arcs traversed by train i. Graph
R(i) is a directed simple path. Every arc (u, v) ∈ Ai has a weight Wuv, and represents
a simple precedence constraint, i.e. v is encountered by train i right after u, with Wuv

being the minimum time to move from u to v. So, if u is the block connecting station A
to station B then v is the entrance node of station B and Wuv is the minimum running
time2. If u is a platform in a station then v is an interlocking arc leaving u and Wuv is
the time spent to embark and alight passengers, etc. Since R(i) is a directed path, its
nodes are naturally ordered and we let V i = {vi1, vi2, . . . }. Every route will also include
an arti�cial node (the last) representing the out-of-line state. In Figure 2 we show one
such route for a train i. Circle nodes correspond to tracks preceded by signals, whereas
diamond nodes are interlocking routes or tracks between stations.

The real-time schedule. We now consider a new graph R = (V,A), referred to as
the graph of routes, which is the union of all route graphs R(i), i ∈ T plus an additional
vertex O (the Origin) and a directed arc from O to the �rst node vi1 of each route

2In this work we use a �xed speed pro�le model.

6

i

9 1 2 3 4 5 6 7 8

Station 1

exit node

Track 1 - 2

Station 2

entrance node

Station 2

interlocking

Station 2

platform

Station 2

interlocking

Station 2

exit node

Track 2 - 3

Station 3

entrance node

W12 W23

Figure 2: A train route. Circle nodes correspond to tracks preceded by signals, whereas
diamond nodes are interlocking routes or tracks between stations.

R(i) with i ∈ T . Each of these arcs has a weight WOvi1
assigned to it which equals the

expected time for train i to start its route.
Every node v in graph R (except the origin) represents the occupation of a rail

resource by some train. With every node v, we associate a non-negative continuous
variable tv. For v ∈ V \{O} and v = vik, the quantity tv represents the (earliest) time in
which train i can enter the k−th node on its route, i.e. the time when the corresponding
rail resource can be occupied by train i. Also, we let tO = 0: in other words, node O
represents the start of the planning time. Vector t ∈ IRV

+ is called real-time schedule.
Clearly, every feasible schedule must satisfy the following set of precedence constraints:

tv − tu ≥ Wuv (u, v) ∈ A (1)

Other simple precedence constraints may be easily represented on the graph of
routes. For instance, the o�cial departure time Dis of train i from station s is a lower
bound on its actual departure time, and can be represented by an arc, with weight Dis,
from the origin O to the exit node of i from s.

Any feasible schedule is such that no two trains occupy simultaneously the same
rail resource or incompatible ones. So, let i, j ∈ T be distinct trains, let vik, v

j
l ∈ V and

assume that the rail resource corresponding to vik and the rail resource corresponding
to vjl cannot be occupied simultaneously. In other words, either train i enters next rail
resource vik+1 on its route before j enters vjl , or train j enters next rail resource vjl+1

before i enters vik. This can be expressed by the following disjunctive constraint:

(tj,l − ti,k+1 ≥ ε)
∨

(ti,k − tj,l+1 ≥ ε) (2)

where we let tx,y = tvxy to simplify the notation, and where ε is a suitable positive con-
stant to represent interaction with the infrastructure. There is one such constraint for
every pair of incompatible rail resources visited by any two distinct trains. Disjunctions
of precedence constraints are represented in graph drawings by pairs of dotted arcs. In
Figure 3 we show a graph of routes with two routes and two disjunctive precedence
constraints.

7

j

i 1 2 3 4 5

tA1 tA2 tA3 tA4 tA5

1 2 3 4 5

tB1 tB2 tB3 tB4 tB5

0

Station 1

exit node Track 1 - 2

Station 2

entrance node

Figure 3: Graph R with disjunctive constraints. Train A cannot enter the track between
station 1 and 2 before the train B has entered Station 2, or viceversa

Objective Function The quality of the real-time schedule t depends on its confor-
mity to the o�cial timetable. With engineers from Bombardier Transportation and
from the Italian railway network operator we have adopted a convex, piece-wise linear
function. Let ais be the arrival time of train i ∈ T in station s ∈ S. We associate with
ais the delay cost function cis depicted in Figure 4. The cost for a train is obtained by
summing up the delay costs in every station of its route and the overall cost c(t) is the
sum of the costs of all trains.

ci
s

Wi
s

ai
s

Figure 4: The cost function agreed with practitioners. For train i and station s, W i
s is the

o�cial arrival time, whereas ais is the actual arrival time.

The real-time Train Dispatching problem We are now able to state the RTD
problem:

Problem 2.1 Given a railway infrastructure and its current status, a set of trains
and their current position, �nd a route for every train and an associated real-time

8

schedule satisfying all of the (simple) precedence constraints (1) and all of the disjunctive
precedence constraints (2) so that the cost function c(t) is minimized.

Remark that, in order to solve the RTD problem, we need to solve both a routing
and a scheduling problem. The RTD problem can be easily modeled by Mixed Integer
Linear Programming (MILP) formulations (as in [28]) or some other techniques to tackle
disjunctive programs. However, the RTD instances of practical interest are typically so
large that the corresponding MILP models cannot be solved by direct invocation of a
commercial solver or by applying standard solution techniques. For this reason most
authors resort to heuristic approaches or to simpli�ed versions of the problem.

We have followed a di�erent path, namely we developed a decomposition technique
which makes it possible to apply classical MILP techniques and solve to optimality in-
stances of the RTD problem of practical interest. In what follows, we start by discussing
the case of single-track lines. As we will show this is already an interesting problem
per se, and it allows us to easily introduce the basic concepts of our decomposition
approach. The extension to double-track lines is straightforward and will be discussed
at the end of Section 3.

Single-Track lines We �rst discuss the case of single-line, single-track railways.
"Single-Track" means that there is only one track between any two stations; "Single-
Line" means that the infrastructure graph, with vertices corresponding to stations and
edges to tracks between stations, is a simple undirected path. The generalization to
double-track lines is immediate and will be discussed later. Also the generalization to
multi-line railways is straightforward but is out of the scope of the current work and of
the real-life instances we are solving in practice. In this case the computational e�ort
increases (depending on the number of lines). Still, exact or approximated decompo-
sition techniques may be applied (see, e.g., [14]). Also, the case of more complex line
layouts (i.e. lines with cross-overs) is not addressed here.

Single-track lines still play a central role in the global railway transportation system.
Indeed, a vast majority of the railway system is, at the present day, still single-track. For
example, in December 2011, in Italy there were 9218 km of single-track lines against
16723 km in total ([32]). Italy however is not an exception in the European Union.
According to the UIC (Union Internationale des Chemins de fer, i.e the worldwide
union of Railway Operators), a number of countries including Spain (65% single-track),
France (45%) and Germany (46%) also have a large share of single-track railways [37].
On a more global scale, some of the world's largest and fastest growing economies
like the Russian federation, China and India also present very signi�cant �gures. In
Russia, 47748 km out of 85167 (56%) are single-track [37], while these numbers are even
more impressive in China (40257 km out of 66050, or 61%) [37] and India (45237 km
out of 64460, or 70%) [20]. Aside from being amongst the countries with the highest
single-track ratio in the world, China and India rank second and �rst, respectively, in
terms of rail usage statistics, with a staggering 816 and 978 billion passenger-km share,

9

contributing almost entirely to the Asia and Oceania quota, which represents 75% of the
total worldwide [37]. Overall, according to [37], in 2011 single-track lines represented
ca. 80% of worldwide railway system. These �gures indicate unequivocally that the
RTD for single-track railways represents a (hard) problem relevant to the practice, with
global social and economical impact.

In single-track lines, stations in S = {1, . . . , q} are connected by single-tracks
(blocks), with block i joining station i − 1 and station i. Observe that, in this sit-
uation, the routing problem is only limited to stations, as there is only one way to go
from a station to another. Also, if two trains meet somewhere on the line, this must
happen in a station (or some similar facility).

As mentioned in the introduction, we decompose the RTD problem into the real-
time Line Dispatching (LD) problem, which amounts to establishing a schedule for the
trains so that they only meet in stations (or they do not meet at all), minimizing a
given cost function; and the real-time Station Dispatching (SD) problem, a feasibility
problem which amounts to �nding suitable routes in the station according to a given
timetable. Again driven by our application, we will consider only small sized stations,
with some important consequences on the adopted models. The two problems in the
decomposition are not independent of each other. In fact, a solution to the LD problem
may result in an inadmissible con�guration for the SD problem, as we may not be able
to assign station routes to trains as scheduled by the LD problem (for example when
the number of trains simultaneously in the station exceeds the number of platforms
available). We later show how to re-couple the problems in the decomposition through
a suitable master-slave solution mechanism.

3 The real-time Line Dispatching problem

The �rst problem we discuss is the real-time Line Dispatching (LD) Problem. We
conventionally extend the line with two additional �ctitious stations, one for each side,
able to accommodate any number of trains. Trains meeting in one of these stations are
interpreted to meet outside the line. As, in this sub-problem, we are neglecting train
movements within stations, we handle simple routes. In particular, for each train i, its
route is an alternating sequence of stations and blocks and can be represented by the
simple directed path R(i) = {vi1, (vi1, vi2) . . . , (vil(i)−1, vil(i)), vil(i)} where node vik ∈ R for

1 ≤ k ≤ l(i) is either a station or a block. The last node vil(i) is always the destination

station, whereas the �rst node vi1 may be a station or a block, depending on the position
at time 0 of the train on the line. If vik is a station then vik+1 is the next block on the
route of train i, and the weight of the arc (vik, v

i
k+1) is the minimum time the train is

supposed to spend in the station. If vik is a block then vik+1 is the next station on the
route of train i, and the weight of arc (vik, v

i
k+1) is the minimum running time of the

train through the block. Particular care must be taken for the �rst arc (vi1, v
i
2), where

the weight represents a residual time.

10

Once again we can consider a set of trains T running through the line, the cor-
responding graph of routes R = (V,A), obtained as described in Section 2, and the
associated schedule t ∈ IRV

+. The schedule t approximates the behaviour of trains along
the line. In this simpli�ed setting, if v is a node representing station s on the route
of train i, then tv is the arrival time of train i in station s. Similarly, if v is a node
representing the block outgoing a station s on the route of train i, then tv is the exit
time of train i from station s. Since we are dealing with small stations, this time closely
approximates the train's departure time from the station3. O�cial departure times are
of course lower bounds on actual departure times, and can be immediately represented
by weighted arcs from the origin to the nodes representing the stations.

Consider now two distinct trains i and j and let R(i) and R(j) be their respective
routes. Assume that the trains meet in station s ∈ S and let vik and v

j
m be the vertices

representing station s on route R(i) and R(j), respectively. To simplify the following
discussion, we may assume neither of these nodes is the last on its route.

Now, since the two trains meet in s then train i exits station s after train j arrives
in s and train j exits station s after train i arrives in s. In other words, the schedule t
must satisfy the following (conjunctive) pair of constraints:

ti,k+1 − tj,m ≥ ε (3)

tj,m+1 − ti,k ≥ ε (4)

where ε is a positive constant which depends on the infrastructure. Observe that the
above precedence constraints correspond to adding to graph R the arcs (vjm, v

i
k+1) and

(vik, v
j
m+1), with weight ε. This is depicted in Figure 5, where we consider the case of

two trains running in opposite directions and meeting in station s5; the two precedence
constraints are represented by arcs.

In the following, trains i and j running in the same direction will be referred to as
followers, and as crossing trains otherwise. To simplify the discussion we assume now
that trains will meet at most once on the line. This is obvious for crossing trains, but
not true in general for a pair of followers, even though this is almost always the case
in practice. Once again, this assumption can be easily dropped by a straightforward
extension of the model. Another assumption we make for followers is that when the
following train catches up with the other train, it becomes the leading train after the
meeting (the so called pass event). This is what typically happens in practice, where
the catching up train is a faster one; also this assumption can be easily dropped in a
slightly extended model.

Consider now a pair of followers i and j and assume that i precedes j before they
meet in s and j precedes i after the meet. Let us assume that the trains meet in station

3Indeed, we are neglecting possible di�erences in running time between alternative paths within
the station from the platform to the track. By slightly complicating the following station model these
times can be made exact.

11

j

i s4 b4 s5 b5 s6

s6 b5 b4 s4

ri

rj s5

i

kv

j

mv

i

kv 1

i

kv 1

i

kv 2

i

kv 2

j

mv 1

j

mv 2

j

mv 1

j

mv 2

Figure 5: Two trains running in opposite direction and meeting in station s5. The movements
satisfy the two precedence constraints represented on the graph by two directed arcs.

s ∈ S and let vik and vjm be vertices representing station s on route R(i) and R(j),
respectively. Then schedule t will satisfy constraints (3) and (4). In addition, since we
are considering single section tracks, for safety rules the following train cannot enter
a given block before the leading train has left it, i.e. it has entered the next station
on the block. Since i is leading before station s and j after, safety constraints can be
expressed by the family of constraints tj,m−1 − ti,k ≥ ε, tj,m−3 − ti,k−2 ≥ ε, ... (i leading
before station s), and ti,k+1 − tj,m+2 ≥ ε, ti,k+3 − tj,m+4 ≥ ε, ... (j leading after station
s). Correspondingly, we may represent these constraints on the graph of routes by the
set of arcs Aijs = {(vik, v

j
m−1), (v

i
k−2, v

j
m−3), . . . , (v

j
m+2, v

i
k+1), (v

j
m+4, v

i
k+3), . . . }, as shown

in Figure 6.

j

i
s4 b4 s5 b5 s6

s4 b4 s5 b5 s6 b3

b6

b6

b3

i

kv 2

i

kv 1

i

kv i

kv 1

i

kv 2

j

mv 2

j

mv 1
j

mv
j

mv 1

j

mv 2

i

kv 3

j

mv 3

j

mv 3

i

kv 3

Figure 6: Precedence constraints for two followers meeting in s5, represented by arcs on the
graph of the routes.

So, in general, the meeting condition of train i and train j in station s translates into
a family of precedence constraints on the schedule variables, which, in turn, corresponds
to a family Aijs of arcs in the graph of the routes R.

12

The LD problem amounts to �nding a minimum cost schedule t such that all pair
of trains only meet in stations. For every {i, j} ⊆ T , and every s ∈ S, we introduce a
binary variable yijs and we let yijs = 1 if i and j meet in s, and 0 otherwise.

Then the LD problem can be immediately formulated as follows:

min c(t)

s.t.
(i) tv − tu ≥ Wuv, (u, v) ∈ A

(ii) tv − tu ≥M(yijs − 1) + ε, (u, v) ∈ Aijs , s ∈ S, {i, j} ⊆ T

(iii)
∑

s∈S y
ij
s = 1, {i, j} ⊆ T

t ∈ IRV
+, y binary

(5)

where M is a large suitable constant. Also, since c(t) is convex and piece-wise linear,
it can be easily linearized by adding suitable variables and constraints, and (5) can be
turned into a MILP.

Let (t̄, ȳ) be a feasible solution to (5). Then the binary vector ȳ is called a meeting.
We discuss now a property of meetings with crucial consequences on the solution

algorithm. We recall here that an undirected graph G = (V,E) is called an interval
graph if it is the intersection graph of intervals of the real line, i.e. the nodes of G
correspond to intervals and there is an edge between two nodes if and only if the
corresponding intervals overlap.

Lemma 3.1 Let ȳ be a meeting and let ȳs ∈ {0, 1}(
|T |
2) be the subvector of y associated

with station s. Then ȳs is the incidence vector of the edges of an interval graph.

Proof. Since ȳ is a meeting, there exists t̄ ∈ IRV
+ such that (t̄, ȳ) is feasible to (5). For a

train i ∈ T , let Qi
s be the time interval (possibly empty) in which the train is in station

s according to the schedule t̄. Let Gs = (T,Es) be the interval graph associated with

the time intervals {Q1
s, . . . , Q

|T |
s }. Now, ȳijs = 1 if and only if Qi

s ∩ Qj
s 6= ∅, that is if

and only if {i, j} ∈ Es. �

We denote by G(ys) the interval graph associated with the meeting y and station
s. It is trivial to see that, given an interval graph H = (V,E) it is possible to build
an instance of the LD problem with solution (t, y) so that G(ys) = H, i.e. ys is the
incidence vector of the edges of H.

Now, recall that a clique in a graph is a subset of nodes all pairwise adjacent. By
the Helly property we have the following simple result:

Remark 3.2 Let (t, y) be a solution to the LD problem. Let K ⊆ T be a subset of
trains and let s ∈ S be a station. Then the trains in K are simultaneously in station s
(according to the schedule t) if and only if K is a clique of G(ys).

13

A solution (t, y) to the LD problem (5) cannot in general be extended to a solution
of the RTD problem. Indeed, it may be impossible to accommodate trains in stations
according to schedule t (which establishes when trains enter and leave the station). The
corresponding feasibility problem is the SD problem earlier introduced and is discussed
in the next section. We will also show how to extend (5) to represent such feasibility
problem so as to obtain a MILP for the RTD problem. Any feasible solution (t, y) to
the latter will then be feasible also for all the SD problems associated with the stations
of the railway.

We conclude this section by brie�y discussing the (immediate) extension to the
double-track line case. The only relevant di�erence is that crossing trains do not nec-
essarily meet in stations, but they can also "meet" on a pair of parallel tracks4. Let
BD ⊆ B be the subset of double-tracks. We introduce a binary variable zijb for every
pair of crossing trains {i, j} and every double-track b ∈ BD, which is one if and only
i and j meet in b. Then, for every pair of crossing trains {i, j}, constraint (5.iii) is
replaced by the following ∑

s∈S

yijs +
∑
b∈BD

zijb = 1 (6)

Also, if trains i and j meet on a double-track b, then i enters b before j reaches
the station following b on its route and viceversa. This can be expressed by a pair of
precedence constraints or, equivalently, a pair of arcs Aijb on the graph of the routes.

Then, for every pair of crossing trains {i, j}, the following constraints must be
included in (5):

tv − tu ≥M(zijb − 1) + ε, (u, v) ∈ Aijb , b ∈ B
D (7)

4 Modeling the real-time Station Dispatching prob-

lem

We focus now our attention on a station s. A solution to the LD problem provides a
timetable for s, that is the time in which each train enters and leaves s. In its more
general version, the real-time Station Dispatching Problem (SD) asks for �nding, for
each train entering or leaving s, a route in s and a schedule of the movements of the
train along its route so that input and exit times from the station agree with a given
timetable. This general SD problem closely resembles its o�-line version (the Train
Platforming Problem, see [10]). However, in most practical contexts and in particular
in our speci�c setting, we can make reasonable assumptions that make the problem
simpler.

4In principle, a follower could catch up and pass the leading train on a double-track section (parallel
run). However, this manoeuvre is very ticklish and can only be engaged by human operators.

14

First, in single-track lines and in particular in those considered in our test-bed,
stations are usually small, like the one in Figure 1. Basically, for a given platform, there
is only one route going through it (two, if you consider opposite directions). In other
words, there is a one-to-one correspondence between platforms and routes for a given
train, and if we choose a platform for train i, then we also establish the station route
for i.5 A second assumption is that the running time from the entrance stopping point
to any given platform is (approximatively) the same for all trains and all platforms. So,
we do not add further delay to a train by selecting, say, platform b instead of platform
a.

Thanks to the above assumptions, the SD problem is reduced to deciding whether
the platforms in a station su�ce to accommodate all incoming trains, which, in turn,
only depends on the meeting vector y.

We state now more formally the (no routing) SD problem.

Problem 4.1 (SD) Let P be the set of platforms, let T be the set of controlled trains
and let ys be a feasible meeting in the station. For every train i ∈ T denote by P (i) ⊆ P
the set of platforms that can accommodate train i. Then the SD problem is the problem
of assigning to each i ∈ T a platform in P (i) so that i and j receive a di�erent platform
whenever yijs = 1.

Given a undirected graph G = (V,E), a coloring is a function c : V → N such
that c(i) 6= c(j) for all {i, j} ∈ E. A k-coloring is a coloring such that c(i) ≤ k for
all i ∈ V . Given sets L(i) ⊆ {1, . . . , k} for i ∈ V , a list coloring of G is a coloring c
with c(i) ∈ L(i). Consider a function µ : V → N . A µ-coloring is a coloring c of G
with c(i) ≤ µ(i) for every i ∈ V . The coloring, k-coloring, list-coloring and µ-coloring
problem amount to establishing if a graph G admits a coloring, a k-coloring, a list
coloring and a µ-coloring, respectively. The following complexity results are surveyed
in [5]: for interval graphs, the coloring problem and the k-coloring problems are easy,
the list coloring and the µ-coloring problems are NP-complete.

It is not di�cult to see that the SD problem amounts to �nding a list coloring of
G(ys), with L(i) = P (i) for every node i. In the previous section we have seen that
G(ys) can actually be any interval graph. It immediately follows the next

Theorem 4.2 The SD problem is NP-complete.

Proof. Reduction from list-coloring in interval graphs.

However, for most stations in a single-track line, a more treatable situation occurs,
namely P (i) = P for all i and every train can be accommodated in any of the platforms
1, . . . , k of the station. We call this case the all-good SD problem.

Lemma 4.3 The all-good SD problem is easy.

5Clearly, this does not hold for larger stations, where several routes go through the same platform.

15

Proof. When all color lists are equal to {1, . . . , k}, the list coloring problem reduces
to the k-coloring problem. The k-coloring problem is easy for interval graphs.

The platforms of a station may be partitioned according to the incoming direction
of the trains, as often happens in double-track lines. Namely, trains coming from one
direction can only access the platform in a class of the partition. It not di�cult to see
that the above result generalizes to the following:

Corollary 4.4 Let T1, . . . , Tk be a partition of the trains T and let P1, . . . , Pk be a
partition of the platforms P . Assume that a train in Tq can access all platforms in Pq,
q = 1, . . . , k, and no other platforms. Then the corresponding SD problem is easy.

Since an interval graph admits a k-coloring if and only if it does not contain a clique
of cardinality larger than k, by Remark 3.2 we have the following

Corollary 4.5 The all-good SD problem for station s has solution if and only if there
are never more than |P | trains simultaneously in s.

Observe that for the general SD problem, the above condition is not su�cient to
ensure that a solution exists.

Finally, there is an intermediate case which occurs in practice. Namely, when plat-
forms and trains have variable lengths and a train can only be accommodated on a
platform which is at least as long. We call this the hierarchical SD problem. We have
that:

Lemma 4.6 The hierarchical SD problem is NP-complete.

Proof. Reduction from µ-coloring on unit interval-graphs. A unit interval graph
is the intersection graph of unit length intervals. Observe that every µ-coloring uses
at most kµ = maxi∈V µ(i) colors. So, given the function µ, and a unit interval graph
H = (V,E) we construct an instance of the hierarchical SD problem in the following
way. We consider a single station line. We let the set of trains T = V , the platforms
P = {1, . . . , kµ} and the meeting y be the incidence vector of the edges of H (i.e.
G(y) = H). Next, for each train i ∈ T , we de�ne its length as lT (i) = M − µ(i),
where M is a large real number; similarly, for each platform p ∈ P we let its length be
lP (p) = M − p. Suppose that the associated hierarchical SD problem is feasible, and
let c : T → P be an assignment of platforms to trains. Then c is also a µ-coloring of H.
In fact, since c(i) 6= c(j) for all {i, j} ∈ E, c is a coloring of H. Also, for each i ∈ T we
have lP (c(i)) ≥ lT (i), which implies M − c(i) ≥ M − µ(i), which becomes c(i) ≤ µ(i),
and c is a µ-coloring of H.

An alternative way to derive the above complexity results is to exploit the relation
between the (no routing) SD problem and the Interval Scheduling problem (see [21]).

16

Given a set of jobs each to be processed by one of a family of identical machines in a
speci�ed time interval, the basic Interval Scheduling problem amounts to establishing
if the machines su�ce to process all the jobs, provided that no two jobs are processed
simultaneously on the same machine. One can show that the basic Interval Scheduling
problem is easy and is equivalent to k-coloring the intersection (interval) graph of the
time intervals. It is not hard to see that the all-good SD problem is equivalent to
this basic version of Interval Scheduling. [21] also introduces the Hierarchical Interval
Scheduling Problem and shows that it is NP-complete. Without getting into details, it
is possible to show that the latter is equivalent to the Hierarchical SD problem.

Once again we remark that for more complex stations, when for example multiple
and con�icting routings to access or leave the same platforms exist, then more complex
models should also apply, as for example in [39]. Nevertheless, the decomposition prin-
ciple here introduced along with the master-slave solution approach are still exploitable.

4.1 MILP models for the SD problem

Basically all the instances in our (real life) test-bed belong to the all-good SD problem,
with exceptions which can be handled easily. In what follows we discuss two di�erent
approaches to the solution of the all-good SD problem. The �rst leads to a compact
formulation. In contrast, the second may lead to a number of constraints which grows
exponentially with the number of trains and of platforms. Remarkably, by exploiting
the master/slave scheme naturally stemming from our decomposition, the non-compact
approach has proven to be signi�cantly more e�ective in practice, as we will show in
Section 6. From here on, we shall refer to the number cs of platforms of station s as
station capacity.

A compact, �ow based representation of the all-good SD problem. Our
purpose is to "embed" the all-good SD problem in (5) in order to derive a MILP for
the RTD problem. To this end, we need to express the all-good SD problem in terms
of a family of linear inequalities in variables t and y, introducing new variables when
necessary. We will do this by de�ning a suitable network �ow problem which, in turn,
can be modeled by linear programming.

Let (t, y) be a solution to the LD problem, let s ∈ S be a station and i, j ∈ T be
two distinct trains going through s. We say that j is a successor of i in s (according
to (t, y)) if i leaves s before j enters s. We now introduce, for every ordered pair (i, j)
of distinct trains and every station s ∈ {1, . . . , |S|} , the quantity xijs which is 1 if j
is a successor of i in station s and 0 otherwise. It is not di�cult to see that x can be
obtained from y. In fact, if i runs from station 1 to station |S| and j from |S| to 1
(so they run in opposite directions), and they meet in station 1 ≤ k ≤ |S| (yijk = 1),
then i is a successor of j in every station s > k and j follows i in every station s < k.
Assuming i < j, the above conditions can be expressed by the following constraints:

17

xjis =
∑
q<s

yijq , s ∈ S

and
xijs = 1−

∑
q<=s

yijq , s ∈ S

Similar transformations may be derived for a pair of followers. In general, there
exists an a�ne transformation from y to x, i.e.

x = Qy + q (8)

where Q and q are suitable matrices.
Now, we can interpret station platforms as (unitary) resources that can be supplied

to trains. Then a train j receives a platform p either from a previous train i that used
platform p or "directly" from station s (if no previous trains have used p). Following this
interpretation, we can represent the SD problem as a network �ow problem. Informally,
station s can be represented by a supply node (it supplies up to cs units of resource)
and every train i can act both as a demand node and a supply node, since it can supply
1 unit of resource to successive trains.

We consider now a station s and a meeting ȳ, along with the corresponding successors
vector x̄. For sake of simplicity, we assume that every train in T goes through s. We
introduce the support graph N(s, x̄) = ({r, p} ∪ U ∪W,E), where U = {u1, . . . , u|T |},
W = {w1, . . . , w|T |}. Let the arc set E = Er ∪ EU ∪ EW ∪ Ep ∪ {(p, r)}, where Er =
{(r, uj) : j ∈ T}, EU = {(uj, wj) : j ∈ T}, EW = {(wi, uj) : i, j ∈ T, i 6= j},
Ep = {(wj, p) : j ∈ T}. With each arc e ∈ E we associate lower bound le and upper
bound fe. In particular, le = 1 for e ∈ EU and le = 0 for e ∈ E \ EU . Also, fe = 1 for
e ∈ Er ∪ EU ∪ Ep, f(wi,uj) = x̄ijs for (wi, uj) ∈ EW and fpr = cs. A representation of a
generic support graph is given in Figure 7.

u1

r

u2
uT

w1 w2
wT

u3

w3

p

N(s,y)

(1,1)

……………

……………

(0,1)

(0,1)

(0,cs)

(0,x2T)

Er

EU

Ep

EW (0,x21)
(1,1)

Figure 7: The support graph. Lower and upper bounds are shown between brackets for some
representative arcs

18

We have the following

Theorem 4.7 The all-good SD problem has a solution if and only if the graph N(s, x̄)
has a circulation satisfying all lower and upper bounds.

We give the su�ciency proof of this theorem in the Appendix. The necessity (con-
structive) proof is simpler and is omitted.

Incidentally, it can be easily shown that our network �ow problem actually solves the
(equivalent) problem of coloring an interval graph with cs colors. There exist alternative
representations of the k-coloring problem for interval graphs as network �ows, like the
one presented by Carlisle and Lloyd in [12]. However, we were not able to �nd a suitable
extension of (5) to represent the problem described in [12] and we developed a di�erent
approach.

Our circulation problems can be readily expressed as linear programs ([1]) in the
x variables (plus standard �ow variables). By using transformation (8) we couple the
circulation problems to (5) so as to obtain a MILP for the RTD problem. However, as
we will show in the computational section, the approach discussed next has proven to
be more e�ective in solving the instances of the RTD problem in our test-bed.

A non-compact formulation for station capacity. Consider a station s ∈ S with
cs platforms and let (t, y) be a solution to the LD problem. Then we can assign the cs
platforms of s to incoming trains if and only if the (interval) graph G(ys) can be colored
with cs colors. In turn, this can be done if and only if G(ys) does not contain a clique
of cardinality strictly larger than cs (see, for example, [35]). Any such clique will in
turn contain a clique K of size cs + 1. The number of edges of K is exactly

(
cs+1
2

)
, or,

equivalently,
∑
{i,j}⊆K y

ij
s = 1

2
(cs + 1)cs. In other words, the meeting y does not violate

station capacity if and only if, for all s ∈ S, we have:∑
{i,j}⊆K

yijs <=
1

2
(cs + 1)cs − 1 (9)

for all K ⊆ T with |K| = cs + 1.

5 Solution Algorithm

We are �nally able to formulate the RTD problem as a Mixed Integer Linear Program
by coupling constraints (9) and program (5) and linearizing the objective function:

19

min c(t)

s.t.
(i) tv − tu ≥ Wuv, (u, v) ∈ A

(ii) tv − tu ≥M(yijs − 1), (u, v) ∈ Aijk , k ∈ S, {i, j} ⊆ T

(iii) tv − tu ≥M(zijb − 1), (u, v) ∈ Aijb , b ∈ BD, {i, j} ∈ T, i, j crossing

(iv)
∑

s∈S y
ij
s +

∑
b∈BD z

ij
b = 1, {i, j} ⊆ T

(v)
∑
{i,j}⊆K y

ij
s ≤ 1

2
(cs + 1)cs − 1, s ∈ S,K ⊆ T, |K| = cs + 1

t ∈ IRV
+, y, z binary

(10)
To simplify the notation, we write constraint (10) in the same form every pair of

trains, by assuming zijb = 0 for all pair of followers i, j and all b ∈ BD. The alternative
compact formulation is obtained by replacing constraints (10.v) with the inequalities
de�ned in the circulation problem on the network N(s, x) for all s, plus the a�ne
transformation (8) from x to y.

One major drawback of the non-compact formulation is that the number of con-
straints (10.v) can grow exponentially with the number of trains and the capacity of
the stations. Also, the number of constraints (10.ii) can grow very large in practice,
even in our instances with a relatively small number of trains. For this reason we resort
to the delayed row generation approach ([2]) which we summarize next. We start by
selecting an initial subset of constraints. Then, in each node of the branching tree, we
(i) solve the current linear relaxation (ii) check if the current fractional solution violates
any of the neglected constraints (separation) (iii) add the violated constraints to the
current program and iterate. Following this scheme, our initial formulation contains
only (all) constraints (10.i).

We �rst focus on the generation of constraints (10.v) deriving from the decomposi-
tion of our original problem. In the classical Benders's decomposition algorithm (see,
e.g., [31]), a relaxed problem is solved in every node of the branching tree and Bender's
cuts violated by the current fractional solution are generated. In contrast, in their
combinatorial variant, Codato and Fischetti prefer to solve to (integral) optimality the
original master problem; then, violated combinatorial Bender's cuts are generated and
added, and the revised master problem is again solved to integral optimality. We fol-
low a somehow intermediate path. Rather than generating violated constraints of type
(10.v) in every node of the branching tree, we limit to the nodes corresponding to in-
teger solutions. In this way, the slave problem is precisely the SD problem described
in Section 4 and the separation is easy. Indeed, when y is binary (and no other con-
straints are violated), the graph G(ys) is interval (Lemma 3.1) for each s ∈ S. Then,
�nding an inequality of type (10.v) violated by y amounts to �nding, for each s ∈ S,
a maximum cardinality clique in the interval graph G(ys), which in turn can be done

20

in O(|T | log |T |) time (see [18]). On the other hand, we do not need to solve several
integer problems to optimality as in [15].

An open question is the complexity of separating (10.v) for fractional solutions.
Actually, if y can assume any fractional value, then the separation problem for (10.v)
reduces to the Maximum Edge-Weighted Clique problem in undirected graphs. The
latter is known to be an NP-hard problem (see [26]), leaving very little hope to solve
the separation e�ciently.

Concerning inequalities (10.ii,(10.iii)), they are also only separated (by inspection)
in the integer nodes of the branching tree.

All our real life cases satisfy the assumptions of the all-good SD problem. Once a
feasible meeting y is found, it is immediate to obtain a platform assignment by coloring
the interval graphs G(ys) for all s ∈ S. Incidentally, observe that constraints (10.v)
remain valid even when more complicated station models apply, but they do not su�ce
to provide a formulation. Notably, one can show that for all the variants of the SD
problem introduced in Section 4 suitable cuts in the y variables still su�ce to represent
infeasibility.

In order to provide an initial upper bound to the solution process we developed
a simple, heuristic algorithm, sketched next. Again, we decompose the problem into
a LD problem and a SD problem: however the optimization sub-problems are solved
heuristically according to the prioritization rules of the Italian Railway Operator. In
particular, at each iteration, potentially con�icting pairs of trains are identi�ed and
ordered chronologically. The �rst con�ict in this ordering is then solved by establishing,
for the corresponding pair of trains, a meeting point, either a station or a double-track
(if a given choice would result in capacity violation, it is disregarded). For any choice,
one of the two trains must wait some time for the other. The �nal chosen point is the
one which minimizes such waiting time. Once the con�ict is solved, the corresponding
precedence constraints are added to the problem and the process iterates. In principle,
this algorithm may fail to �nd a feasible solution: however, this never happened in our
experiments on real-life instances.

A practical implementation of the above heuristic algorithm is currently operating
on several railway lines in Italy (see Section 6)6.

A �nal interesting remark is that our decomposition and row generation approach
mimics, in some sense, the actual behavior of human dispatchers. A violated constraint
(10.ii) or (10.iii) corresponds to a so called line con�ict, that is a situation in which
two trains will (with no intervention) occupy incompatible track sections at the same
time. Line con�icts are detected by dispatchers and prevented by establishing a correct
meeting station for the con�icting trains. The dispatchers then force drivers to follow
their decisions by switching suitable tra�c signals to red light. Adding a constraint of
type (10.ii) is the mathematical equivalent to activating a red signal.

6In the current version the solutions generated are displayed to the dispatchers, which can accept
them or refuse them.

21

6 Computational Results

The objective of our computational tests is twofold. Firstly, we want to identify the most
e�ective approach between the decomposition and the compact formulation to solve the
RTD problem. Secondly, we confront the best approach, namely the decomposition,
with current practice. We ran our tests on a number of real life instances of single- and
double-track railways in Italy, in regions with considerably di�erent topography and
network status quo. Details about these lines are given in Table 1.

Line Abbr. Stops Stations Length (m) S.T. D.T.

Trento - Bassano T-BG 22 14 95711 yes no
Piraineto - Trapani P-T 12 12 93532 yes no
Alcamo - Trapani A-T 14 13 116119 yes no
Terontola - Foligno T-F 18 11 82200 yes no
Foligno - Orte F-O 13 10 82018 yes yes

Falconara - Foligno F-F 24 17 119612 yes yes

Table 1: Infrastructure details. S.T. stands for Single-Track, D.T. stands for Double-Track

All instances were provided by Bombardier Transportation, one of the key global
actors of the railway sector. As mentioned, a simpli�ed version of the approach has been
already developed in cooperation with Bombardier Transportation, and is currently
operating on these lines.

The instances in our test-bed were extracted at peak hours and refer to existing
trains actually running on the above lines. We �xed a 60 second time-limit for our
tests, which is regarded as an acceptable time span for a dispatcher's decision making.
In practice, real life requirements are often less stringent7.

Implementation details. Tests on instances in Table 2, 3, 4 were run using a Dell
- PowerEdge M910 with a 64 Bit Windows Server 2008 R2 Enterprise SP1 OS, 4 Intel
Xeon L7555 @ 1,86GHz CPUs, a 128GB RAM, and CPLEX 12.3 as a solver. All other
tests were run on an Intel(R) Core(tm) i7-2640M CPU 870 2.80GHz machine using
CPLEX 12.2. To implement Row Generation within branching nodes, CPLEX o�ers
di�erent strategies. An extension of the LazyConstraintCallback class was used: the
cut separator is called only if the current solution is integer. The recommended settings
for CPLEX were: (i) Turning o� presolve, (ii) Avoiding multiple threads (iii) Setting
the MIP search to Primal (iv) Turning o� dual reduction. In addition we also disabled
the heuristic search (HeurFreq = -1) and increased integer tolerance.

7This much depends on distances between stations. Norwegian dispatchers allow, for instance, up
to 10 minutes reaction time for some single-track lines [33]

22

6.1 Confronting compact formulation against decomposition

This set of experiments was designed to determine the best approach between the
compact, �ow-based formulation and the non compact, decomposition based one. In
order to obtain fair comparisons we chose not to provide initial upper bounds. It
emerges quite clearly that, as we will see, the compact formulation proved to be less
e�ective than the non compact one. A summary of computed results is shown in Table 2
and Table 3, where C stands for Compact, NC stands for Non-Compact. In particular,
in Table 2 we show results for (representative) instances for which the algorithm was
able to �nd the optimal solution within the time limits, which was the most common
outcome. However, for a few instances, the algorithm was not able to prove optimality
(within time limits): some examples are shown in Table 3.

ID Line Trains Initial Rows Generated Computation
Time(s)

C NC C NC C NC
1 T-BG 29 9459 1333 212 177 3,99 0,58
2 T-BG 28 8980 1302 246 130 8,25 0,78
3 T-BG 29 9691 1351 124 93 1,98 0,54
4 T-BG 29 4794 912 762 299 10,16 0,83
5 T-BG 22 4858 918 688 453 9,09 2,69
6 P-T 24 3781 898 741 259 2,98 0,98
7 P-T 24 3530 873 790 323 8,10 0,84
8 P-T 24 3553 882 311 516 1,38 1,26
9 P-T 23 3417 862 313 412 1,31 1,09
10 P-T 26 3669 904 399 189 6,81 1,09
11 A-T 20 4031 832 975 435 32,57 0,97
12 A-T 20 4250 851 661 386 5,74 11,04
13 A-T 19 3764 832 707 743 10,14 5,81
14 A-T 19 3729 796 590 763 22,25 6,13
15 A-T 18 3057 755 830 786 28,08 6,41

Average 5,53 1,34

Table 2: Computational results: instances solved to optimality within time limits. Col-
umn "Generated" refers to the number of rows generated during the branch-and-cut
process.

In our experiments, on average the non-compact formulation outperformed the com-
pact, �ow based one, both in terms of solution quality and computation time. In most
cases, the algorithm(s) found optimal solutions within a few seconds, an acceptable
time for dispatchers. Figure 8 shows the evolution of the integral solution values and of
the gap (between the incumbent solution and the current LB) for one instance of the

23

Alcamo - Trapani line.

Figure 8: Above, evolution of feasible solutions value; Below, evolution of the gap

In other cases, namely for some instances of the Trento - Bassano line, the process
did not terminate with optimal solutions within the time limit.

In Table 3 we show the algorithm's performance, for both formulations, for �ve of
such instances. We report the number of controlled trains (column "Trains"), the best
solution found and gap values for increasing time. In most cases, the non-compact
formulation produced better solutions and terminated with a gap which was at most
52%. Only for one instance the compact formulation terminated with a better solution.
In another case, however, the compact formulation was not able to produce a feasible
solution at all.

In these test instances, the algorithm covers an average 9 to 13 hour time horizon.
Consequently, re-routing and re-scheduling decision making may often take in account,
unlike dispatchers, trains which are not due on the line for many hours to come. In this
sense, a reasonable approach could be narrowing the time window and, consequently,
dropping a few of the last trains (according to their entry times on the line), precisely
the number that allows to �nd the optimal solution within the time limit. In table 4,
we report, for each instance of Table 3, the number of trains remaining and, between
brackets, the number of trains removed.

24

ID F Trains 10 s 30 s 60 s 180 s 300 s
gap sol gap sol gap sol gap sol gap sol

i1 C 19 93% 1575 93% 1575 80% 1575 70% 1575 69% 1575
i1 NC 19 0% 1219 0% 1219 0% 1219 49% 1219 0% 1219

i2 C 28 - - 48% 1799 48% 1799 48% 1799 48% 1799
i2 NC 28 57% 2200 57% 2200 57% 2200 22% 1262 18% 1259

i3 C 28 - - 24% 1266 24% 1266 20% 1266 15% 1266
i3 NC 28 53% 2153 43% 1766 35% 1546 33% 1546 33% 1546

i4 C 28 - - - - 56% 2765 56% 2765 51% 2765
i4 NC 28 36% 1922 34% 1922 33% 1922 33% 1922 32% 1922

i5 C 28 - - - - - - - - - -
i5 NC 28 54% 3307 53% 3307 53% 3307 52% 3307 52% 3307

Table 3: Instances where the algorithm could not prove optimality within time limits (60 seconds)
for both formulations.

ID F Trains Time

i1 C 12 (7) 0,80

i2 C 9 (19) 13,85
i2 NC 10 (18) 8,22

i3 C 9 (19) 14,63
i3 NC 9 (19) 5,69

i4 C 7 (21) 0,94
i4 NC 8 (20) 11,67

i5 C 7 (21) 1,09
i5 NC 8 (20) 7,30

Table 4: Reduced instances: the
solution is found within 15 sec-
onds

6.2 Evaluating the decomposition approach

The former tests show that algorithm NC outperforms algorithm C both in terms of
computation time and quality of solutions. Next, we evaluate NC on more complex
lines, with both single and double-tracks, and a higher number of controlled trains. As
the heuristic algorithm described in Section 5 is already in operation on these lines,
we are able to confront the solutions generated by the new exact approach with the
decisions currently being carried out by dispatchers on these lines. We veri�ed that

25

dispatchers follow the decisions taken by the heuristic algorithm more than 90% of
times. Also, in the remaining cases, it is not possible to determine from the available
data the actual reasons for such discrepancy, which may be caused by corrupted input
data. In each Table 5, 6 and 7, we present a summary of computed results for 10
representative instances from single and double-track lines in Italy. Note that E stands
for Exact and H stands for Heuristic and that, again, the time limit was �xed to 60
seconds.

Trains Solution Optimal Gap # Con�icts Time(s)

E H E H E H E H E

45 696 1010 yes no 0% 31% 13 13 0,55
46 494 1397 yes no 0% 65% 16 19 1,38
48 203 293 yes no 0% 31% 20 38 7,53
50 277 314 yes no 0% 12% 15 14 3,26
49 360 422 yes no 0% 15% 17 14 26,89
50 263 346 yes no 0% 24% 22 25 20,51
50 593 653 yes no 0% 9% 24 27 10,79
50 691 759 yes no 0% 9% 30 31 33,61
50 180 210 no no 13% 14% 15 17 > 60
50 690 690 no no 15% 15% 30 38 > 60

Table 5: Computational results for the Foligno - Orte line (single/double-track), over
an average 13 hour horizon. Note that, as heuristic computation times are always
under a second, they have been omitted.

Also, in column "Con�icts" we indicate how many con�icts are solved and how
many violations are found (with consequent calls to the Separator), for the heuristic
and exact algorithm, respectively.

For the instances in Tables 5, 6, 7 we computed the highest number of trains on-line
simultaneously, which was 8, 11 and 7, respectively. However, although dispatching on-
line trains has an immediate impact on network congestion, handling only such trains
is not su�cient to e�ectively tackle the RTD problem. In the general case, each on-
line train also interacts with a number of trains which will enter the line before the
former leaves it. For instance, the on-line trains mentioned above could have su�ered
con�icts with other 6, 12 and 6 distinct trains, respectively, which were o�-line at the
time. Indeed, in any case of practical interest, the interval graph associated with train
arrivals and departures from a railway line is a connected graph. In other words, each
dispatching decision has an e�ect not only locally, but propagates on the network and
may cause severe alterations over time.

In most cases, the exact algorithm �nds optimal solutions within the time limit. In
other cases, good feasible solutions were found. It is interesting to notice that, even

26

Trains Solution Optimal Gap # Con�icts Time(s)

E H E H E H E H E

33 494 576 yes no 0% 14% 34 21 11,22
34 958 1678 yes no 0% 43% 16 15 30,62
34 261 972 yes no 0% 73% 15 16 35,89
34 625 1345 yes no 0% 43% 15 16 7,36
51 636 878 no no 73% 80% 59 65 > 60
51 497 523 no no 71% 74% 58 44 > 60
51 585 632 no no 64% 67% 50 44 > 60
60 985 985 no no 31% 31% 101 56 > 60
56 924 1139 no no 18% 33% 74 50 > 60
69 1280 1280 no no 85% 85% 73 101 > 60

Table 6: Computational results for the Falconara - Foligno line (single/double-track),
over an average 13 hour horizon. Note that, as heuristic computation times are always
under a second, they have been omitted.

when optimality is not proven, the quality of such solutions is generally higher than the
corresponding heuristic ones.

To highlight the impact of dispatching decisions on the real-time timetable, in Table
8 we introduce a di�erent performance indicator, namely train punctuality (i.e. distri-
bution of delayed trains). Indeed, this is a powerful measure, which is immediately
understood both by railway practitioners and by general public. In Table 8, we report
the average distribution of delayed trains for the exact and heuristic algorithm, com-
puted by solving 500 instances for each of the relevant single and double track lines.
Based on feedback from the railway operators, possible delays were subdivided in three
macroscopic ranges: on-time (less than 3 minutes), delay between 3 and 6 minutes and
delay greater than 6 minutes. Trains were then clustered according to the di�erence
between expected and actual arrival time at destination.

As emerges from Table 8, in all cases, by applying the new approach, the percentage
of trains on time increased tangibly with respect to the current practice. The bene�ts
of the exact algorithm were very evident for the slightly less tra�cked lines, with an
increase in the number of trains on time of as much as 26% for the Trento-Bassano line
and 24% for the Terontola-Foligno line, while still noticeable for the two more complex
lines, 4% for the Falconara-Foligno line and 9% for the Foligno-Orte line. Also, Table 8
shows how the average improvement in punctuality is not only due to slightly delayed
trains arriving on time, but also to a clear decrease in the number of trains running
severely late.

However, the authors point out that although, for the more complex lines, there may
seem to be less "distance" between exact and heuristic algorithms (in terms of solution
quality), this is actually a bias caused by the non negligible amount of times the exact

27

Trains Solution Optimal Gap # Con�icts Time(s)

E H E H E H E H E

38 123 366 yes no 0% 66% 48 41 52,18
41 124 369 yes no 0% 66% 49 46 41,66
42 130 375 yes no 0% 65% 51 45 40,12
45 185 372 yes no 0% 50% 36 36 31,87
45 189 254 yes no 0% 26% 34 30 18,19
44 135 332 yes no 0% 59% 33 38 8,16
43 194 348 yes no 0% 44% 33 38 7,32
43 143 393 no no 12% 68% 51 48 > 60
44 370 498 no no 46% 60% 45 54 > 60
44 541 630 no no 30% 40% 37 52 > 60

Table 7: Computational results for the Terontola - Foligno line (single-track), over
an average 13 hour horizon. Note that, as heuristic computation times are always
under a second, they have been omitted.

Line # Trains Horizon (hrs) On Time Late between
3 and 6 mins

Later than
6 mins

H E H E H E

T-BG 29 9 49% 75% 12% 3% 39% 22%

T-F 36 11 65% 89% 24% 7% 11% 4%

F-O 40 12 83% 92% 9% 3% 8% 5%

F-F 54 12 77% 81% 9% 7% 14% 12%

Table 8: Punctuality distribution for 500 instances. Average �gures.

algorithm failed to prove optimality (within the time limit). In Table 9 we limit our
statistics to instances for which the �nal gap is 0 (i.e. the optimal solution is found and
proven). The �gures show that in this case the impact on punctuality/delay distribution
is very similar also for the more complex, denser lines. Indeed, in the general picture,
it is perhaps precisely for these lines that using an exact approach would produce the
most measurable and bene�cial impact. In our opinion, the results in Table 9 con�rm,
furthermore, the relevance of developing e�ective exact methods for the RTD problem.

Over all, our results show how the implementation of the new approach will signi�-
cantly increase the quality of the real-time plan with respect to the current practice. As
mentioned, the new approach is scheduled to be put in operation as of April 2013, for
an extensive test-campaign, on the three single-double track lines centered in Foligno.

28

Line % Gap 0 On Time Late between
3 and 6 mins

Later than
6 mins

H E H E H E

T-BG 47% 58% 90% 12% 3% 31% 7%

T-F 85% 66% 91% 22% 7% 12% 3%

F-O 95% 80% 89% 10% 5% 10% 7%

F-F 35% 75% 87% 13% 5% 13% 7%

Table 9: Punctuality distribution for instances with gap 0%. Column "%
Gap 0" indicates the percentage of instances for which the �nal gap is 0.
Average �gures.

7 Current developments and acknowledgments

A number of research directions are currently being explored. We are investigating
the possibility of strengthening our relaxation by identifying stronger valid inequalities.
We are looking for new branching strategies. We are also studying alternative ways to
represent con�icts. Finally, we are extending the approach to deal with multiple routes
and more complex station layouts.

We wish to thank for their precious contributions and assistance: Salvatore Caran-
nante, Ferruccio Fiorucci, Alessandro Mascis and Franco Pietrini from Bombardier
Transportation, Paolo Perticaroli and Mauro Piacentini from the railway division of
STAER Sistemi (Italy), Thomas Nygreen from the Capacity Department of the Nor-
wegian network operator (Jernbaneverket), Arnt Rogstad from Trondheim Dispatching
Central.

References

[1] Ahuja, R.K., T.L. Magnanti, J.B. Orlin, Network Flows, Prentice-Hall, 1993.

[2] Alvras D. and Padberg M.W., Linear Optimization and Extensions: Problems and
Soluzions. Springer-Verlag, Berlin, Germany, 2001.

[3] Balas, E., Machine sequencing via disjunctive graphs, Operations Research 17
(1969) pp. 941�957.

[4] Balas, E., Disjunctive programming, Annals of Discrete Mathematics, 5, pp. 3�51,
1979.

[5] F. Bonomo, G. Duran, J. Marenco, Exploring the complexity boundary between
coloring and list-coloring, Annals of Operations Research 169(1), pp. 3�16, 2009.

29

[6] F. Bonomo, Y. Faenza, G. Oriolo On coloring problems with local constraints,
Discrete Mathematics, 312(12-13) pp. 2027-2039, 2012.

[7] Borndörfer R., T. Schlechte, Models for Railway Track Allocation, ATMOS 2007
- 7th Workshop on Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems, Eds. Christian Liebchen and Ravindra K. Ahuja and Juan
A. Mesa.

[8] Brännlund, U., P.O. Lindberg, A. Nou, J.-E Nilsson, Railway Timetabling using
Lagrangian Relaxation, Transportation Science, Vol 32 (4), pp. 358-369, 1998.

[9] Caprara, A., M. Fischetti, P. Toth, Modeling and solving the train timetabling
problem, Operations Research,50 (5) 292, pp. 851-861, 2002.

[10] A. Caprara, L. Galli, P. Toth. Solution of the Train Platforming Problem, Trans-
portation Science, 45 (2), pp 246-257, 2011.

[11] A. Caprara, L. Kroon, M. Monaci, M. Peeters, P. Toth, �Passenger Railway Opti-
mization�, in C. Barnhart, G. Laporte (eds.), Transportation, Handbooks in Oper-
ations Research and Management Science 14, Elsevier (2007) 129�187.

[12] M.C. Carlisle, E.L. Lloyd, On the k-coloring of intervals, Discrete Applied Math-
ematics, 59, pp 225�235, 1995.

[13] F. Corman, A. D`Ariano, D. Pacciarelli, M. Pranzo A tabu search algorithm for
rerouting trains during rail operations, Transportation Research Part B 44 (2010)
175�192

[14] Corman, F., D'Ariano, A., Pacciarelli, D., Pranzo, M. Optimal inter-area coordi-
nation of train rescheduling decisions. Transportation Research E, Logistics and
Transportation Review, 48 (1), 71-88.

[15] Codato G., Fischetti M., Combinatorial Benders' Cuts for Mixed-Integer Linear
Programming, Operations Research, 54 (4), pp. 756-766, 2006.

[16] Dyer., M., L. Wolsey, Formulating the single machine sequencing problem with
release dates as a mixed integer program, Discrete Applied Mathematics, no. 26
(2-3), pp. 255-270, 1990.

[17] Goldberg, A.V., R. Tarjan, Finding minimum cost circulation by successive ap-
proximation, Math. of Op. Res., 15, pp. 430-466, 1990.

[18] U.I. Gupta, D.T. Lee, J.Y.T. Leung, E�cient algorithms for interval graphs and
circular-arc graphs, Networks 12, pp.459�467, 1982.

[19] S. Harrod, Modeling Network Transition Constraints with Hypergraphs, Trans-
portation Science 45 (1), pp. 81-97, 2011

30

[20] Indian Railway Year Book 2010-11, pp.22

[21] A.W.J. Kole, J.K. Lenstra, C.H. Papadimitriou, F.C.R. Spieksma, Interval
Scheduling: A Survey, Naval Research Logistics, 54, pp. 530�543, 2007.

[22] L. Kroon, D. Huisman, E. Abbink, P.-J. Fioole, M. Fischetti, G. Maroti, A. Schri-
jver, A. Steenbeek, R. Ybema, The New Dutch Timetable: The O.R. Revolution,
Interfaces 39 (1), pp. 6-17, 2009

[23] Jernbaneverket Presentation 2009, http://www.jernbaneverket.no/PageFiles/7535/JBV-
presentasjon_web_2009_05_07.pdf

[24] L. Lamorgese, C. Mannino, An exact decomposition approach for the real-time
train dispatching problem, Technical Report N. A23274, SINTEF ICT, Norway,
2012, submitted.

[25] Luethi M., Improving the E�ciency of Heavily Used Railway Networks through
Integrated Real-Time Rescheduling, Ph. D. Thesis, ETH Zurich, 2009.

[26] E.M. Macambira, C.C. de Souza, The edge-weighted clique problem: Valid inequal-
ities, facets and polyhedral computations, European Journal of Operational Re-
search, 123 (2), pp. 346�371, 2000.

[27] Mascis A., Optimization and simulation models applied to railway tra�c. Ph.D.
thesis, University of Rome �La Sapienza", Italy, 1997. (In Italian).

[28] C. Mannino, A. Mascis, Real-time Tra�c Control in Metro Stations, Operations
Research, 57 (4), pp 1026-1039, 2009

[29] Mascis A., D. Pacciarelli, Job shop scheduling with blocking and no-wait constraints,
European Journal of Operational Research, 143 (3), pp. 498�517, 2002.

[30] M. Montigel, Semi-Automatic Train Tra�c Control in the New Swiss Lötschberg
Base Tunnel, IRSA-Apect 2006,
www.systransis.ch/�leadmin/2006_Paper_MM.pdf

[31] Nemhauser G.L. andWolsey L.A., Integer and Combinatorial Optimization, Wiley-
Interscience, 1999.

[32] Rete Ferroviaria Italiana, http://www.r�.it/.

[33] Rogstad A.E., Chief Dispatcher Trondheim station, Norway Personal Communi-
cation, 2013.

[34] G. Sahin, R.K. Ahuja and C.B. Cunha, Integer Programming Based Approached
for the Train Dispatching Problem, Tech. Rep. Sabanci University, 2010.

31

[35] A. Schrijver, Combinatorial Optimization, Springer, 2003.

[36] J. Törnquist, J. A. Persson, N-tracked railway tra�c re-scheduling during distur-
bances, Transportation Research Part B 41, 342�362, 2007.

[37] International Union of Railways, Synopsis 2011

[38] Zwaneveld, P.J., Railway Planning. Ph.D. Thesis, Rotterdam School of Manage-
mente, TRAIL, Rotterdam, 1997.

[39] Zwaneveld, P.J., L.G.S. Kroon, H.E. Romeijn, M. Salomon, S. Dauzere-Peres,
S.P.M. Van Hoesel, H.W. Ambergen, Routing trains through railway stations:
model formulation and algorithms, Transportation Science, 30 (3), pp. 181-194,
1996.

8 Appendix

Su�ciency proof of Theorem 4.7 (the all-good SD problem in station s and meeting ȳ
has a solution if N(s, ȳ) has a circulation).
Proof.

u1

r

uk
uT

w1 wk
wT

p

N(s,y)

(1,1)

……

(0,1)

(0,1)

(0,cs)

H

uk-1

wk-1

…

…

…

…

H

sck
u

sck
w

1 sck
u

1 sck
w

Figure 9: The cut in the necessity proof of Theorem 4.7. We dropped from the �gure all arcs
of type (wj , ui) with i < j (i not successor of j

By contradiction, we assume that N(s, x̄) has a circulation but the all-good SD
problem has no solution. We use Ho�man's circulation theorem, which states that
N does not have a circulation if and only if there exists a set of nodes H such that∑

e∈δ−(H) le >
∑

e∈δ+(H) fe. So, assume that a platform assignment does not exist, then

there exist cs + 1 trains, say Q = {k, . . . , k + cs} ⊆ T , which are simultaneously in
station s. We construct a cut by letting H = {p} ∪ {wj : j = {k, . . . , |T |} ∪ {uj : j =
{k + cs, . . . , |T |}.

32

We then have
∑

e∈δ−(H) le = |Q| = cs + 1 since the only arcs with positive lower

bound (the arcs in EU) entering H are precisely the arcs (uk, wk), . . . , (uk+cs , wk+cs)
(all other arcs in EU are either completely contained in H, for j > k + cs, or in the
complement H̄ of H, for j < k).

On the other hand, it is easy to see that the only arc with positive upper bound
outgoing from H is (p, r), which implies

∑
e∈δ+(H) fe = cs < cs + 1 =

∑
e∈δ−(H) le.In

fact:

1. Er ∩ δ+(H) = ∅. Indeed, all arcs in Er are outgoing from r and r ∈ H̄.

2. EU ∩ δ+(H) = ∅. Indeed, uj ∈ H forj = k + cs, . . . , |T |. But then also wj ∈ H
for j = k + cs, . . . , |T |.

3. EW ∩ δ+(H) = ∅. We must show that (wi, uj) /∈ EW for i ≥ k and j ≤ k + cs.
That is, we show that for j ∈ {1, . . . , k, . . . , k + cs} and i ≥ k, then j /∈ Su(i).
This is trivial for i > k + cs since j /∈ Su(i) for all i > j. Also, by assumption,
the trains in Q = {k, . . . , k+ cs} are simultaneously in the station, which implies
that j /∈ Su(i) for all j, i ∈ Q.

4. Ep ∩ δ+(H) = {(p, r)}. Trivial, since p ∈ H and all arcs in Ep \ {(p, r)} are
incoming in p.

33

